Math 331 • Midterm Examination • Victor Matveev • Spring 2019
 Please read the assignment carefully, and show all work. Please check your answers!

1. (20pts, 15min) Consider the function $f(x)=\cos (x / 2)$ defined within $0<x<\pi$ (note: $\boldsymbol{L}=\boldsymbol{\pi}$)
a) Write down the cosine series for $f(x)$, as well as the partial sum of first 3 non-zero terms (counting A_{0} as the first term). Hint: use the identity $2 \cos \alpha \cos \beta=\cos (\alpha+\beta)+\cos (\alpha-\beta)$
b) On the interval $[-3 \pi, 3 \pi]$, plot the even periodic extension of $f(x)$, and the sum of first two non-zero term in the series (i.e. sum of terms corresponding to coefficients A_{0} and A_{1})
2. (35pts, 25min) Solve this vibrating string equation with a restoring force, explaining all steps. When separating variables, move the constant γ to the time-dependent part so that the BVP is in the standard form $\varphi^{\prime \prime}=-\lambda \varphi(x)$. If you solve this problem with $\gamma=0$, you will get 25 points instead of 35 points.

$$
\left\{\begin{array}{l}
\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}-\gamma u \quad(0<x<L, t>0 ; \gamma=\text { const }) \\
\frac{\partial u}{\partial x}(0, t)=0 ; u(L, t)=0 \\
u(x, 0)=f(x) ; \quad \frac{\partial u}{\partial t}(x, 0)=0
\end{array}\right.
$$

3. (15pts, 10min) Find the equilibrium solution of the following heat equation in a volume enclosed between two long co-axial cylinders with fixed temperatures on the inner and outer surfaces. Where does the heat enter this volume, and where does it leave? (Hint: $\ln (2) \approx 0.693$, although that's not important)

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial t}(r, t)=\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial u}{\partial r}\right)-\frac{1}{r} \quad(1<r<2, t>0) \\
u(1, t)=3 ; \quad u(2, t)=0
\end{array}\right.
$$

4. (10pts, 10 min) Separate variables in the following differential equation by plugging in $u(x, y)=g(x) h(y)$, and write down (but do not solve) the two equations for $g(x)$ and $h(y)$ that you obtain:

$$
\frac{x}{y} \frac{\partial}{\partial y}\left(y^{2} \frac{\partial u}{\partial y}\right)=y \frac{\partial^{2} u}{\partial x^{2}}
$$

5. (10pts, 10min) Does the function $u(x, y)$ below satisfy this Laplace's equation? Explain your answer.

$$
\left\{\begin{array}{l}
u_{x x}+u_{y y}=0 \quad(0<x<L, 0<y<H) \\
u(0, y)=u_{x}(L, y)=0 \\
u(x, 0)=f(x) ; \quad u_{y}(x, H)=0
\end{array} \quad u(x, y)=\sum_{\substack{m=1,3,5 . . \\
\text { odd } \mathbf{m}}}^{\infty} C_{m} \sin \frac{m \pi x}{2 L} \cosh \frac{m \pi y}{2 L}\right.
$$

6. (10pts, 10min) Solve the following initial value problem to find $f(x)$. Hint: we solved this type of equation quite recently. Make sure to check your solution!

$$
\left\{\begin{array}{l}
2 x f^{\prime}(x)-3 f(x)=0 \quad(x>1) \\
f(1)=1
\end{array}\right.
$$

