Contour Integral Theorems
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Generalized contour integral over total boundary of
non simply-connected domain of analyticity = 0

“Practical” corollaries of above theorems for evaluating an integral over a given simple
closed contour (Jordan contour, JC):

1. JCintegral = 0 if integrand has an anti-derivative along entire contour

2. JCintegral = 0 if integrand is analytic inside and on the contour

3. Use Cauchy Integral Formula for pole singularity inside the contour:
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4. Use Residues for any number of isolated singularities within the contour
5. If none of the above applies, use contour parametrization (direct integration)



