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1 Introduction to the course

You are familiar with the theory and calculus of functions of one (or more)
real variable, f(x), f(x, y), f(x, y, t) etc. This course is concerned with the
theory of complex-valued functions of a complex variable:

f(z) = u(x, y) + iv(x, y), where z = x + iy and i
2 = −1.

We begin by introducing complex numbers and their algebraic properties,
together with some useful geometrical notions.

1.1 Complex numbers

The set of all complex numbers is denoted by C, and is in many ways analo-
gous to the set of all ordered pairs of real numbers, R2. A complex number is
specified by a pair of real numbers (x, y): we write z = x+iy, where i2 = −1.
We say that x is the real part of z, and y is the imaginary part of z, using
the equivalent notation

x = �(z) = Re(z), y = �(z) = Im(z).

Note that the relation i2 = −1 leads to the identities

i
2m = (−1)m

, i
2m+1 = (−1)m

i, for m ∈ Z. (1)
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Two complex numbers are equal if and only if both their real and imaginary
parts are equal. The absolute value or magnitude of the complex number
z is defined by the length of the vector (x, y) associated with z:

|z| =
�

x2 + y2, (2)

always a positive quantity (except when z = 0).

Example 1.1 The complex number z1 = 3+4i has magnitude |z| =
√

32 + 42 =
5, as has the complex number z2 = 4 + 3i.

The set of all real numbers R is a natural subset of C, being the set of
all those numbers in C with zero imaginary part. The standard geometry
of R2 provides a convenient and useful representation of C (this geometrical
structure is known as the complex plane: the real numbers lie along the
x-axis, known as the real axis, and the pure imaginary numbers lie along the
y-axis, known as the imaginary axis).

It is also often helpful to use the polar representation (r, θ) of points in
2D space, where r2 = x2 + y2 and tan θ = y/x (alternatively, x = r cos θ or
y = r sin θ). In this representation,

z = x + iy = r(cos θ + i sin θ).

Here again r is the absolute value of z, r = |z|, and the angle θ is known as
the argument of z, written θ = arg(z). Note that θ in this representation of
z is not single-valued: if z0 = r0(cos θ0 + i sin θ0) is one representation, then
replacing θ0 by θ0 + 2nπ also gives the same complex number z. Any such
value of θ is an argument of the complex number, and arg(z) is therefore really
an infinite set of θ-values. It is often useful to define a unique principal
argument, which is usually taken to be the argument lying in the range
0 ≤ θ < 2π (but sometimes the range −π < θ ≤ π; convenience usually
dictates the choice in a particular application). The principal argument is
sometimes written θ = Arg(z) to distinguish it from the set arg(z). We
will see further consequences of this nonuniqueness later on, when we discuss
multi-valued functions.

Example 1.2 Find the polar form of the complex numbers (i) z1 = i, (ii)
z2 = 1− i, (iii) z3 =

√
3− i.
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Solution: (i) For z1 we have |z1| = 1 and θ = cos−1(0) = sin−1(1) =
π/2 + 2nπ, for any integer n. The principal argument would be θ = π/2. In
any case it is clear that z1 = cos(π/2) + i sin(π/2).
(ii) For z2 = 1− i we have |z2| =

√
2, and thus 1 =

√
2 cos θ, −1 =

√
2 sin θ.

Thus θ = −π/4, modulo 2π, and z2 =
√

2(cos(−π/4) + i sin(−π/4)).
(iii) |z3| = 2, and

√
3 = 2 cos θ, −1 = 2 sin θ. Thus θ = −π/6 (modulo 2π),

and z3 = 2(cos(−π/6) + i sin(−π/6)).

1.1.1 Exponential representation of complex numbers

A more concise representation of z is obtained by introducing the complex
exponential function:

e
iθ = cos θ + i sin θ, θ ∈ R, (3)

where θ is the polar angle introduced above. This definition is a special case
of the more general complex exponential function that we will introduce later.
For now we note that the definition makes sense in terms of the standard
Taylor series representation of these functions:

e
iθ =

∞�

n=0

(iθ)n

n!
=

∞�

m=0

(iθ)2m

(2m)!
+

∞�

m=0

(iθ)2m+1

(2m + 1)!

=
∞�

m=0

(−1)mθ2m

(2m)!
+ i

∞�

m=0

(−1)mθ2m+1

(2m + 1)!

= cos θ + i sin θ,

using the identities (1). The absolute value of the complex number w = eiθ

is clearly |w| = 1, and as the argument θ varies, the point representing eiθ

in the complex plane moves around the unit circle centered on the origin. In
general then, we have the equivalent representations

z = x + iy = r(cos θ + i sin θ) = re
iθ
. (4)

This last representation provides an easy way to take the power of a complex
number:

z
n = r

n
e

inθ = r
n(cos(nθ) + i sin(nθ)).

Note that this gives a simple derivation of the identity (cos θ + i sin θ)n =
cos(nθ) + i sin(nθ), a result known as De Moivre’s theorem.
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Example 1.3 For the numbers in example 1.2 we have (i) z1 = eiπ/2, (ii)
z2 =

√
2e−iπ/4, and (iii) z3 = 2e−iπ/6.

1.1.2 Algebra of complex numbers

Recalling the identities (1) it is straightforward to extend the algebra of the
real numbers to complex numbers. If z = x + iy and w = u + iv, then

z + w = x + u + i(y + v),

zw = (x + iy)(u + iv) = xu− yv + i(xv + yu).

From these laws and the properties already noted, it is easy to show that
the complex numbers C form a field. The inverse of the complex number z,
given by 1/z, satisfies

z
−1 =

1

z
=

1

x + iy
=

x− iy

(x + iy)(x− iy)
=

x− iy

x2 + y2
. (5)

This identity may be alternatively obtained by the complex polar represen-
tation (4), which gives

z
−1 =

e−iθ

r
=

re−iθ

|z|2 . (6)

The polar representation also gives the neatest interpretation of complex
multiplication (and division which, with the notion of an inverse given above
is really just multiplication also), since if z = reiθ and w = Reiφ then

zw = rRe
i(θ+φ)

.

Example 1.4 The product of z1 and z2 in example 1.2 is z1z2 =
√

2eiπ/4 =
1 + i; the product of z1 and z3 is z1z3 = 2eiπ/3 = 1 + i

√
3; and the product of

z2 and z3 is z2z3 = 2
√

2e−5iπ/12.

1.1.3 Complex conjugates and inequalities

Every complex number z = x + iy has a complex conjugate z, defined by

z = x− iy = r(cos θ − i sin θ) = re
−iθ

. (7)

The first equality above shows that geometrically, the complex conjugate of a
point z ∈ C is obtained by reflection of z in the real (x) axis. The definition
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(7) also shows that the inverse of z, given by (5) or (6) above, is related to
its complex conjugate by

z
−1 =

z

|z|2 .

It is evident that

z = z, z + z = 2�(z), z − z = 2i�(z), |z| = |z|, zz = |z|2.

Moreover, for two complex numbers z and w,

z + w = z + w, zw = z w.

The above properties show that |zw| = |z||w|, but in general |z + w| �=
|z| + |w|. Rather, the following inequalities hold, analogous to the triangle
inequalities of vector algebra:

||z| − |w|| ≤ |z + w| ≤ |z| + |w|. (8)

The second inequality may be proved using elementary properties of complex
numbers. First note that

|z + w|2 = (z + w)(z + w) = |z|2 + |w|2 + 2�(zw),

and then that, for any complex number, the absolute value of its real part
must be less than or equal to the absolute value of the complex number itself,
which gives

�(zw) ≤ |�(zw)| ≤ |zw| = |z||w|.

Thus,

|z + w|2 ≤ |z|2 + |w|2 + 2|z||w| = (|z| + |w|)2
.

Noting that |z+w| ≥ 0 and |z|+ |w| ≥ 0, the second inequality of (8) follows.
For the first inequality, we use the result just proved, and set Z = z + w,
W = −w (arbitrary complex numbers, since z and w are arbitrary). Then
z = Z + W , w = −W , and

|Z| ≤ |Z + W | + |W | ⇒ |Z| − |W | ≤ |Z + W |.
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If |Z| ≥ |W | then the result follows; if not then repeat the above argument
with W = z + w and Z = −w to obtain

|W | − |Z| ≤ |Z + W |,

proving the result for |W | ≥ |Z| also.
The right-hand inequality in (8) generalizes easily to an arbitrary sum of

complex numbers:
�����

N�

n=1

zn

����� ≤
N�

n=1

|zn|.

When the complex numbers z, w are plotted in the complex plane |z| is just
the length of the straight line joining z to the origin. The complex number
z+w is found from the usual parallelogram law for vector addition. Therefore
(8) has a geometrical interpretation in terms of lengths of sides of a triangle.

Exercise: Determine the conditions under which equality holds in (8).

Example 1.5 For the complex numbers z = 3 + 0i and w = 0 + 4i, |z| = 3,
|w| = 4, and |z + w| = |3 + 4i| = 5. Clearly,

||z| − |w|| = 1 ≤ |z + w| = 5 ≤ |z| + |w| ≤ 7.

Example 1.6 For the complex numbers z = 4, w = 3, |z|+|w| = 7 = |z+w|.
Similarly for the complex numbers z = 4i, w = 3i.

Example 1.7 For z = 4, w = −3, ||z| − |w|| = 1 = |z + w|. Similarly for
z = 4i, w = −3i.

Homework: 1. Prove that, for 0 �= z ∈ C, |z| ≤ |�(z)| + |�(z)| ≤
√

2|z|.
Show, by examples, that either (but not both!) of these inequalities may be
an equality.
2. Prove that, for z, w ∈ C,

|1− zw|2 − |z − w|2 = (1− |z|2)(1− |w|2).

Deduce that, if |z| < 1 and |w| < 1,
����

z − w

1− zw

���� < 1.
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Remark Note that inequalities pertain only to the absolute value of com-
plex numbers. Unlike the real numbers, there is no ordering of the field of
complex numbers, so no notion of one complex number being greater than
or less than another.

1.2 Solving simple complex equations

Algebraic complex equations may be solved numerically in the same way as
real equations in two variables: by varying x = �(z) and y = �(z) until a
zero is found. In sufficiently simple cases analytical solutions may be written
down. Consider the general quadratic equation az2 + bz + c = 0, for a,
b, c ∈ C. The algebraic rules for complex numbers enable us (at least in
principle!) to complete the square and solve ”as usual”:

az
2 + bz + c = 0 a, b, c ∈ C

⇒ a

�
z +

b

2a

�2

+ c− b2

4a
= 0

⇒ z = − b

2a
+

�
b2

4a2
− c

a

�1/2

.

We will see later how to take the square-root of the complex number b2/(4a2)−
c/a and obtain two distinct roots, just as in the real case. [Note: for
quadratic equations with complex coefficients, the roots do not occur in
complex conjugate pairs.]

Higher order polynomials are more difficult to solve analytically, but the
equation zn = a, for a ∈ C, has a general solution, which we find by writing a

using the complex polar representation (4) and using the multi-valued nature
of the argument:

z
n = a = |a|ei(φ+2mπ)

m ∈ Z. (9)

Obviously, for any m ∈ Z the right-hand side of (9) is the same, but when
we take the nth root to solve for z, different m-values give different roots for
z. Thus

zm = |a|1/n
e

i(φ+2mπ)/n
m = 0, 1, . . . n− 1, (10)

gives n distinct solutions; and for m ≥ n this set of solutions is repeated
(m = n gives the same result as m = 0, m = n+1 the same result as m = 1,
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and so on). In the special case a = 1 = 1.ei.0 we have

zm = e
2mπi/n = ω

m
n , m = 0, 1, . . . n− 1;

these are the n roots of unity (ωn = e2πi/n). More generally, any nth order
polynomial equation

�n
j=1 ajz

j = 0 has exactly n complex solutions – we
will prove this result later.

Example 1.8 If n = 2 and a = 1 in (9), a familiar real case, (10) gives two
solutions zm = e2mπi/2, m = 0, 1, that is, z0 = 1 and z1 = eiπ = −1.
If n = 3 and a = 1 then we have the three cube roots of unity, z0 = 1, z1 =
e2πi/3, z2 = e4πi/3. Note that z2 can be written equivalently as z2 = e−2πi/3.

