1. (25pts) Consider the *equilibrium* solution $u_{eq}(x)$ to the heat / diffusion equation with Neumann boundary conditions on both sides (here γ =const, β =const, length $L=\pi$):

$$\begin{cases} \frac{\partial u}{\partial t} = D \frac{\partial^2 u}{\partial x^2} + \gamma e^{-x} \quad (0 < x < \pi; \ t > 0) \\ \frac{\partial u}{\partial x}(0, \ t) = \beta; \quad \frac{\partial u}{\partial x}(\pi, \ t) = 0 \\ u(x, 0) = \sin(x) \end{cases}$$

- a) Find the equilibrium solution $u_{eq}(x)$. For which values of constant β does the equilibrium exist?
- b) To determine the last constant of integration in $u_{eq}(x)$, consider the integral of the entire PDE over the length of the tube/cable, as we did in class.
- c) Make a rough plot by hand of $u_{eq}(x)$ and explain the heat balance: where does the heat enter, and where does it exit at equilibrium?
- d) Do you think this equilibrium is asymptotically stable or just neutrally stable?
- 2. (25pts each) Solve the following wave / advection equations using the method of characteristics. For each problem, make 3 *rough* plots (by hand is fine): characteristics x(t), the initial condition $u_0(x)$, and u(x,2) (the solution at *t*=2). Note that all three plots can be done without solving the problem!

$$(\mathbf{a}) \begin{cases} \frac{\partial u}{\partial t} + x^{1/3} \frac{\partial u}{\partial x} = 0 & (t > 0) \\ -\infty < x < \infty \end{pmatrix} \quad (\mathbf{b}) \begin{cases} \frac{\partial u}{\partial t} + e^x t \frac{\partial u}{\partial x} = 0 & (t > 0) \\ -\infty < x < \infty \end{pmatrix} \quad (\mathbf{c}) \begin{cases} \frac{\partial u}{\partial t} + \frac{\partial}{\partial x} (u^3) = 0 & (t > 0) \\ -\infty < x < \infty \end{pmatrix} \\ u(x,0) = u_o(x) = \sin x \end{cases}$$

In (c), before you start, expand the second term using product rule for differentiation. We will practice with problems more similar to problem (c) on Monday

The steps are always the same for the method of characteristics:

- **1)** Compute the characteristics $x(t; x_0)$ Easy (if you can solve simple ODEs)
- 2) Invert step 1 to look-up x_0 corresponding to any space-time coordinate (x, t): $x_0 = x_0(x, t)$ Not always easy!
- **3)** Look-up initial value u_0 corresponding to this $x_0(x, t)$: $u(x, t) = u_0(x_0(x, t))$ No work required!

Note that the only tricky step is usually step 2, since this involves inverting a function $x(t; x_0)$. As we know from Calculus I, not all functions have an inverse: when the function is not invertible, we get something interesting, as we will see Monday.