1. Consider the function $f(x)=\int_{0}^{\infty} e^{-t} \ln (1+x t) d t$
a) Obtain the asymptotic expansion of this function for $x \rightarrow 0$ using the familiar Taylor series expansion of the logarithmic function, and then taking the integral term-by-term. Use the gamma function identity $\int_{0}^{\infty} t^{k} e^{-t} d t=\Gamma(k+1)=k!$
b) Did you obtain a Taylor series or an asymptotic series for $f(x)$ ?
c) Take a value of $\mathrm{x}=\mathbf{0 . 1}$, and plot the dependence of the partial sum of the asymptotic series, $S_{N}(\mathrm{x})$, on $N$, for $N$ from 1 to 20. What do you think would be the best estimate for $f(\mathbf{0 . 1})$ ?
2. Consider the following ODE where $\varepsilon$ is a small positive constant parameter:

$$
\left\{\begin{array}{l}
\frac{d y}{d t}=\cos \sqrt{\varepsilon y} \\
y(0)=1
\end{array}\right.
$$

a) Make a qualitative sketch of the solution $(y(t)$ vs $t)$ using methods learned in the first week of class.
b) Expand the right-hand side in the Taylor series up to $3^{\text {rd }}$ order in $\varepsilon$, and consider solutions in the form of perturbative series $y(t)=y_{o}(t)+\varepsilon y_{1}(t)+\varepsilon^{2} y_{2}(t)+\varepsilon^{3} y_{3}(t)+O\left(\varepsilon^{4}\right)$, with the following initial conditions:

$$
y_{0}(0)=1, \quad y_{k>0}(0)=0 .
$$

c) Plot the partial sums for $y(t)$ from 2 up to 4 terms as a function of $t$, for $\varepsilon=0.1$, and compare with your qualitative plot in part " $a$ ".