Returning to the equation zn = 1, we see that the factor z − 1 is easily
isolated:

(z − 1)(zn−1 + z
n−2 + · · · + z + 1) = 0.

Clearly the solution z = 1 = ω0
n is the solution corresponding to the first

factor, and so each of ωn, ω2
n, . . . , ω

n−1
n satisfy the (n−1)th-order polynomial

given by setting the second factor to zero. In fact, since we have all solu-
tions to the equation, we know that we must be able to make the complete
factorization as

z
n − 1 = (z − 1)(z − ωn) . . . (z − ω

n−1
n ) = 0,

though it is far from obvious that the product of these n factors gives zn−1.
Try showing that this is the case for small values of n, e.g., n = 3, n = 4.

2 Subsets of the complex plane

2.1 Introduction: Simple subsets of the complex plane

Before saying more about complex valued functions of a complex variable,
we need to introduce a few basic and important ideas about subsets of the
complex plane, including the equations (or inequalities) that define such sub-
sets, and geometrical interpretations. Many of these ideas will overlap with
familiar concepts from the geometry of R2, since any geometrical object in
the plane R2 has a direct analog in C. We will also introduce the idea of

10



parametrizing subsets of C, which will be useful later on when we consider
complex integration.

Perhaps the most basic subsets of C are lines, or line segments. For
example, the real axis (the set of complex numbers with zero imaginary
parts) may be described by any of the following equations:

�(z) = 0; z = z; |z − i| = |z + i|.

More generally, noting that for any complex number a ∈ C, a is its reflection
in the real axis, we can state that the real axis is the set of all points that
are equidistant from a and a. This geometrical observation leads to the
description of the real axis by the equation

|z − a| = |z − a|, for any a ∈ C with �(a) �= 0.

Any straight line L in the complex plane can be described by a complex
equation. This is easily obtained by noting that the line in C corresponding
to the line y = mx + c in R2 is found by substituting for y = (z − z)/(2i),
x = (z + z)/2, giving

z(1− im) = z(1 + im) + c.

As with R2, the half-spaces on either side of the line can be described by
inequalities. Thus, the upper half-plane �(z) ≥ 0 can be alternatively de-
scribed by |z − i| ≤ |z + i|, encoding the fact that points in the upper half
z-plane lie closer to i than to −i; or alternatively, for a ∈ C with �(a) ≥ 0,
points in the upper half z-plane lie closer to a than to a, thus |z−a| ≤ |z−a|.

Another way to express a line in C is by parametrization. The real axis
LR may be trivially parametrized as

LR = {z ∈ C : z = x, x ∈ R}.

If we wish to restrict to one or more line segments then we must restrict the
value of the parameter x appropriately. In general, a line L of finite length
between two points a, b ∈ C is defined by

L = {z ∈ C : z = (1− t)a + tb, 0 ≤ t ≤ 1}

though of course many other parametrizations are possible. Such a line
segment is often also denoted by L = [a, b].
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Exercise: What subset is described by the parametrization

L = {z ∈ C : z = (1− t
2)a + t

2
b, 0 ≤ t ≤ 1}?

What about

L = {z ∈ C : z = (1− t)a + t
2
b, 0 ≤ t ≤ 1}?

What if the parameter t is unrestricted?

Circles have a very natural description in C, as is evident from the polar
description of complex numbers, (4). If r is fixed in (4) but θ varies from 0
to 2π then z moves around a circle of radius r in the complex plane. Since
r is simply the modulus of the complex number, this circle may be written
as |z| = r; the polar representation (4) provides the natural parametrization
of the circle, with θ as parameter. More generally, a circle C centered on an
arbitrary point a ∈ C has equation |z − a| = r, with parametric description

C = {z ∈ C : z = a + re
iθ
, 0 ≤ θ < 2π}.

The subset S of C lying within this circle is described by

S = {z ∈ C : |z − a| ≤ r}.

Annular regions between concentric circles may be described in the obvious
way.

Another way to represent a circle in C is via the equation
����
z − α

z − β

���� = λ, (11)

for α, β ∈ C (α �= β) and 0 < λ ∈ R, λ �= 1. [The simplest way to show
this is to switch to the cartesian representation z = x + iy and square both
sides in the above equation.] Note that this representation means that, if we
define the new complex variable w by w = (z − α)/(z − β), then the image
of the circle represented by (11) in the w-plane is another circle, |w| = λ.
This is a simple example of a complex mapping (a Mobius transformation,
in fact; complex mappings and their applications will be considered in detail
in Math 756).

We can also describe circular arcs between two points in the complex
plane. Again, various representations are possible, but the simplest makes
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Figure 1: Two possible circular arcs passing through given points a, b ∈ C

use of circle theorems of basic geometry. Suppose γ is a circular arc through
points a, b, and z is an arbitrary point on γ. Then circle theorems tell us
that the angle azb is a constant, say µ. We have

arg(z − a)− arg(z − b) = µ

(see figure 1) or, using the fact that for any two complex numbers z1 and z2,
arg(z1/z2) = arg(z1)− arg(z2),

arg

�
z − a

z − b

�
= µ mod 2π.

The case µ = π is the degenerate case when the arc collapses to a line segment
joining a and b.

To find the equation of the other arc joining a and b that completes the
circle, note that for a point w on that arc the angle awb must equal the
supplement of azb, so that

arg(b− w)− arg(a− w) = arg

�
b− w

a− w

�
= arg

�
w − b

w − a

�
= π − µ mod 2π.
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We now consider more general subsets of the complex plane, introducing
several formal definitions.

2.2 Elementary definitions

Definition 2.1 A neighborhood N of a point z0 ∈ C is the set of points
z such that |z − z0| < �.

This is sometimes referred to as an �-neighborhood of z0. Geometrically, in
the complex plane, the neighborhood is the interior of a small disk of radius
� > 0 centered on z0, thus N is the set

N = {z ∈ C : z = z0 + δe
iθ
, 0 ≤ δ < �, 0 ≤ θ < 2π}. (12)

Since the inequality in the definition is strict, the boundary of the disk is
excluded from the neighborhood (this point seems trivial, but is not, as
we shall see). Related to neighborhoods is the concept of a ball or disk
surrounding a given point z0.

Definition 2.2 The ball, or disk, of radius r about the point z0 is denoted
by B(z0; r) (or sometimes D(z0; r)), and is defined by

B(z0; r) = {z ∈ C : |z − z0| < r}. (13)

If we remove the point z0 from the ball (or disk) the resulting set is called
the punctured ball or disk, and is denoted by B�(z0; r) (or D�(z0; r)).

Definition 2.3 (Interior point) Let S ⊂ C be a subset of the complex num-
bers. z0 ∈ S is an interior point of the set S if S contains a neighborhood
of z0.

Example: z0 = 1/2 is an interior point of the set S1 = {z ∈ C : |z| < 1} ⊂
C, but not of the set S2 = {z ∈ C : −1 < �(z) < 1,�(z) = 0} ⊂ C.

Definition 2.4 (Open set) The set S is open if all its points are interior.

S1 in the example above is open, but S2 is not. To see that S1 is open, we
need to show that for any point z0 ∈ S1, we can find an �-neighborhood of z0

that is contained within S1. Let z0 ∈ S1, then, by definition of S1, |z0| < 1.
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Let � = 1 − |z0| > 0. The �-neighborhood Nz0,� of z0 lies within S1 because
if z1 ∈ Nz0,� then, by (12), z1 can be written

z1 = z0 + δe
iθ
, δ ∈ [0, �), θ ∈ [0, 2π)

⇒ |z1| = |z0 + δe
iθ| ≤ |z0| + δ = 1− � + δ < 1,

where we used (8) in the above. Since |z1| < 1, z1 ∈ S1, and since z1 ∈ Nz0,�

is arbitrary, we have shown that a neighborhood of z0 lies within S1 for any
z0 ∈ S1. Hence all points of S1 are interior points, and so S1 is an open set.

To see that S2 is not open we just need to find a point z0 ∈ S2 for which
no neighborhood lies within S2. In fact any point z0 ∈ S2 will do for this
purpose. Using the description (12), a neighborhood of any z0 ∈ S2 contains
all the points

z = z0 + δe
iθ
, 0 ≤ δ < �, 0 ≤ θ < 2π.

In particular, the point z = z0 + i�/2 lies in any neighborhood of z0 (δ = �/2,
θ = π/2). Since z0 ∈ R it follows that �(z) = �/2 �= 0, and thus z �∈ S2. So
no neighborhood of z0 lies within S2; z0 is not an interior point, and S2 is
not open.

Definition 2.5 (Closed set) A set S is closed if its complement C \ S =
{z ∈ C : z �∈ S} is open.

Definition 2.6 (Limit point) A point z0 ∈ C is a limit point of the set
S ⊂ C if B�(z0; r) ∩ S �= ∅ ∀ r > 0.

Here the ball is punctured so that points of the set itself are not automatically
limit points. A limit point must have other members of the set S clustering
about it.

Example: If S = {(−1)ni(1 + 1/n) : n = 1, 2, . . .} then S has ±i as limit
points. It is neither open nor closed. The limit points do not lie in S.

Definition 2.7 (Closure) The closure S of S ⊂ C is the union of S and
its limit points.

Very often, this will simply be the union of the set S and any of its boundary
points that are not already included within S. As the name suggests, the
closure of S is always a closed set, as the following lemma shows.
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Lemma 2.8 A set S is closed if and only if it contains all its limit points.

Proof

S is closed ⇐⇒ C \ S is open

⇐⇒ given z �∈ S, ∃ � > 0 such that B(z, �) ⊂ C \ S

⇐⇒ given z �∈ S, ∃ � > 0 such that B
�(z, �) ∩ S = ∅

⇐⇒ no point of C \ S is a limit point of S.

Since we know the final statement is true if and only if the set contains all
its limit points, the equivalence of this with the set being closed is proved.

Definition 2.9 (Region) A region R is an open subset of C, plus some, all
or none of the boundary points.

(Note: You will see different definitions of regions and domains (see later)
in the complex plane – not all books are consistent!)

Example: S1 (the open unit disc) is a region, as is R1 = S1 ∪ {z ∈ C : |z| =
1, 0 < arg z < π/2}, and R2 = S1 ∪ {z ∈ C : |z| = 1} (R2 is the closed unit
disc – the open unit disc plus all of its boundary points).

Example: R2 in the example above is a closed region, but R1 and S1 are
non-closed regions (S1 is an open region as we showed, but R1 is neither open
nor closed, as it contains only some of its boundary points).

Definition 2.10 A region R is said to be bounded if ∃M > 0 such that
|z| ≤M ∀z ∈ R.

Example: S1, R1 and R2 above are all bounded by M = 1, but R3 = {z ∈
C : |z| > 1} is unbounded. (A region that is both closed and bounded is
compact.)

Homework: 1. Prove that any punctured ball B�(z0, r) is an open set.
What are its limit points? What is its closure?
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2.3 Stereographic projection

A one-to-one correspondence may be made between the ”flat” complex plane
and the surface Σ of a sphere of unit diameter in R3 (which we take as
(x, y, Z)-space for the purposes of this discussion). Take the sphere to rest
with its base (its South pole, (0, 0, 0)) at the origin of C, z = 0. Then, for any
z = x+iy ∈ C, draw a straight line joining z to the North pole, N = (0, 0, 1),
of the sphere. This line intersects the surface of the sphere at a unique point
P (x, y), which depends only on the coordinates (x, y) associated with z. As
the magnitude of the complex number |z| → ∞, the point P approaches
the North pole (0, 0, 1), so that if we consider ”∞” to be a point in C then
this maps uniquely to the North pole of the sphere. This representation is
sometimes referred to as a compactification of the complex plane; and the
complex plane with this point ”∞” appended is called the extended complex
plane. A detailed description of such a correspondence may be found in
Ablowitz & Fokas [2].

