You may drop one 12-point problem, but you have to solve all problems worth more than 12 points.

1. (12pts) Find all equilibria, and categorize their stability. Make two plots: (1) phase plot (dy/dt vs. y); (2) plot the solution for the given initial condition, $y(t)$ vs t.

$$
\left\{\begin{array}{l}
\frac{d y}{d t}=(1-y)[\ln (1+y)]^{2} \\
y(0)=0.1
\end{array}\right.
$$

2. (12pts) Consider the so-called RLC electric circuit equation (you don't have to know what it means):

$$
L \frac{d^{2} q}{d t^{2}}+R \frac{d q}{d t}+\frac{q(t)}{C}=\Phi(t)
$$

Fundamental units are: $\quad[\boldsymbol{t}]=\mathbf{T}$ (time), $\quad[\boldsymbol{q}]=\mathbf{Q}$ (charge), $\quad[\boldsymbol{\Phi}]=\mathbf{V}$ (electric potential)
a) Determine the fundamental units of constants R, L and C (resistance, inductance and capacitance).
b) Find any two distinct time scales t_{c}, in terms of model parameters. You don't have to use linear algebra.
c) Explain why you can only eliminate two parameters by non-dimensionalization in this case, not three.
d) Non-dimensionalize this equation, using electron charge e as an extra scale: $q_{c}=e, \bar{q}(t)=\frac{q(t)}{e}$.
3. (12pts) Consider a charged ball of radius R with spherically-symmetric charge density equal to

$$
\rho(\mathbf{r})=\rho(r)= \begin{cases}\frac{\gamma}{r}, & r \leq R \quad(\gamma=\text { const }) \\ 0, & r>R\end{cases}
$$

Apply the divergence theorem to the Gauss law $\nabla \cdot \mathbf{E}=\frac{\rho}{\varepsilon_{0}}$ to find the electric field $\mathbf{E}(r)$ both inside and outside of this ball. Plot $E(r)=|\mathbf{E}|$ as a function of r. Make sure to explain all steps clearly.
4. (12pts) Consider the discrete state, discrete time Markov Chain describing a toy weather model, with daily transitions between " S " (sunny) and " C " (cloudy) days (supposedly obtained using repeated observation):

a) Write down the explicit solution of this discrete-time dynamical system, assuming that the weather was cloudy on day zero
b) What is the probability that it is sunny on day 4 , given that it is cloudy on day zero? One decimal digit of precision is enough in your answer.
5. (12pts) Consider diffusion in a thin cylindrical tube of constant cross-section radius R, with molecule loss through the side surface of the tube satisfying the following property: the loss per unit time per surface side area of the tube is proportional to concentration at a particular location, $u(x, t)$, with the constant of proportionality denoted γ. Derive the diffusion equation for the concentration $u(x, t)$ in this case. Start by rederiving the conservation law.
6. (17pts) Consider the following ODE in $\mathbb{R}^{2}: \frac{d \mathbf{r}}{d t}=\mathbf{u}(\mathbf{r})=\binom{-y}{x-y^{3}} \quad\left(\right.$ i.e. $\left.\frac{d x}{d t}=-y ; \frac{d y}{d t}=x-y^{3}\right)$
a) Make a rough plot of the flow field in the (x, y) phase plane.
b) Perform linear stability analysis of the equilibrium. It linear stability analysis sufficient? Categorize the stability of the equilibrium.
c) For the initial condition at (0,1), plot the trajectory in the (x, y) phase-plane, and plot $x(t)$ and $y(t)$ vs t. Be as accurate as possible.
7. (17pts) Consider the traffic flow equation, with physical traffic velocity depending linearly on traffic density:

$$
\left\{\begin{array}{l}
\frac{\partial \rho}{\partial t}+\frac{\partial}{\partial x}[(1-\rho) \rho]=0 \quad(t>0, x \in \mathbb{R}) \\
\rho(x, 0) \equiv \rho_{0}(x)=\left\{\begin{array}{cc}
-x, & x<0 \\
0, & x \geq 0
\end{array}\right.
\end{array}\right.
$$

Don't forget to use the chain rule to convert this equation to standard advection form!
a) Start by plotting the initial condition. Be careful with the minus signs.
b) Plot the characteristics corresponding to $x_{0}=-2, x_{0}=-1$, and $x_{0}=0$. Is there a shock wave $/$ break-up?
c) Make a rough plot of traffic density $\rho(x, t)$ at $t=1$.
d) Write down the explicit solution to this problem. It may help to separate the (x, t) domain into two regions.
8. (18pts) Convert to index notation, then use index notation to expand or simplify, and finally convert the result back to vector notation. Here $\mathbf{u}(\mathbf{r})$ is a smooth vector field, \mathbf{r} is the position vector, and $r=|\mathbf{r}|$:
a) $\nabla \times[\mathbf{r} \times \mathbf{u}(\mathbf{r})]$
b) $\nabla^{2}\left(\frac{1}{r^{p}}\right)$, where $p=$ const. For which p does this equal zero?

You may drop one 12-point problem, but you have to solve all problems worth more than 12 points.

