Math 613 * Fall 2019 * Midterm Examination * Victor Matveev

1. (12pts) Analyze the stability of equilibrium, and make a rough sketch of the solution, $y(t)$. Hint: start by finding the first term in the Taylor series of the velocity field, but don't use direct differentiation!

$$
\left\{\begin{array}{l}
\frac{d y}{d t}=\ln \left(1-\sin ^{3} y\right) \cdot\left(\cos \left(\sin ^{2} y\right)-1\right)^{2} \\
y(0)=0.1
\end{array}\right.
$$

2. (20pts) Sketch the flow field, and plot $x(t)$ and $y(t)$ for the given initial condition. Is it a Hamiltonian or potential flow? If so, find the Hamiltonian or the potential: $\begin{cases}\frac{d x}{d t}=-y ; & x(0)=0 \\ \frac{d y}{d t}=-x^{2} ; & y(0)=1\end{cases}$
3. (20pts) Consider the following reaction-advection PDE: $\quad \frac{\partial \rho}{\partial t}+c \frac{\partial \rho}{\partial x}=-\gamma \frac{\rho^{2}}{K^{2}+\rho^{2}}$.

Assume that the units are $[\rho]=M,[x]=L, \quad[t]=T$
Determine the units of the constants γ, c and K. Non-dimensionalize this system (Hint: there is an obvious choices for the scale of ρ)

4. (24pts) Solve this PDE by the method of characteristics: $\left\{\begin{array}{l}\frac{\partial u}{\partial t}+3 x t^{2} \frac{\partial u}{\partial x}=0 \quad(t>0 ;-\infty \leq x \leq+\infty) \\ u(x, 0)=u_{0}(x)=\sin x\end{array}\right.$
a) Find and plot the characteristics corresponding to 5 values of x_{0} : $x_{0}=-2, x_{0}=-1, x_{0}=0, x_{0}=1, x_{0}=2$.
b) Find the solution, and check that it satisfies the given equation by direct differentiation
c) Make a rough plot of the solution $u(x, t)$ at $t=1$
5. (24pts) Make a rough plot of the solution (assume $\varepsilon=$ const >0), and find the $1^{\text {st }}$ three terms in the asymptotic approximation to the solution for $\varepsilon \ll 1$: $\left\{\begin{array}{l}\frac{d y}{d t}=\exp (-\varepsilon y) \\ y(0)=1\end{array}\right.$

Hint: substitute $y(t)=y_{0}(t)+\varepsilon y_{1}(t)+\varepsilon^{2} y_{2}(t)+\ldots$, and set $y_{0}(0)=1, y_{1}(0)=y_{2}(0)=0$
6. (24pts) Examine the following reaction: $B+C \rightleftharpoons A$
k^{-}
a) Write down the system of differential equations describing reactant concentrations A, B, and C
b) Use conservation laws to eliminate the concentrations of B and C from your equations, leaving only a single equation for the concentration of A, given the initial conditions $B_{0}=C_{0}=1, A_{0}=0$
c) Find the equilibrium value of $A(\mathrm{t})$ and analyze its stability