The explicit correspondence may be worked out, using elementary geom-
etry, as

z = x + iy = re
iθ ∈ C ↔

�
x

1 + r2
,

y

1 + r2
,

r2

1 + r2

�
∈ Σ

(the calculation is summarized in figure 2). This construction preserves many
important geometrical properties of the complex plane. It is not hard to show
that any circle on Σ (given by the intersection of a plane with Σ) projects
to a circle in C, except for circles that pass through the north pole N of Σ,
which project onto straight lines in C. Thus, straight lines in C may be
thought of as “circles through infinity”.

Homework: Ablowitz & Fokas, problems for section 1.2: Q 1.
If you read the extra section §1.2.2 in Ablowitz & Fokas on stereographic
projection (optional!) you could also try Questions 10, 11, 12 from problems
for section 1.2.

2.4 Paths in the complex plane

To develop concepts such as complex integration (which is always taken along
a path or curve in C), we need to think about how to describe such paths
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Figure 2: The stereographic projection of the extended complex plane onto
the unit sphere.
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through the complex plane. Paths are often defined in terms of a real pa-
rameter. We have already seen a couple of examples of simple paths that
can be described in this way in §2.1. The circle, centered on z0 with radius
r, can be thought of as a path, whose end-point coincides with its beginning
point (an example of a closed path). Paths are denoted variously by γ, Γ, or
C, possibly with parametric dependence denoted too, e.g. γ(t). If the path
in question is the boundary of some domain D then the alternative notation
∂D may also be used. Thus, we might describe a circular path by

γ = {z = z0 + re
iθ : 0 ≤ θ ≤ 2π}. (14)

Here θ is the real parameter, and as θ increases from 0 to 2π we traverse the
circle in the anticlockwise direction, starting at the point z = z0 + r. The
quantity γ(θ0) denotes the point on the path corresponding to parameter
value θ0.

We also saw in §2.1 how a straight line between two points z1 and z2 may
be represented parametrically, as

γ1 = {z = (1− t)z1 + tz2 : t ∈ [0, 1]} = [z1, z2]. (15)

A path along a second line segment from z2 to z3 may obviously be defined
in the same way:

γ2 = {z = (1− t)z2 + tz3 : t ∈ [0, 1]} = [z2, z3].

Continuing in this way, any sequence of points zn ∈ C may be connected
by a sequence of such line segments, forming a piecewise linear or polygonal
path within C.

A general path γ through complex space defined in terms of a real param-
eter t may be described by z(t) = x(t) + iy(t), with t lying in some interval
[a, b]. As for the specific examples above we write

γ = {z(t) : t ∈ [a, b]}. (16)

Definition 2.11 (Closed curve) A curve γ defined as in (16) is closed if
z(a) = z(b).

Definition 2.12 (Simple curve) A curve γ defined as in (16) is simple if
it is non-self intersecting, that is, if z(t1) �= z(t2) for a ≤ t1 < t2 < b (the
2nd strict inequality here is to allow a closed curve to be simple).

Examples (14) and (15) above are both simple paths. Example (14) is both
simple and closed.

19



Homework: 1. Sketch the contours γ defined by: (i) γ = {z : z = 1 +
ieit, t ∈ [0, π]}. (ii) γ = [−1, 1] ∪ [1, 1 + i] ∪ [1 + i,−1− i] ∪ [−1− i,−1] (the
join of these line segments). (iii) γ = {z : z = cos teit, t ∈ [0, 2π]}.
2. Define parametrically the following paths: (i) the square with vertices at
±1 ± i; (ii) the closed semicircle in the right half-plane with [−iR, iR] as
diameter.

2.4.1 Paths and connectedness

Paths may be used to define a kind of connectedness, which is another
concept that carries over from its analog in R2.

Definition 2.13 (Connectedness) A subset or region S in the complex plane
is said to be connected if it cannot be expressed as S = S1 ∪ S2, where S1

and S2 are both non-empty, open, and disjoint.

Definition 2.14 (Polygonal path connectedness) S is said to be polygo-
nally connected if, given any two points a, b ∈ S, there exists a polygonal
path lying in S and having endpoints a and b.

More generally, we have the concept of general path-connectedness,
the idea that any two points within a set can be connected by a continuous
path lying wholly within the set.

It is clear that each of these concepts is related. The following theorem
makes this precise.

Theorem 2.15 (Connectedness) A non-empty open set S ⊂ C is connected
iff it is polygonally-connected.

Proof Suppose S is connected. Let a ∈ S, and define Sa to be the set of
points z ∈ S that can be connected to a by a polygonal path lying within S.
Let S0 = S \ Sa.

Claim: Each of Sa and S0 is open.

The connectedness of S will then imply that one of these two sets is empty.
This cannot be S0, since a ∈ Sa. Thus Sa = S, and S is also polygonally-
connected.
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Proof of claim: Let z ∈ S be arbitrary. Since S is open and z ∈ S,
∃ � > 0 such that B(z; �) ⊂ S. For each w ∈ B(z; �) the line segment
[z, w] ⊂ B(z; �) ⊂ S. It follows that z can be joined to a by a polygonal path
in S if and only if w can be. Since S = Sa ∪ S0 and Sa, S0 are disjoint, it
follows that, for k = a, 0, z ∈ Sk ⇒ B(z; �) ⊂ Sk, and thus both Sa and S0

are open, as claimed.

This proves the theorem one way, that a connected set is polygonally-connected.
To prove the converse, suppose that S is non-empty, open, and polygonally-
connected. We will use contradiction, and hence we suppose that S = S1∪S2,
where both S1 and S2 are open, non-empty, and disjoint. Let a ∈ S1 and
b ∈ S2, then there exists a polygonal path γ lying in S and joining a to b.
At least one line segment of γ has one endpoint p in S1, and the other, q, in
S2, and of course the entirety of γ is contained in S1 ∪ S2. Set

γ̃(t) = (1− t)p + tq, t ∈ [0, 1],

and define the real function h of the real variable t by

h(t) =

�
0 if γ̃(t) ∈ S1,

1 if γ̃(t) ∈ S2.

Clearly h(0) = 0 and h(1) = 1, and h takes no intermediate values. If we
can show that, nonetheless, h is continuous; then the required contradiction
follows immediately.

To show that h is indeed a real-valued continuous function, we take a
parameter value s ∈ [0, 1]. The image of s, z = γ̃(s), lies in one of S1 or S2;
without loss of generality suppose it lies in S1, so that h(s) = 0. S1 is open,
and so ∃ �1 > 0 such that B(z, �1) ⊂ S1.

Now let t ∈ [0, 1] with 0 < |s− t| < �1/|p− q|. Writing w = γ̃(t) for the
image of t, we now note that

|w − z| = |(1− s)p + sq − (1− t)p− tq| = |s− t||p− q| < �1.

It follows that w ∈ B(z, �1) ⊂ S1, and hence that h(w) = 0. Hence, by
choosing t sufficiently close to s we can always make |h(t)−h(s)| as small as
we like (zero, in fact). This means that h is a continuous function as claimed,
contradicting the observed jump discontinuity. The set S must therefore be
connected, if it is polygonally-connected.
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Remark Implicit in the proof above was the notion of convexity, when
we stated that for each w ∈ B(z; �) the line segment [z, w] ⊂ B(z; �). More
generally we have the definition:

Definition 2.16 (Convexity) Let S ⊂ C. We say that S is convex if, given
any pair of points a, b ∈ S, we have [a, b] ⊂ S.

It is intuitively clear that any open ball is a convex set. A less stringent
notion that is sometimes useful is that of a starlike subset:

Definition 2.17 Let S ⊂ C. We say S is starlike if ∃ a ∈ S such that
[a, z] ⊂ S for all z ∈ S.

All convex sets are starlike (compare the definitions), but not all starlike sets
are convex. For example, a true star-shape is starlike (as its name suggests!)
but not convex.
Example: All of the regions S1, R1, R2, R3 given in §2.2 previously are
connected. The region R4 = S1 ∪ R3 is not connected, since no point in S1

can be connected to a point in R3 by a piecewise linear curve lying entirely
within R4. S1, R1, R2 are convex, and therefore also starlike. R3 and R4 are
neither convex nor starlike.

Definition 2.18 A domain is a connected open region.

Definition 2.19 (Simply-connected) A domain D is said to be simply-
connected if it is path-connected, and any path joining 2 points in D can
be continuously transformed into any other.

Example: All of the regions S1, R1, R2 given above are simply-connected.
The region R3 is not, since any two distinct points can be joined by topologically-
distinct paths within R3, passing on either side of the “hole”.

We conclude this section with one more important concept that will be
needed later. We phrase the concept as a definition, though in fact it is really
a theorem that can be proved.

Definition 2.20 (Interior and exterior of a closed contour) Let γ be a simple
closed contour. The complement of γ, C \ {γ}, is of the form I(γ) ∪ E(γ),
where I(γ) and E(γ) are disjoint connected open sets, and I(γ) (the interior
of γ) is bounded, while E(γ) (the exterior of γ) is unbounded.
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This definition allows the orientation of a contour to be specified. We
follow the standard convention in complex (and real) analysis, which is the
following:

Definition 2.21 (Orientation of a contour) A simple closed contour γ is
said to be positively oriented if it is followed in the anticlockwise sense
relative to any point in its interior.

For a contour defined parametrically by (16), γ is positively oriented if the
curve is followed counter-clockwise as the parameter t increases. Another
way to remember is that, if you follow the curve around, its interior should
stay on your left if it is positively oriented. Note that for a non-simple closed
curve, different portions can have different orientations!

3 Analytic functions: The basics

3.1 Complex sequences, series, and functions

You are familiar with the properties and convergence/continuity criteria for
real-valued sequences, series and functions. These concepts are very similar
in the complex plane, and carry over quite naturally from the real case. Thus,
for sequences (the simplest case to consider), we have the following:

Definition 3.1 A complex sequence (zn) is an assignment of a complex num-
ber zn to each n ∈ N.

The notion of a subsequence may be defined exactly as for real sequences (an
infinite, ordered, selection of elements of the original sequence).

Definition 3.2 (Convergence of a sequence) The sequence (zn) converges
to a limit a ∈ C (zn → a) as n→∞ if, given � > 0, ∃N� such that ∀n ≥ N�,
|zn − a| < �.

As in the real case, a series is simply the sum of the associated sequence;
thus, the series associated with (an) is just

�
n an, where the sum is taken

over all elements of the sequence.

Definition 3.3 (Convergence of a series) The series
�

an is said to con-
verge to the sum S if the sequence (Sn) of partial sums, Sn =

�n
m=1 am,

converges to the limit S in the sense of definition 3.2.
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Many of the results and theorems on convergence of real sequences and series
follow through for the complex case (we must replace any modulus notation
in the real case by the absolute value of the appropriate complex quantity).
Often results can be proved simply by considering the sequence or series as
a sum of real and imaginary parts, and applying the real result to each part.
Particular examples of results for complex series include:

1. If
�

n an converges then (i) |an| → 0 as n→∞; and (ii) ∃ M > 0 such
that |an| < M ∀ n. (i) may be proved by noting that since the series
converges (to s say) then given � > 0 ∃N such that, for all n ≥ N ,
|sn− s| < � (where sn denotes the partial sum of the series to n terms.
Thus, choosing m, n ≥ N , we have

|sm − sn| = |sm − s− (sn − s)| ≤ |sm − s| + |sn − s| < 2� ∀m, n ≥ N.

Let m = n + 1, then the above gives

|sn+1 − sn| ≡ |an+1| < 2� ∀n ≥ N.

Recalling that � > 0 was arbitrary, this proves the convergence of |an|
to zero.

2. ”Every bounded sequence has a convergent subsequence.” This well-
known result from real analysis (a variant of the Bolzano-Weierstrass
theorem) follows for the series �(zm), giving a convergent subsequence
�(zmk

). The real sequence �(zmk
) is then another bounded real se-

quence with a convergent subsequence �(zmkj
). The complex subse-

quence zmkj
) is then convergent.

