## Math 613 * Fall 2019 * Victor Matveev * Homework \#6

Problem 1 (20pts) Derive the diffusion / heat equation in a one-dimensional tube/cable for the case where the tube cross-section varies along the length, $A(x)$. Then, consider the special case $A(x)=x^{2}$. Does the resulting equation remind you of anything from Calculus III?

Hint: Fick's law of diffusion $J=-D \frac{\partial u}{\partial x}$ remains unchanged; you only have to modify the conservation law derivation, and then combine the two equations. As a reminder, below is the derivation of the conservation law for the case of constant cross-section (modify it for the case where $A=A(x)$, not constant):

$$
\begin{aligned}
& \frac{d N(t)}{d t}=\frac{\partial}{\partial t}\left(u\left(x^{*}, t\right) \Delta V\right)=\frac{\partial u\left(x^{*}, t\right)}{\partial t} A \Delta x=(\text { inflow rate })-(\text { outflow rate })=A J(x, t)-A J(x+\Delta x, t) \\
& \Rightarrow \frac{\partial u\left(x^{*}, t\right)}{\partial t}=-\frac{J(x+\Delta x, t)-J(x, t)}{\Delta x} \Rightarrow \frac{\partial u}{\partial t}=-\frac{\partial J}{\partial x}
\end{aligned}
$$

Problem 2 (15pts) Find the truncation error for the following centered difference approximation of $u^{\prime}(x)$ :

$$
\frac{d u}{d x}\left(x_{n}\right) \approx \frac{u_{n+1}-u_{n-1}}{2 \Delta x}
$$

To do this, expand $u_{n+1}=u\left(x_{n+1}\right)=u\left(x_{n}+\Delta x\right)$ and $u_{n-1}=u\left(x_{n-1}\right)=u\left(x_{n}-\Delta x\right)$ in a Taylor series around point $x_{n}$, as we did in class when analyzing the centered difference approximation of the $2^{\text {nd }}$ derivative. Finally, check the accuracy of this approximation by applying it to the function $u(x)=x^{3}$

## Problem 3 (35pts)

Use MATLAB or Mathematica (or any other language) to find the solution to $\left\{\begin{array}{l}u_{t}=D u_{x x}-\gamma u(0<x<1) \\ u(0, t)=0 ; u(1, t)=10 \\ u(x, 0)=10 x\end{array}\right.$ over
10 time steps with $D=0.2, \gamma=10, \Delta t=0.01$ and $N=10$ subdivisions along the x-interval $[0,1]$.
Hint: find $u_{n}^{m+1}$ from the forward Euler discretization of this equation: $\frac{u_{n}^{m+1}-u_{n}^{m}}{\Delta t}=D \frac{u_{n-1}^{m}-2 u_{n}^{m}+u_{n+1}^{m}}{(\Delta x)^{2}}-\gamma u_{n}^{m}$
Present the result as a table and plot these values as a surface using MATLAB / Mathematica / anything

## Problem 4 (30pts)

Find the equilibrium solution $u_{\text {eq }}(x)$ to the heat equation with heat loss along the length of the cable:

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial t}=D \frac{\partial^{2} u}{\partial x^{2}}-\gamma u(x, t) \quad(0<x<L, t>0 ; \gamma=\text { const }>0 ; D=\text { const }>0) \\
\frac{\partial u}{\partial x}(0, t)=0 ; u(L, t)=T=\text { const } \\
u(x, 0)=0
\end{array}\right.
$$

Make a rough plot by hand of $u_{\text {eq }}(x)$ and explain the heat balance: where does the heat enter, and where does it exit at equilibrium? See next page for a hint

Hint: at equilibrium, time derivative is zero, therefore $\left\{\begin{array}{l}D \frac{d^{2} u_{e q}(x)}{d x^{2}}-\gamma u_{e q}(x)=0 \quad(0<x<L, \gamma=\text { const }) \\ \frac{d u_{e q}}{d x}(0)=0 ; u_{e q}(L)=T=\text { const }\end{array}\right.$

