Boldface quantities are constant vectors or vector fields; *italic* quantities are scalars: $|\mathbf{u}| = u$, $\hat{\mathbf{u}} = \frac{\mathbf{u}}{|\mathbf{u}|}$

- **1.** "Verify" the divergence theorem in \mathbb{R}^2 for the vector field $\mathbf{u}(x, y) = (xy^2, -x^2)$ and a square volume V: $V = [-1, +1] \times [-1, +1]$. Sketch this vector along the perimeter of the domain to check the signs of your integrals on the two sides of the divergence theorem.
- 2. Use divergence theorem to solve the Gauss equation with a point source in \mathbb{R}^2 (i.e. on a plane): $\nabla \cdot \mathbf{E}(\mathbf{r}) = q\delta(\mathbf{r}) (q = const)$. Assume angle-independence. Finally, find the potential $\Phi(r)$ by solving $\mathbf{E} = -\nabla \Phi$, up to an integration constant (note: potential is not bounded in \mathbb{R}^2). Hint: Use a disk of fixed radius as your integration domain. In the case of angle symmetry, the gradient in polar coordinates becomes $\nabla \Phi = \frac{d\Phi}{dr}\hat{\mathbf{r}}$, therefore $E(r) = -\frac{d\Phi}{dr}$
- 3. Use two methods outlined below to find the electric field $\mathbf{E}(r)$ and electric potential $\Phi(r)$ both inside and outside a sphere or radius r_1 with charge density $\rho(\mathbf{r}) = \begin{cases} \rho_0 = const, r_0 \le r \le r_1 \\ 0, r < r_0 \text{ or } r > r_1 \end{cases}$. Make a rough plot of E(r) and $\Phi(r)$ that you found. Assume that $\mathbf{E}(r)$ is oriented away from the center of the sphere, and that its magnitude depends only on the distance from the center: $\mathbf{E}(\mathbf{r}) = E(r)\hat{\mathbf{r}}, E \equiv |\mathbf{E}|, \hat{\mathbf{r}} = \frac{\mathbf{r}}{|\mathbf{r}|} \equiv \frac{\mathbf{r}}{r}$
 - a) Apply the divergence theorem to the Gauss law $\nabla \cdot \mathbf{E}(\mathbf{r}) = \rho(\mathbf{r}) / \varepsilon_0$, with spheres of constant radius *R*, considering three cases: $R < r_0$, $r_0 < R < r_1$ and $R > r_1$. Then, calculate the electric potential, noting that $\mathbf{E}(\mathbf{r}) = -\nabla \Phi = -\frac{d\Phi}{dr}\hat{\mathbf{r}} \Rightarrow E(r) = -\frac{d\Phi}{dr}$. Set the integration constants so that $\Phi(r)$ and $\Phi'(r)$ are continuous functions.
 - **b)** Carry out the same solution by directly solving the Poisson equation $\nabla^2 \Phi = -\rho(\mathbf{r}) / \varepsilon_0$. Set the integration constants so that $\Phi(\mathbf{r})$ and $\Phi'(\mathbf{r})$ are continuous:

$$\begin{cases} \nabla^{2} \Phi = \frac{1}{r^{2}} \frac{d}{dr} \left(r^{2} \frac{d\Phi}{dr} \right) = -\frac{\rho_{0}}{\varepsilon_{0}} \quad (r_{0} < r < r_{1}) \\ \nabla^{2} \Phi = \frac{1}{r^{2}} \frac{d}{dr} \left(r^{2} \frac{d\Phi}{dr} \right) = 0 \quad (r < r_{0} \text{ or } r > r_{1}) \\ \Phi(r \to \infty) \to 0 \\ \Phi(r_{0}^{-}) = \Phi(r_{0}^{+}); \quad \Phi(r_{1}^{-}) = \Phi(r_{1}^{+}); \\ \Phi'(r_{0}^{-}) = \Phi'(r_{0}^{+}); \quad \Phi'(r_{1}^{-}) = \Phi'(r_{1}^{+}) \end{cases}$$