3. ”Absolute convergence of a series implies convergence.” This is a fa-
miliar result from real analysis, which has the obvious complex analog,
that is, convergence of the series

�
n |an| guarantees convergence of the

series
�

n an. (Note that the first series here is real, while the second
is complex.) Proving this result is a fairly straightforward extension of
the proof for the real case, noting that

�
n an is essentially the sum of

two real sequences:

�

n

an =
�

n

�(an) + i

�

n

�(an).
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4. (Comparison test.) If we have a convergent series with non-negative
real terms,

�
n bn, and a positive constant k such that |an| ≤ kbn

∀n, then
�

n an converges. Armed with the result 3 above, this is a
straightforward extension of the comparison test for real functions -
the real result gives convergence of

�
n |an|, and then this absolute

convergence implies the convergence of the original series
�

n an.

Example 3.4 The series associated with the sequence an = zn is convergent
for |z| < 1. The partial sum Sn =

�n
m=0 zn is given by

Sn =
1− zn+1

1− z
z �= 1,

from which it is clear that for |z| < 1 Sn → 1/(1 − z), while for |z| ≥ 1 the
series diverges.

(The partial sum Sn in this example may be obtained by noting that Sn+1 =
zSn + 1, and also Sn+1 = Sn + zn+1.)

Homework: Let z0 = p ∈ C and

zn+1 =
1

2
(zn −

1

zn
), n ≥ 1,

if zn �= 0. Prove the following:
(i) If zn converges to a limit a then a2 + 1 = 0.
(ii) If p ∈ R then zn, if defined, does not converge.
(iii) If p = iq, 0 �= q ∈ R, then zn converges.
(iv) If |p| = 1 and p �= ±1 then zn converges.

The notion of series leads naturally to the definition of complex power se-
ries, of the general form

∞�

n=0

cnz
n
, cn ∈ C. (17)

Here the coefficients cn are understood to be fixed complex numbers, while z

may vary. The radius of convergence R of the power series is defined by

R = sup{|z| :
�

|cnz
n| converges}
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(R may be infinite). The results listed above guarantee that the power series
converges within the circle of convergence |z| < R. To see this, let |z| < R.
By the definition of R as supremum of the convergence set, there exists
some w ∈ C, with |z| < |w| ≤ R, such that

�
|cnw

n| converges. Since
|cnz

n| < |cnw
n|, result 4 above guarantees convergence of

�
n cnz

n.

Lemma 3.5 The power series (17) has radius of convergence

R = lim
n→∞

����
cn

cn+1

����

where this limit exists.

Proof Since the radius of convergence is defined in terms of the real series�
|cnz

n|, we can use results from real analysis. The ratio test for the real
series

�∞
n=0 an with positive terms states that if

L = lim
n→∞

����
an+1

an

����

exists then for L < 1 the series converges, while if L > 1 then the series
diverges. Applying this result to

�
|cnz

n|, we have convergence for

lim
n→∞

����
cn+1z

n+1

cnz
n

���� < 1,

and divergence for

lim
n→∞

����
cn+1z

n+1

cnz
n

���� > 1.

Thus, we have convergence for

|z| < lim
n→∞

����
cn

cn+1

���� ,

and divergence for |z| > limn→∞ |cn/cn+1|. The lemma is proved.

Example 3.6 The radius of convergence of the power series
�∞

n=0 zn is 1.

This can be determined either from a trivial application of lemma 3.5, or
directly, as was done in example 3.4.
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Example 3.7 The radius of convergence of the power series
�∞

n=0 anzn,
where a ∈ C is nonzero, is R = 1/|a|.

This is just a straightforward extension of the example above, and again may
be obtained by either applying lemma 3.5 or by the direct method.

Lemma 3.8 The power series (17) has radius of convergence

R =
1

lim supn→∞ |cn|1/n
,

where this limit exists.

Proof We again use known results from real analysis. The root test (Cauchy’s
root test) for the real series with positive terms,

�∞
n=0 an, states that if

C = lim sup
n→∞

(an)1/n

exists (possibly infinite), then if C < 1,
�∞

n=0 an converges, while if C > 1
the series diverges. Applying this result to

�∞
n=0 |cnz

n| we have convergence
if

lim sup
n→∞

|cnz
n|1/n = |z| lim sup

n→∞
|cn|1/n

< 1,

and divergence if the inequality is reversed. The result follows.

Example 3.9 The power series
�

an2
zn for fixed a ∈ C, with |a| > 1, does

not converge for any z ∈ C, and thus has zero radius of convergence.

To see this, note that with cn = an2
,

lim sup
n→∞

|cn|1/n = lim sup
n→∞

(|an2 |)1/n = lim sup |a|n =∞.

Hence R = 0.

Exercise: (1) Try showing this by other means. (2) Find the radius of
convergence of the power series

�
n zn/n!.

Within the circle of convergence, power series such as (17) can be thought
of as defining a function of the complex variable z. More generally, a func-
tion of the complex variable z on a domain D is a mapping or rule f that
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assigns a unique complex number w to each z ∈ D. We write w = f(z) to
represent this mapping, and use the notation f : D → C to represent the
fact that f takes values in D to other complex values. In general of course if
the domain D is only a subset of C, the image f(D) of D under f will only
be a subset of C, so you may also see notation f : D → f(D), or similar.
While some real functions require care in their generalization to the complex
plane (fractional powers being one example that we consider later), some are
straightforward to generalize. For example, integer powers of z are easily
generated using the rules of algebra we have already introduced, so that

z
2 = (x + iy)(x + iy) = x

2 − y
2 + 2ixy,

z
3 = (x + iy)(x2 − y

2 + 2ixy) = x
3 + 3ix2

y − 3xy
2 − iy

3
,

and so on. From this it is a simple matter to generate complex polynomial
functions,

P (z) =
N�

n=0

anz
n
, an ∈ C;

the power series given above are clearly a limiting case of such functions.
From polynomials complex rational functions are then ratios of two poly-
nomials:

R(z) =
P (z)

Q(z)
=

�N
n=0 anz

n

�M
m=0 bmzm

,

defined on C except at those points z∗ where Q(z∗) = 0.

Exercise: Find the image of the first quadrant, �(z) ≥ 0, �(z) ≥ 0, under
the functions f1(z) = z2, f2(z) = z4.

In general, since we know z = x+ iy, and since the function f(z) takes values
in C, we can write

f(z) = f(x + iy) = u(x, y) + iv(x, y), (18)

for real-valued functions u, v, of the two real variables (x, y). We say that u

is the real part of f , and v is the imaginary part.
The exponential function can be generalized using the relation (3) that

we have already seen. Thus,

e
z = e

x+iy = e
x(cos y + i sin y).
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We note, for future reference, that the absolute value of this complex expo-
nential depends only on the real part of z:

|ez| = |ex
e

iy| = e
x
.

We also have

e
iz = e

−y+ix = e
−y(cos x + i sin x), e

−iz = e
y−ix = e

y(cos x− i sin x). (19)

There is a “natural” way to motivate the generalization of the trigonometric
functions to the case of complex argument. We define

sin z =
eiz − e−iz

2i
, cos z =

eiz + e−iz

2
. (20)

This makes sense, because of the relation (3) for real θ noted earlier, which
gives

sin θ =
eiθ − e−iθ

2i
, cos θ =

eiθ + e−iθ

2
,

so that (20) is the natural generalization when θ is replaced with a complex
number z. The definitions (20) satisfy the usual trigonometric addition for-
mulae for sin(z + w), etc., and the identity cos2 z + sin2

z = 1 is also easily
verified to hold. Other trigonometric functions (tan z, cot z, sec z, cosecz)
can then be defined as in the real case, in terms of sine and cosine.

Complex hyperbolic functions can be defined similarly from their real
counterparts, as

sinh z =
ez − e−z

2
, cosh z =

ez + e−z

2
(21)

(from which the other hyperbolic functions can be defined); and again, the
addition formulae generalize from the real case as we would expect.

From the definitions (20) and (21) we note that sin and sinh, cos and
cosh, are simply related by

sinh iz = i sin z, sin iz = i sinh z, cosh iz = cos z, cos iz = cosh z.

We can also check the consistency of the definitions using the x + iy repre-
sentation and (19), which gives

eiz − e−iz

2i
=

1

2i
(e−y(cos x + i sin x)− e

y(cos x− i sin x))
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=
1

2i
(− cos x(ey − e

−y) + i sin x(ey + e
−y)

= i cos x sinh y + sin x cosh y

= cos x sin iy + sin x cos iy

= sin(x + iy)

= sin z.

Remark Note that intuition from real-valued functions does not usually help
us with their complex analogs. For example, though the real sine and cosine
functions are bounded in absolute value by 1, the complex trigonometric
functions are unbounded. If z = iy for y ∈ R then sin z = i sinh y, cos z =
cosh y, so that both sin z and cos z are unbounded as y → ∞. Likewise,
though the real hyperbolic cosine is always real and positive (always greater
than or equal to 1, in fact), the complex hyperbolic cosine has infinitely many
zeros in the complex plane – note that for z = iy, cosh z = cos y, and thus
the complex hyperbolic cosine has zeros along the imaginary axis at points
z = (n + 1/2)π, n ∈ Z.

3.2 Limits and continuity of functions

Having seen a few important examples of complex functions, we now return
to the general case and develop several of the concepts familiar from real
analysis. The first important notion we explore for complex functions is that
of continuity, which, as in the real case, may be defined in terms of limits.

Definition 3.10 (Limit of a function) Let the function f be defined in a
neighborhood of z0 (though possibly not at z0 itself). Then,

lim
z→z0

f(z) = w0

(that is, the limit of f(z) as z → z0 exists and equals w0) if, ∀ � > 0
(sufficiently small) ∃ δ > 0 such that

|f(z)− w0| < � whenever 0 < |z − z0| < δ. (22)

If z0 happens to be a boundary point of the region D on which f is defined
(or close to the boundary), then (22) should be interpreted to hold only when
z ∈ D.
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Pictorially, we require the value of the function f to approach w0 when z

approaches z0 from an arbitrary direction in D. The definition 3.10 may
be extended to the case z0 = ∞ simply by considering |z| arbitrarily large;
thus

lim
z→∞

f(z) = w0 (|w0| <∞)

if, given � > 0, ∃ δ > 0 such that

|f(z)− w0| < � whenever |z| >
1

δ
.

The proofs of the ”algebra of limits” results applicable to real-valued func-
tions may be adapted and shown to follow through for complex valued func-
tions.

Homework: (1) Evaluate the following limits, if they exist: (i) limz→0 sin z/z;
(ii) limz→∞ sin z/z; (iii) limz→∞ z2/(3z + 1)2; (iv) limz→∞ z/(z2 + 1).
(2) If |g(z)| < M for all z in a neighborhood of z0, and if limz→z0 f(z) = 0,
show that limz→z0 f(z)g(z) = 0.

Definition 3.11 (Continuity) The function f(z) : D → C is said to be
continuous at the point z0 ∈ D if limz→z0 f(z) = f(z0). Alternatively: f is
continuous at z0 ∈ D if, given � > 0, ∃δ > 0 such that |f(z) − f(z0)| < �

whenever |z − z0| < δ.

We note that f is continuous if and only if both its real and imaginary parts
are continuous. Exercise: Try showing this.

Example 3.12 Show that the functions f(z) = z and f(z) = z are con-
tinuous everywhere in C, and that g(z) = z2 is continuous on any bounded
domain.

The choice δ = � works for both cases f(z) = z, z here, since, if |z − z0| < �

then

|f(z)− f(z0)| = |z − z0| < �.

For g(z) we note that points on a bounded domain satisfy |z| < M for some
fixed M . Then, if |z − z0| < δ we have

|g(z)− g(z0)| = |z2 − z
2
0 | = |z − z0||z + z0| < δ|z + z0| ≤ δ(|z| + |z0|) < 2Mδ,
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where we used (8). Thus, choosing δ = �/(2M), the continuity is proved.
We record one more important theorem on continuous complex functions,

that will be needed later:

Theorem 3.13 (Continuous functions on compact sets) Let S ⊂ C be com-
pact, and f : S → C continuous. Then f is bounded and attains its bounds;
i.e. ∃z1, z2 ∈ S such that

|f(z1)| ≤ |f(z)| ≤ |f(z2)| ∀z ∈ S.

