Math 613
 Homework \#10

1. (10pts) Convert to index notation: $\boldsymbol{a} \cdot \boldsymbol{b} \times \boldsymbol{c}+(\boldsymbol{a} \cdot \boldsymbol{c})(\boldsymbol{a} \cdot \boldsymbol{b})=3|\boldsymbol{c}|^{2}$
2. (10pts) Simplify and write down the final result in vector notation:

$$
u_{j} b_{k} u_{m} \delta_{m k}+b_{k} c_{m} u_{n} c_{k} \varepsilon_{j m n}=\delta_{k l} a_{m} \delta_{l j} a_{k} b_{m}
$$

3. (20pts) Simplify the following expressions:
a) $\delta_{k n} \delta_{j k} \delta_{n j}$ (be careful with the final simplification step)
b) $\varepsilon_{j k m} \delta_{k n} \delta_{m j}$
4. (15pts) Re-write using suffix notation, use the standard product rule, and convert the result back to vector notation: $\nabla \cdot(\mathbf{U} \times \mathbf{V})$
5. (15pts) Use suffix notation to prove that $\nabla \times(\nabla \times \mathbf{U})=\nabla(\nabla \cdot \mathbf{U})-\nabla^{2} \mathbf{U}$
6. (30pts) Calculate the "convective acceleration" $\mathbf{A}=(\mathbf{U} \cdot \nabla) \mathbf{U}$ for the " 2 D " (\mathbb{R}^{2}) flow $\mathbf{U}=\left(y^{2}, x^{2}\right)$ (you don't have to use suffix notation). Make separate plots of \mathbf{U} and \mathbf{A}

Below is everything you need to know about suffix / index / Einstein notation (here A denotes a tensor of any rank, i.e. a vector, a matrix, rank-3 tensor, etc):

$$
\begin{aligned}
& \delta_{j k} A_{k \ldots \ldots . .}=A_{j \ldots \ldots} \\
& \nabla \equiv \frac{\partial}{\partial x_{k}} \equiv \partial_{k} \\
& (\mathbf{U} \times \mathbf{V})_{k}=\varepsilon_{k m n} U_{m} V_{n} \\
& \varepsilon_{k j m} A_{j m \ldots \ldots}=0 \text { if } A_{j m \ldots \ldots}=A_{m j \ldots \ldots} \\
& \varepsilon_{k j m}=\varepsilon_{j m k}=\varepsilon_{m k j}=-\varepsilon_{j k m}=-\varepsilon_{k m j}=-\varepsilon_{m j k} \\
& \varepsilon_{k j i} \varepsilon_{k m n}=\delta_{j m} \delta_{i n}-\delta_{j n} \delta_{i m}
\end{aligned}
$$