Since the theorem pertains only to the magnitude of f , a real quantity, the
proof can proceed as in the real case.

3.3 Differentiability of complex functions

The next important concept is that of differentiability of complex func-
tions.

Definition 3.14 (Differentiable function) Let D be an open set in C. f :
D → C is differentiable at a ∈ D if

lim
h→0

f(a + h)− f(a)

h
(23)

exists (independently of how the limit h → 0, h ∈ C is taken). When the
limit exists, it gives the derivative of f at a:

f
�(a) =

df

dz

����
z=a

= lim
h→0

f(a + h)− f(a)

h
.

If, as is usually the case, the function is differentiable in a region then the
function is said to be analytic.

Definition 3.15 (Analytic function) A function f : D → C is analytic at
a ∈ D if f is differentiable in a neighborhood of a. f is analytic on D if it is
analytic at every point in D. Analytic functions are also sometimes referred
to as holomorphic functions.

Analyticity is a very powerful property, and leads to many strong results,
as we shall see. It can be shown (from Cauchy’s integral formula; see (54)
later) that if a function f is analytic then its derivatives of all orders exist

32



in the region of analyticity, and all these derivatives are themselves analytic.
So, analytic ⇒ infinitely differentiable. Differentiability of f at a point z0

evidently guarantees continuity of f at z0:

Lemma 3.16 If f(z) is differentiable at z0 ∈ C then f is continuous at
z0 ∈ C.

Proof Differentiability of f at z0 means that

�h := f
�(z0)−

f(z0 + h)− f(z0)

h
→ 0 as h→ 0.

Then

f(z0 + h)− f(z0) = h(f �(z0)− �h)→ 0 as h→ 0.

Remark At first sight it appears quite hard to write down non-differentiable
complex functions f , and one might think that most functions one could write
down are differentiable, and even analytic. This seems at odds with the
statement often made in textbooks that analytic functions are very special
and rare. However, if one writes z = x + iy, and thinks of a general complex
function f as being composed of real and imaginary parts that are functions
of x and y, f(z) = u(x, y)+ iv(x, y), then the rarity becomes more apparent.
To extract the representation in terms of the complex variable z we have to
substitute for x = (z + z̄)/2 and y = −i(z − z̄)/2, so that in fact f is, in
general, a function of both z and its complex conjugate z̄. Only if f

turns out to be purely a function of z can it be analytic.

Definition 3.17 (Singular point) A point z0 where the complex function
f(z) fails to be analytic is a singular point of the function.

We can show explicitly that the function f(z) = z (strictly speaking
perhaps we ought to write f(z, z) here, given the remark above) is nowhere
analytic. To do this, it suffices to show that different choices of h → 0
give different results. Considering the definition of the derivative, (23), the
derivative of this function, if it exists at the point z ∈ C, is given by

f
�(z) = lim

h→0

z + h− z

h
= lim

h→0

h

h
.
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This limit must exist independently of how the limit is taken, for all possible
paths h → 0 in C. Writing h = |h|eiθ, where θ is an arbitrary argument of
h, we find

f
�(z) = lim

h→0
e
−2iθ

.

This is clearly not a well-defined limit, since it depends explicitly on the way
h→ 0 (θ can take any real value here). So, the complex conjugate function
is not differentiable anywhere – though it is continuous everywhere.

Example 3.18 Likewise, the function f(z) = |z|2 is not differentiable any-
where in C except the origin.

This follows since for z �= 0,

lim
h→0

f(z + h)− f(z)

h
= lim

h→0

(z + h)(z + h)− zz̄

h
= lim

h→0

zh̄ + hz̄

h
.

(For z = 0 the limit exists and equals zero.) Again writing h = |h|eiθ for
0 < |h| � 1 we find that for z �= 0

lim
h→0

f(z + h)− f(z)

h
= lim

|h|→0

|h|ze−iθ + |h|z̄eiθ

|h|eiθ
= ze

−2iθ + z̄,

which depends on the way we take the limit h → 0. Note however that
|z|2 = x2 + y2 is very well-behaved – infinitely differentiable, in fact – as a
real valued function in R2.

These examples illustrate the remark above, since in both cases f is a
function of both z and z̄, and cannot be expected to be differentiable. For
each of these functions, all points in C are singular points. (Even though
f(z) = |z|2 is differentiable at z = 0, it is not differentiable in any neighbor-
hood of zero, and therefore not analytic at z = 0.)

Example 3.19 The function f(z) = z2 is differentiable for all z ∈ C because

lim
h→0

f(z + h)− f(z)

h
= lim

h→0

(z + h)2 − z2

h
= lim

h→0

2zh + h2

h
= 2z

independently of how h ∈ C approaches zero.

More generally:
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Example 3.20 The function f(z) = zn is differentiable, with f �(z) = nzn−1.
If n is a positive integer (or zero) then this result holds ∀ z ∈ C, but if n is
a negative integer then f is not differentiable at the point z = 0.

In fact the result holds also for arbitrary powers of z, but since we have not
yet learned how to deal with non-integer powers we restrict to integers for
now. To prove the result for n ∈ N we use the standard binomial expansion
for (z + h)n (knowing how to evaluate integer powers of complex numbers,
this may be proved by induction as in the real case), giving

f
�(z) = lim

h→0

(z + h)n − zn

h

= lim
h→0

zn + nhzn−1 + n(n− 1)h2zn−2/2! + · · · + hn − zn

h

→ nz
n−1 as h→ 0.

Almost the same proof works for the case of negative integers n if we assume
that the binomial expansion for this case is valid for complex numbers (it
is). For fixed z �= 0 we simply extract the factor zn from (z + h)n and then
expand (1 + h/z)n for |h/z| < 1. We obtain the same result as h→ 0.

Homework: (1) Show from first principles that the function f(z) = 1/z is
(a) continuous; (b) analytic in C \B(0; r) for any r > 0. (The point z = 0 is
the only singular point of this function.)
(2) Show from first principles that, if f is continuous, nonzero and differen-
tiable at z0 ∈ C, then 1/f is differentiable at z0, and its derivative at this
point is given by −f �(z0)/f(z0)2. [NOTE: You are being asked to prove this
form of the quotient rule here, not apply it!]
(3) Find where the following functions are differentiable (and hence analytic):
(i) sin z; (ii) tan z; (iii) (z − 1)/(z2 + 1); (iv) �(z).
You may assume that the sum and product of two functions is differentiable
on any region where the two functions are themselves differentiable. Any
results shown in lectures may be assumed.
(4) Let f(z) be continuous everywhere. Show that, if f(z0) �= 0, then there
exists a neighborhood of z0 in which f(z) �= 0.

35



3.4 The Cauchy-Riemann theorem

Differentiability (or non-differentiability) of a complex function f(z) may also
be established by appealing to the Cauchy-Riemann theorem.

Theorem 3.21 (Cauchy-Riemann) The function f(z) = u(x, y) + iv(x, y)
is differentiable at a point z = x + iy of D ⊂ C if and only if the partial
derivatives ux, uy, vx, vy are continuous and satisfy the Cauchy-Riemann
equations

ux = vy, uy = −vx (24)

in a neighborhood of z.

Proof Suppose that f = u + iv is differentiable at the point z. Then f �(z)
exists, however we take the limit h → 0 in (23). Thus we let h → 0 with
h ∈ R to obtain

f
�(z) = lim

h→0

f(z + h)− f(z)

h

= lim
h→0

u(x + h, y)− u(x, y) + i(v(x + h, y)− v(x, y)

h

= ux(x, y) + ivx(x, y). (25)

Alternatively, since we know the result is independent of how we take the
limit, we let h→ 0 with h = i|h| pure imaginary. Then

f
�(z) = lim

h→0

f(z + i|h|)− f(z)

i|h|

= lim
|h|→0

u(x, y + |h|)− u(x, y) + i(v(x, y + |h|)− v(x, y)

i|h|
= −iuy(x, y) + vy(x, y). (26)

These two results must be identical for a well-defined limit and thus

ux = vy, uy = −vx.

Conversely, we suppose now that the first-order partial derivatives of u and
v exist; are continuous; and satisfy the Cauchy-Riemann equations (24). We
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consider taking the limit of a small variation from the point z = x+iy, which
we can represent variously as

z → z + δz = x + iy + δx + iδy.

This variation induces changes δu = u(x + δx, y + δy)− u(x, y), δv = v(x +
δx, y + δy)− v(x, y), δf = f(z + δz)− f(z), in u, v and f , which, by results
from real analysis (Taylor’s theorem), satisfy

δu = δxux(x, y) + δyuy(x, y) + �u,

δv = δxvx(x, y) + δyvy(x, y) + �v,

where �u/|δz|, �v/|δz| → 0 as δz → 0. Thus, in the definition of the derivative,

δf

δz
=

δu + iδv

δx + iδy

=
δxux + δyuy + i(δxvx + δyvy) + �u + i�v

δx + iδy

=
ux(δx + iδy)− iuy(δx + iδy) + �u + i�v

δx + iδy

= ux − iuy +
�u + i�v

δz

→ ux − iuy as δz → 0,

where we used the Cauchy-Riemann equations (24) and the limiting behavior
of �u and �v in the above. Thus, the derivative of f at the point z exists, and
the proof is complete.

Note 1 The Cauchy-Riemann equations show that, for an analytic function
f(z) = u(x, y)+ iv(x, y), we have f �(z) = ux + ivx = vy− iuy (equations (25)
and (26)). Higher derivatives of f , when they exist, can also be computed
in terms of higher derivatives of the real and imaginary parts, noting that,
if g(z) = f �(z) = ux + ivx then ux and vx are (respectively) the real and
imaginary parts of g and thus

g
�(z) = f

��(z) = (ux)x + i(vx)x = uxx + ivxx.

Exercise: It is clear that there are several possible expressions for f ��(z).
Find them all.
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Note 2 The Cauchy-Riemann equations also confirm the remark made
above, that only if f turns out to be purely a function of z can it be analytic.
To see this we note that

x =
1

2
(z + z̄), y = − i

2
(z − z̄) ⇒ ∂

∂z̄
=

1

2

�
∂

∂x
+ i

∂

∂y

�

(using the chain rule for partial differentiation). Thus, if u and v satisfy the
Cauchy-Riemann equations then

∂f

∂z̄
=

1

2
(ux + iuy + i(vx + ivy)) =

1

2
(ux − vy + i(uy + vx)) = 0,

so that f is independent of z̄.
It is becoming clear that the real and imaginary parts of an analytic

function are closely related, and that one cannot hope to choose real-valued
functions u(x, y) and v(x, y) independently, stick them together as real and
imaginary parts, and obtain an analytic function. The choice of real part
u(x, y) almost uniquely determines the imaginary part v (we will make this
statement precise soon).

Returning to example 3.18 above, with f(z) = |z|2 we have u(x, y) =
x2 + y2, v(x, y) = 0. The Cauchy-Riemann equations are not satisfied in the
neighborhood of any z ∈ C, confirming the above finding that this function
is nowhere analytic.

Homework: Ablowitz & Fokas, problems for section 2.1, questions 1,2.

3.4.1 Harmonic functions

An immediate consequence of the Cauchy-Riemann theorem is that the real
and imaginary parts of an analytic function are harmonic.

Definition 3.22 (Harmonic function) Any function u(x, y) with continuous
2nd derivatives satisfying

∇2
u =

∂2u

∂x2
+

∂2u

∂y2
= 0 (27)

is harmonic. Equation (27) is Laplace’s equation.
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Lemma 3.23 The real and imaginary parts of an analytic function f(z) =
u(x, y) + iv(x, y) are harmonic.

We are anticipating a result that will be established later, that analyticity
of f guarantees that the second derivatives (in fact, derivatives of all orders)
of its real and imaginary parts exist and are continuous on the domain D on
which f is defined and analytic.

Proof Since f is analytic its derivatives of all orders exist, and thus the
partial derivatives of u and v exist and are continuous at all orders in the
domain of analyticity. By the Cauchy-Riemann equations we then have

uxx + uyy =
∂

∂x
(ux) +

∂

∂y
(uy) =

∂

∂x
(vy) +

∂

∂y
(−vx) = vxy − vxy = 0.

Similarly we can show that vxx +vyy = 0, so that both u and v are harmonic.

We will later prove a converse (lemma 3.24 below) to this theorem: that
harmonic functions can be used to construct analytic functions.

Lemma 3.24 If u(x, y) is a harmonic function on a simply-connected do-
main D then a harmonic conjugate v exists such that u and v satisfy the
Cauchy-Riemann equations (24), and f = u + iv is an analytic function on
D.

Example 3.25 The analytic function f(z) = z4 has real and imaginary
parts u(x, y) = x4 − 6x2y2 + y4, v(x, y) = 4x3y = 4xy3, both of which are
harmonic everywhere. We know this without doing any differentiation, by
lemma 3.23. It’s also easily checked that u and v satisfy the Cauchy-Riemann
equations.

3.5 Multivalued functions

We have seen that many “real” functions such as polynomials, rational func-
tions, exponential, trigonometric and hyperbolic functions, generalize in a
relatively straightforward way to the complex case. However, when we think
about inverting some of these functions (we often need to be able to invert
analytic functions), it is clear that in some cases the inverse function should
be able to map a complex number to several values. We are already familiar
with this from real analysis, where we know that taking the square-root of
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a positive number gives two values: the equation y2 = x > 0 has two solu-
tions, y = ±

√
x, for any real positive number x. Likewise, real-valued inverse

trigonometric functions are also multivalued. In the complex case also we
would expect to be able to obtain two solutions to the equation

w
2 = z, (28)

for any given z ∈ C, but how do we interpret
√

z? Likewise (though this
does not arise for the real case), we saw that the exponential function ew

can return the same value for many different choices of w (for example, all
values wn = i(θ + 2nπ) for any integer n give the same result for ew). Thus
a sensible inverse for the complex exponential function (which is a complex
version of the logarithm) should be a multi-valued function.

We begin by considering how one can define a complex square-root (solv-
ing equation (28) for w(z)). If we try to follow the route of taking real and
imaginary parts things get quite cumbersome. Writing z = x+iy, w = u+iv,
we find

u
2 − v

2 = x, 2uv = y;

substituting for v from the second of these into the first gives a real quartic
equation for u – four possible solutions (but hard to find), and some may
(will!) be spurious when substituted back into the original equation w2 = z.
There is a much better way to find solutions to equations such as (28), and
it involves writing the complex number z, whose square-root (or any other
fractional power for that matter) we wish to take, in the complex exponential
form (3). Equation (28) is then

w
2 = |z|eiθ = |z|ei(θ0+2nπ)

,

where θ is any argument of the complex number z and θ0 is a specific choice
(which will usually be taken as the principal argument in applications). Then,
as in the real case, we set

w = f(z) = |z|1/2
e

i(θ0/2+nπ) (29)

(where |z|1/2 is interpreted as in the real case, since |z| ∈ R). Again, this
relation holds for any integer n, but in fact w can only take two distinct
values:

n = 0 : w = |z|eiθ0/2
, (30)

n = 1 : w = |z|1/2ei(θ0/2+π) = −|z|1/2
e

iθ0/2
. (31)
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Other integer values of n give these same values (even values of n give the
same as n = 0, and odd n the same as n = 1). These two distinct definitions
of z1/2 are known as branches of the square-root function f(z).

3.5.1 General non-integer powers

We can define other non-integer powers of z in the same way, noting that

w
α = z ⇒ w = z

1/α = |z|1/α
e

i(θ0/α+2nπ/α)
, n ∈ N. (32)

The simplest case is the mth root function (α = m ∈ N), which has m

distinct branches, defined by

w = f(z) = z
1/m = |z|1/m

e
i(θ0/m+2nπ/m)

, n = 0, 1, . . . ,m− 1. (33)

In the case that α is a rational number, α = m/j say, for integers j, m

(with no common factors), there are only m distinct values of the right-hand
side in (32), giving m distinct branches of the function. If α is irrational then
there are infinitely many distinct branches.

3.5.2 Logarithms

The second major class of multifunctions is given by the complex logarithm.
As mentioned, this function is obtained by inverting the complex exponential,
z = ew. Writing z in its complex exponential form again, and w = u + iv,
we see that

e
w = e

u+iv = e
w
e

iv = |z|ei(θ0+2nπ)
,

so that eu = |z| (giving u = ln |z|) and v = θ0 + 2nπ. Thus, we can interpret
the inverse function, the complex logarithm w = ln z, as

w = u + iv = ln |z| + i(θ0 + 2nπ) = ln z (34)

where θ0 is any choice from the set of values arg(z) (again, the principal ar-
gument of z is usually the most sensible definition of the complex logarithm).
As above, the different forms of the function that arise from taking different
values of n in (34) are known as the branches of the complex logarithm.
There are always infinitely many of them.

It is easily verified that the usual algebraic rules for logarithms, such as
log(z1z2) = log z1 + log z2, etc., are satisfied in the complex case also (where
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distinct branches of the logarithms are understood; if we have the n1 branch
of log z1 and the n2 branch of log z2, then in general we obtain the (n1 +n2)-
branch of log(z1z2)). To see this we note that z1z2 = |z1z2|ei(θ1+2n1π+θ2+2n2π)

(with obvious notation), so that

ln(z1z2) = ln(|z1||z2|) + i(θ1 + 2n1π + θ2 + 2n2π)

= ln |z1| + i(θ1 + 2n1π) + ln |z2| + i(θ2 + 2n2π)

= ln(z1) + ln(z2),

using the real result for ln(|z1||z2|) in the second line. Also, we note that for
z = |z|ei(θ0+2nπ) we can define a multifunction

ln(1/z) = ln((1/|z|)e−i(θ0+2nπ)) = ln(1/|z|)− i(θ0 + 2nπ)

= − ln |z| − i(θ0 + 2nπ) = − ln z. (35)

Application of these results enables us to show that in general, ln(z1/z2) =
ln(z1)− ln(z2).

3.5.3 Contours and multivaluedness

From the definitions (29), (33), (34), it is clear that as we traverse any
circle z = reiθ (with r fixed and θ going from 0 to 2π), although we return
to the starting-point in the z-plane when θ = 2π, any chosen branch of the
multifunction f(z) does not return to its original value. To see this explicitly,
we look first at the simplest example of a multi-valued function, the square-
root f(z) = z1/2 defined in (29), and consider how either branch of this
function changes as z moves along the circular contour. The first branch of
the square-root function, (29) with n = 0, is just

√
z = |z|1/2

e
iθ/2 =

�
|z|1/2 θ = 0,
−|z|1/2 θ = 2π−.

Thus, by traversing the contour and returning to the original point, we have
moved from one branch of the function (30) to the other (31) (clearly, this
branch as defined is discontinuous across the positive real axis). Likewise,
if we start with the n = 1 branch (31) of the square-root and allow z to
traverse the same circular contour then we see that this branch has

√
z = −|z|1/2

e
iθ/2 =

�
−|z|1/2 θ = 0,
|z|1/2 θ = 2π−,
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and we move from the n = 1 branch back to the n = 0 branch.
Similar results hold for the other multifunctions. If we start with the

n-branch of the mth root function (33) then on the circular contour |z| = r

we have

z
1/m = |z|1/m

e
i(θ/m+2nπ/m)

=

�
|z|1/me2inπ/m θ = 0,
|z|1/mei(2π/m+2nπ/m) = |z|1/me2i(n+1)π/m θ = 2π−,

so here we move from the n to the (n + 1)-branch. m complete traversals of
the contour will return us to the original branch that we started with. For
the complex logarithm (34), traversal of the same contour would again take
us from the n to the (n + 1)-branch of the function; but in this case, no
matter how many times we traverse the contour we will never return to the
branch we started with.

In general, for functions with a finite number of branches (like the mth
root function), repeated traversals of the circular contour always eventually
brings us back to the original value of the function, once we have cycled
through all the branches. For functions with infinitely many branches though,
such as irrational powers or the complex logarithm, we will never return to
the original value.

We can see that for the multifunctions defined so far, any closed contour
that encloses the origin z = 0 will lead to the same result, since the argument
of z does not return to its original value, but increases by 2π. For any closed
contour that does not enclose the origin, arg(z) does return to its original
value after a complete circuit of the contour. It is clear that the point z = 0
has a special status, since it is only closed contours that encircle this point
that lead to a jump in the value of the function. We say that z = 0 is a
branch-point of these multifunctions. More generally:

Definition 3.26 (Branch-point) Let w = f(z) be a multifunction defined on
S ⊂ C. z = a ∈ C is a branch point of the multifunction f(z) if, for all
sufficiently small r > 0, it is not possible to choose a single branch of f that
defines a continuous function on C(a; r) (the circular contour with center a

and radius r).

We shall see the need (below) to restrict to ”sufficiently small” values of r.
The point z = ∞ is also often a branch point for the function. To check
whether this is the case we need to modify the above definition slightly:
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Definition 3.27 (Branch-point at infinity) We say z =∞ is a branch point
of the multifunction f(z) if the point 0 is a branch point of the multifunction
f̂(z) = f(1/z).

It is clear from these definitions that both 0 and infinity are branch points of
the multifunctions (29), (32), (33) and (34) (to see that ∞ is a branch point
of (34) use (35)).

Example 3.28 z = ∞ is a branch-point of the mth root function f(z) =
z1/m for integers m ≥ 2.

We need to show that z = 0 is a branch-point of f̂(z) = f(1/z). With (as
usual) z = |z|ei(θ0+2nπ), then noting that 1/z = (1/|z|)e−i(θ0+2nπ), we have
the nth branch of f̂(z) = f(1/z) given by

f̂n(z) = |z|−1/m
e
−i(θ0/m+2nπ/m)

.

Traversing a circular contour |z| = r (constant), then as θ0 increases from 0
to 2π we have

f̂n(z) =

�
|z|−1/me−2inπ/m θ0 = 0,
|z|−1/me−2i(n+1)π/m θ0 = 2π.

Clearly the branch is not continuous on the contour (we have moved from
the n to the (n + 1)-branch), and so z = 0 is a branch point of f̂(z), thus
z =∞ is a branch point of f .

Note: It is easily checked that if z is replaced by (z − a) in any of the
preceding examples (29)–(34) then the resulting functions have branch-points
at z = a and z =∞.

3.5.4 Branch cuts to ensure single-valuedness

Often in applications it is necessary to ensure single-valuedness of a function;
and the above discussion suggests that the way to ensure this for the functions
defined so far is to prevent any means by which z could make a complete
circuit of the origin. The least restrictive way to do this (for these particular
multifunctions) is to cut the z-plane from the origin to infinity, outlawing
any circuits that cross the cut. Often several choices of cut are possible, but
in most cases the cut will be made along the real axis, either along [0, +∞) or

44



along (−∞, 0]. Such cuts in the complex plane are known as branch cuts,
since they effectively make individual branches of the multifunctions single-
valued. Normally a single branch of the multifunction suffices in applications;
a convenient choice is often the principal branch (defined using the principal
argument). Most of the multifunctions we shall consider are not only single-
valued in the cut plane, but are also analytic there.

Example: The square-root function. We cut the plane along the real
positive axis, and work with the principal argument, which is constrained to
lie in the interval 0 ≤ θ < 2π. This argument function is continuous in the
cut plane, since points of the cut are excluded. The principal branch of the
square-root function is then just the n = 0 branch (30):

f(z) = |z|1/2
e

iθ/2
,

taking values |z|1/2 on the top side of the cut, θ = 0+, and −|z|1/2 on the
bottom side of the cut, θ = 2π−. [The n = 1 branch (31) is also single-valued
in this cut plane, the values taken on the upper and lower sides of the cut
being reversed from the n = 0 case.]

The discussion above suggests that branch cuts will always be taken between
branch points, so as to outlaw contours that encircle a branch point (by def-
inition 3.26, any such contour would lead to a discontinuity in f). There
is usually a certain amount of freedom in the choice of branch cuts, and
convenience dictates how we choose them in a given situation. It is fairly
straightforward to define suitable branch cuts in the simple examples of mul-
tifunctions discussed so far, but we shall now consider more complicated
multifunctions for which the choice is not so obvious.

3.6 “Composite” multifunctions

§3.5 showed how to deal with elementary examples of multivalued functions,
in which the branch-points and suitable branch-cuts are easily identified. We
now consider how to define more complicated functions, with several branch
points in the finite complex plane. Again the procedure is best illustrated by
example.
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3.6.1 Example: Product of square-roots

We consider first a generalization of the square-root function,

f(z) = [(z − a)(z − b)]1/2
, a, b ∈ C. (36)

We can write each of the complex numbers (z − a), (z − b) in polar form,

z − a = rae
iθa+2inaπ

, z − b = rbe
iθb+2inbπ,

where ra = |z−a| and θa is (without loss of generality) the principal argument
of (z − a), lying in the interval 0 ≤ θa < 2π; and similarly for rb, θb. The
multifunction (36) can then be defined by

f(z) = [(z − a)(z − b)]1/2 = r
1/2
a r

1/2
b e

i(θa+θb)/2+inπ

�
n = na + nb ∈ Z,

0 ≤ θa,b < 2π.
(37)

As with (29) only the values n = 0, 1 give distinct results (other values of
n repeat these), so there are just two distinct branches. It is clear that
if we let z vary along any simple closed contour γa that surrounds just a

and not b then, over one complete circuit of γa, θa changes by 2π while θb

returns to its original value. Thus, the quantity i(θa + θb)/2 appearing in the
exponent in (37) has a net change of iπ, and so f(z) moves from one branch
to the other as we traverse γa once. In the same way, if z traverses a simple
closed contour γb that encloses b and not a, then θb changes by 2π over one
complete circuit, while θa returns to its original value. However, if z makes
one complete circuit of a simple closed contour γab that encloses both a and
b then, since both θa and θb change by an integer multiple of 2π, the quantity
(θa + θb)/2 appearing in the definition (37) changes by an integer multiple of
2π also. Thus in this case f(z) returns to its original value on completion of
the circuit.

Looking at the definition of branch-points again, it is clear that both a

and b are branch points for the function (37). To check the point at infinity,
note that

f̃(z) = f(1/z) = [(1/z − a)(1/z − b)]1/2 =
1

z
[(1− az)(1− bz)]1/2

,

which, although it is singular at z = 0, does not have a branch point there.
So z =∞ is not a branch point of (37).
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The above discussion about contours suggests that we should take a
branch-cut between a and b in the z-plane, since a cut here prevents z varying
continuously along contours such as γa and γb, but allows z to make excur-
sions that encircle both a and b. Again, a cut may in principle be made along
any curve joining the two points, but the simplest choice is to cut along the
straight line [a, b].

Looking at the definition (37), we can now check that such a branch-cut
leads to a single-valued function. For simplicity in this checking we shall look
at the case a = −1, b = 1, where the branch cut runs along [−1, 1] in the
z-plane. We take the n = 0 branch and restrict θa and θb to be the principal
arguments:

f0(z) = [(z + 1)(z − 1)]1/2 = r
1/2
−1 r

1/2
1 e

i(θ−1+θ1)/2
, 0 ≤ θ−1, θ1 < 2π.

For most of the cut plane it is evident that f0(z) is continuous and single-
valued, because θ−1 and θ1 are. The definition is only problematic as z

crosses the (allowed part of) the positive real axis, z ∈ R+, |z| > 1, where
θ−1 and θ1 have jump discontinuities. Just above the positive real axis, where
arg(z) = 0+ (and |z| > 1) we have θ−1 = θ1 = 0; so here

f0(z) = r
1/2
−1 r

1/2
1 .

Just below this part of the positive real axis, where arg(z) = 2π−, we have
θ−1 = θ1 = 2π; so here

f0(z) = r
1/2
−1 r

1/2
1 e

i(2π+2π)/2 = r
1/2
−1 r

1/2
1 .

Thus, as defined by (38), f(z) is continuous in the cut plane.
For the n = 1 branch we have

f1(z) = [(z + 1)(z − 1)]1/2 = r
1/2
−1 r

1/2
1 e

i(θ−1+θ1)/2+iπ = −f0(z), 0 ≤ θ−1, θ1 < 2π,

so this branch also will be continuous along any contour that encloses both
1 and −1.

Exercise: Check specifically that for this example neither branch of f is
continuous across the cut.
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3.6.2 Example: Logarithm of a product

We next consider a logarithmic function with a more complicated argument:

f(z) = log((z − a)(z − b)). (38)

By the rules of logarithms we know this is equivalent to log(z−a)+log(z−b),
so we anticipate branch points at both z = a, z = b, and perhaps at z =∞.
To check explicitly, as above we write z − a = rae

iθa+2inaπ, where without
loss of generality θa ∈ [0, 2π) is the principal argument of (z − a) and na is
an arbitrary integer; and similarly for (z − b). Then

f(z) = log(rarbe
i(θa+θb+2nπ)), n = na + nb ∈ Z

= log(rarb) + i(θa + θb + 2nπ).

In this case, any (simple closed) contour for which a complete circuit gives a
discontinuity in either θa or θb, will also give a discontinuity in f(z). Thus
we must cut the plane so as to prevent z making a complete circuit around
either or both of the points a or b. The way to do this is to make two cuts,
one from a to ∞, and the other from b to ∞. The fact that our cuts must
extend to infinity suggests that this is another branch point, and we can show
this explicitly by considering

f̃(z) = f(1/z) = log((1/z − a)(1/z − b)) = log((1− az)(1− bz)/z2)

= log(1− az) + log(1− bz)− 2 log z.

Because of the log z term, a small circuit around z = 0 (that does not also
enclose z = 1/a or z = 1/b) will lead to a discontinuity in arg(z) when a
complete circuit is made, and hence a discontinuity in f(1/z), showing that
z =∞ is indeed also a branch point of this function.

For the specific case a = −1, b = 1, suitable branch-cuts are from the
point z = −1 to infinity, along the negative real axis, and from the point
z = 1 to infinity, along the positive real axis.

3.7 Summary and concluding remarks on multifunc-
tions

In the discussion above, we were firstly concerned with how to define the
multi-valued functions in question in a sensible and consistent way. This led
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to definitions of functions with several (possibly infinitely many) branches,
characterized by an integer n. Each branch corresponds to a different se-
lection of argument of the complex variable, each choice of argument being
restricted to an interval of length 2π.

This led us to think about how to define a single-valued (analytic)
branch of the function. In each example considered we chose the simplest
branch (usually the principal n = 0 branch defined via the principal argu-
ment(s)), though we could, of course, use any of the branches to construct
a single-valued function. Single-valuedness is ensured by introducing appro-
priate branch cuts in the complex z-plane, which prevent z from moving
in the plane in any manner that would lead to a discontinuity in f . Only
circuits around certain points in the z-plane can induce such discontinuities;
such points are known as branch-points of the function (definitions 3.26
and 3.27).

We saw that if we do not restrict the plane by branch-cuts, then f is
discontinuous along certain lines in the z-plane. Mathematically, as z crosses
such lines, we move from one branch of the function to another. An alterna-
tive way of rationalizing the structure of multifunctions is to suppose that in
fact a multifunction is defined on several ”copies” of the complex plane, one
for each branch. As z encircles a branch point, we move from one copy of
the plane to another (for the function log z, for example, this complex plane
would be something like a helix: see figure 2.3.6 in [1]). Such a multi-layered
complex plane is known as a Riemann surface, with each complete copy of
C being a single sheet of this surface. For the square-root function the Rie-
mann surface is more analogous to a Mobius strip; two complete circuits of
the Riemann surface bring us back to our starting point.

Homework Ablowitz & Fokas, problems for Section 2.3, questions 1, 2, 3.
Where the question does not demand this explicitly, you should also define
the branches of the multifunctions concerned.
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4 Complex Integration

With the ideas of paths through complex space introduced in §§2.4 and 2.4.1,
and our notions of complex functions, we are now in a position to integrate
complex-valued functions along paths in the complex plane.

4.1 Basic methods of complex integration

Complex functions may be integrated along contours in the complex plane
in much the same way as real functions of 2 real variables can be integrated
along a given curve in (x, y)-space. An integration may be performed directly,
by introducing a convenient parametrization of the contour; or by splitting
into real and imaginary parts, each of which can be evaluated as real line
integrals. Also, as we shall soon see, integrals can often be evaluated by
appealing to one of several powerful theorems of complex analysis.

Example 4.1 (Direct integration by parametrization) Evaluate

I =

�

C

�
a

z
+ bz

�
dz a, b ∈ C,

where C is the circle |z| = r in C.

This contour is conveniently parametrized by the real variable θ ∈ [0, 2π] as
C = {z ∈ C : z = reiθ}, so that dz = ireiθdθ = iz dθ. Then

I =

� 2π

0

i(a + br
2
e
2iθ) dθ = 2πia +

br2

2
[e2iθ]2π

0 = 2πia.

The nonzero result here is a reflection of the fact that the function f has a
singularity within the contour of integration at z = 0. Note also that the
result is the same regardless of the radius of the circular contour. We will
see from Cauchy’s theorem (see §5 later) that any function analytic on
a domain contained within a closed integration contour would give a zero
result when integrated around the contour; likewise, for a function like this
that contains just one singularity, the result is the same for any simple closed
contour that encloses the singularity.

In principle one could also evaluate complex contour integrals by writing
z = x + iy, dz = dx + idy and evaluating the real and imaginary parts
along the contour of integration. In the example above this would be very
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cumbersome, and parametrization is clearly the best option. We now consider
an example where it is best to stick with the cartesian representation.

Example 4.2 (Splitting into real and imaginary parts) Evaluate (a)
�

γ z dz,

(b)
�

γ z dz, where γ is (i) the straight line joining z0 = 0 to z1 = 1+i; (ii) the

parabolic contour �(z) = �(z)2 joining the same two points in the complex
plane.

(a(i)) We write the integral as real and imaginary parts,

I =

�

γ

z dz =

�

γ

(x− iy)(dx + idy) =

�

γ

xdx + ydy + i(xdy − ydx),

and then note that x = y on γ, with x running from 0 to 1. Thus the
imaginary part vanishes, and we are left with

I =

�

γ

z dz = 2

� 1

0

xdx = 1.

(a(ii)) On the second curve y = x2 and so the above result gives the integral
as

I =

�

γ

xdx + ydy + i(xdy − ydx) =

� 1

0

(x + 2x3) dx + i

� 1

0

(2x2 − x
2) dx

= 1 + i/3.

(b(i)) As above we have,

I =

�

γ

z dz =

�

γ

(x + iy)(dx + idy) =

�

γ

xdx− ydy + i(xdy + ydx),

and with x = y on γ, with 0 ≤ x ≤ 1 the real part vanishes and

I =

�

γ

z dz = 2i

� 1

0

xdx = i.

(b(ii)) Now y = x2 and so the above gives

I =

�

γ

xdx− ydy + i(xdy + ydx) =

� 1

0

(x− 2x3) dx + i

� 1

0

(2x2 + x
2) dx

= i.
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Observe that in case (a) we get a different result for the two contours, hence
a nonzero result when we integrate z around the simple closed contour made
by joining the two curves together. In case (b) however the two integration
curves give the same result, and hence integrating z around the simple closed
contour made by joining the curves will give zero – again, this is due to the
fact that z is a complex analytic function while z is nowhere analytic.

Example 4.3 (Example 4.1 revisited) Replace the integrand in example 4.1
by a/z + bz:

I =

�

C(0;r)

�
a

z
+ bz

�
dz.

Parametrizing as before, we have

I =

� 2π

0

�
a

re−iθ
+ bre

iθ
�

ire
iθ

dθ

=

� 2π

0

i(a + br
2)e2iθ

dθ =
1

2
(a + br

2)[e2iθ]2π
0 = 0.

The integrand here is nowhere analytic (firstly as it is a function of z as
well as z, and secondly because it is unbounded at the origin), yet still
integrates to zero around any circular contour centered on the origin. When
a function is nowhere analytic it is often difficult to make predictions about
its properties. However, this example shows that, just because a function
happens to integrate to zero around a family of simple closed curves, we
cannot deduce that it is analytic. The converse to Cauchy’s theorem requires
a stronger condition (Morera’s theorem 6.6).

More generally, to integrate a complex function f(z) along a contour
γ ∈ C using parametrization:

γ = {z(t) : t ∈ [a, b]}, (39)

we have
�

γ

f(z) dz =

� b

a

f(z(t))z�(t) dt. (40)

This last representation is equivalent to a line integral along a curve in the
(x, y)-plane, where the function to be integrated takes complex values.
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Alternatively, for a general function f(z) = u(x, y) + iv(x, y) we have

�

γ

f(z) dz =

�

γ

(u(x, y)dx− v(x, y)dy + i(u(x, y)dy + v(x, y)dx), (41)

where on the right-hand side γ is interpreted as a curve in (x, y)-space.

Homework: Ablowitz & Fokas, problems for section 2.4, questions 1,2,3,4.

4.2 General results for complex integration

Reversing the direction of integration changes the sign of the result
If the contour γ is followed in the opposite direction, which is denoted by
−γ, then (40) gives

�

−γ

f(z) dz =

� a

b

f(z(t))z�(t) dt = −
� b

a

f(z(t))z�(t) dt = −
�

γ

f(z) dz.

Integrals along piecewise smooth contours If γ consists of sub-contours
γk joined (continuously, but not necessarily smoothly) together, then

�

γ

f(z) dz =
N�

k=1

�

γk

f(z) dz. (42)

Theorem 4.4 (Fundamental theorem of calculus) Let F (z) be analytic in
a domain D, and f(z) = F �(z) be continuous in D. Then for a piecewise
smooth contour γ lying in D, with endpoints z1 and z2, we have

�

γ

f(z) dz = F (z2)− F (z1). (43)

Proof We assume first that the contour is smooth, with a parametrization
of the form (39). Then

�

γ

f(z) dz =

�

γ

F
�(z) dz

=

� b

a

F
�(z(t))z�(t) dt
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=

� b

a

d

dt
(F (z(t))) dt

= F (z(b))− F (z(a))

= F (z2)− F (z1)

(we go from the third line to the fourth line by applying the real Fundamental
theorem of calculus to the real functions �(F (z(t))), �(F (z(t)))).

If the contour γ is only piecewise smooth the result still follows by using
(42) and following through the above steps for each sub-curve γk. Contribu-
tions from the ”internal” endpoints cancel.

Two consequences are immediate from theorem 4.4:

Corollary 4.5 For any closed contour γ lying within the domain of ana-
lyticity D of the function F , if f = F � on D, we have

�

γ

f(z) dz = 0.

This result is a special case of Cauchy’s theorem.

Remark Note that it is certainly not the case in general for real-valued
functions u(x, y), even when perfectly smooth, that the real line integral
around a simple closed contour in R2 vanishes. For example, integrating
the function u(x, y) = x2 + y2 around the contour x2 + y2 = 1, we have
(transforming to polar coordinates in which ds = dθ on γ):

�

γ

(x2 + y
2) ds =

� 2π

0

1 dθ = 2π.

Nor is it the case that an arbitrary smooth real-valued function integrated
with respect to z around a closed contour vanishes. For example, with the
same integration contour as above, and u(x, y) = x(x2 + y2) we have

�

γ

x(x2 + y
2) dz =

� 2π

0

cos θ.ie
iθ

dθ (parametrizing the contour)

= iπ.
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Corollary 4.6 Let f(z) = F �(z) for F (z) analytic on a domain D ⊂ C.
If γ1 and γ2 are two (piecewise smooth) curves lying in D, with the same
endpoints z1 and z2, then

�

γ1

f(z) dz =

�

γ2

f(z) dz,

that is, the result of integrating between two given points in D is path-
independent.

We note that this last result does not hold for the example 4.2(a), since the
function f(z) = z is nowhere analytic. However it does hold for 4.2(b).

Homework: Check that if z is replaced by z2 in example 4.2 that the same
result is obtained for both choices of contour joining the points z = 0 and
z = 1.

In many applications (such as inverting Laplace or Fourier transforms, for
example), it is not necessary to evaluate a contour integral explicitly, but
only find a suitable bound for it (often one wishes to know that a certain
integral tends to zero as a limiting form of the contour is taken – a common
example is the need to show that an integral of a function along a circular
contour of radius R (or �) goes to zero as R →∞ (or �→ 0)).

Theorem 4.7 (Estimation theorem for complex integrals) Suppose γ is a
path with parametrization (39), and that the function f(z) is continuous on
γ. Then

����
�

γ

f(z) dz

���� ≤
� b

a

|f(z(t))z�(t)| dt.

Proof (Theorem 4.7) We know that for a real-valued function g(t) integrable
on [a, b]

����
� b

a

g(t) dt

���� ≤
� b

a

|g(t)| dt. (44)

We have
����
�

γ

f(z) dz

���� =

����
� b

a

f(z(t))z�(t) dt

���� = e
iφ

� b

a

f(z(t))z�(t) dt
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for some φ ∈ R. Then

����
�

γ

f(z) dz

���� =

����
� b

a

�[eiφ
f(z(t))z�(t)] dt

���� .

Applying the real inequality (44) with g(t) = �[eiφf(z(t))z�(t)], we find

����
�

γ

f(z) dz

���� ≤
� b

a

|�[eiφ
f(z(t))z�(t)]| dt

≤
� b

a

|eiφ
f(z(t))z�(t)| dt

≤
� b

a

|f(z(t))z�(t)| dt.

Corollary 4.8 Suppose γ is a path with parametrization (39), and that the
function f(z) is continuous on γ, with |f(z)| ≤M∀z ∈ γ. Then

����
�

γ

f(z) dz

���� ≤M

� b

a

|z�(t)| dt ≡ML(γ).

Here, L(γ) =
� b

a |z�(t)| dt is the length of the contour. It is easily checked
that this definition of contour length agrees with that for the length of a real
curve in R2. Simply switch from the given parametrization t to arclength
parametrization s, with respect to which γ is specified by (x(s), y(s)), with
endpoints at s = sa and s = sb. Then note that (dz/dt)dt = (dz/ds)ds, so
that

L(γ) =

� sb

sa

�
x2

s + y2
s ds =

� sb

sa

|z�(s)| ds =

� b

a

|z�(t)| dt.

The proof of corollary 4.8 is trivial. The inequality is also often written as

����
�

γ

f(z) dz

���� ≤M

� b

a

|dz|,

since dz = z�(t)dt, and dt is real and positive.

Example 4.9 Show that
�

γ(z
2 + 1)−1 dz → 0 as R → ∞, where γ is the

circular contour of radius R centered on the origin.
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Note: This circular contour arises frequently, and we will usually denote it
by C(0; R). More generally, the circle with center a and radius r is denoted
C(a; r).

Points z(t) on the contour are given by z(t) = Reit, 0 ≤ t < 2π, so that the
estimation theorem 4.7 gives

����
�

γ

dz

z2 + 1

���� ≤
� 2π

0

����
iReit

R2e2it + 1

���� dt ≤
� 2π

0

R

R2 − 1
dt =

2πR

R2 − 1
→ 0 as R →∞.

Example 4.10 Let φ(z) be a function such that |zφ(z)| → 0 as |z| → ∞,
and let γN be the square contour whose sides are �(z) = ±N , �(z) = ±N ,
for N ∈ N. Show that

�

γN

φ(z) tan πz dz → 0 as N →∞.

[Results such as this can be useful in calculating infinite sums, as we will see
later.]
We split the contour into its four straight-line segments: γ1: �(z) = N ,
−N < �(z) < N ; γ2: �(z) = N , −N < �(z) < N ; γ3: �(z) = −N ,
−N < �(z) < N ; γ4: �(z) = −N , −N < �(z) < N , and consider each
segment separately.

Our strategy here is to bound tan πz on each part of the contour, which
is not trivial since, as we now know, the sine and cosine function are not
bounded in the complex plane. On γ1 z = N + iy, and

| tan πz| =

����
sin πz

cos πz

���� =

����
sin π(N + iy)

cos π(N + iy)

����

=

����
sin Nπ cos iπy + cos Nπ sin iπy

cos Nπ cos iπy − sin Nπ sin iπy

����

=

����
sin iπy

cos iπy

���� =

����
sinh πy

cosh πy

���� = | tanh πy| ≤ 1.

Similarly on γ3, | tan πz| ≤ 1.
On γ2, z = x + iN and

| tan πz| =

����
sin πz

cos πz

���� =

����
sin π(x + iN)

cos π(x + iN)

����
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=

����
sin πx cos iπN + cos πx sin iπN

cos πx cos iπN − sin πx sin iπN

����

=

����
sin πx cosh πN + i cos πx sinh πN

cos πx cosh πN − i sin πx sinh πN

����

⇒ | tan πz|2 =
sin2

πx cosh2
πN + cos2 πx sinh2

πN

cos2 πx cosh2
πN + sin2

πx sinh2
πN

=
cosh2

πN − cos2 πx

cosh2
πN − sin2

πx

≤ cosh2
πN

cosh2
πN − 1

.

Clearly this is bounded for large values of N (it becomes arbitrarily close to
1 as N increases) – in fact, for N ≥ 1 it is always less than 1.01! Similarly,
tan πz is bounded on γ4. So, we can say that

| tan πz| ≤M on γN ,

for some fixed M > 0. The condition on the function φ(z) gives

|zφ(z)| ≤ �N on γN ,

where 0 < �N → 0 as N →∞. Since |z| ≥ N on γN , we then have

|φ(z)| ≤ �N

N
on γN .

We can now apply the estimation theorem to deduce that
����
�

γN

φ(z) tan πz dz

���� ≤ sup
γN

|φ(z) tan πz|
�

γN

|dz| ≤ M�N

N
L(γN) = 8M�N

and hence the integral goes to zero as N →∞, as claimed.
Note that the choice of contour in this example is very important. We

could not have taken a square of arbitrary size, because we must avoid the
singularities of the integrand at points zn = (n + 1/2)π. We certainly could
not bound tan πz on a contour that passes through any such points.

Homework Ablowitz & Fokas, problems for section 2.4, questions 7, 8.
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4.3 Harmonic functions to construct analytic functions

We now recall Lemma 3.24 stated, but not proved, earlier (and also our
comments when considering the Cauchy-Riemann theorem, that the real and
imaginary parts of a complex analytic function are closely related). With our
knowledge of complex integration we are now in a position to prove the result,
restated below:

Lemma 4.11 If u(x, y) is a harmonic function on a simply-connected do-
main D then a harmonic conjugate v exists such that u and v satisfy the
Cauchy-Riemann equations (24), and f = u + iv is an analytic function on
D.

The proof relies on the well-known result:

Theorem 4.12 (Green’s theorem in the plane) Let p(x, y), q(x, y) be real-
valued functions, with continuous partial derivatives in a simply-connected
region S made up of the interior of a simple closed contour γ (described in
the usual anticlockwise sense), and the contour itself. Then

�

γ

(pdx + qdy) =

� �

S

�
∂q

∂x
− ∂p

∂y

�
dxdy.

The proof of this theorem can be found in any textbook on vector calculus.

Proof (of lemma 4.11). We find a harmonic conjugate v by construction.
Let (x0, y0) ∈ D and set v(x0, y0) = 0. Define the value of v at other points
(x, y) ∈ D by the following integral, taken along some path within D joining
(x0, y0) to (x, y):

v(x, y) =

� (x,y)

(x0,y0)

−uy dx + ux dy.

This is a good definition provided the value of the integral is independent of
the path taken within D from (x0, y0) to (x, y). Suppose C1 and C2 are two
such different paths within D, then the integrals along these two paths are
the same if the integral around the closed curve C, made by joining C1 and
(−C2), is zero. But for any closed curve C we have

�

C

−uy dx + ux dy =

� �

S

�
∂

∂x
(ux)−

∂

∂y
(−uy)

�
dxdy, (45)
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where S is a spanning surface within D for the closed curve C (this is where
the simple-connectedness is required), by Green’s theorem in the plane; and
the right-hand side of (45) vanishes because u is harmonic on D. Thus a
conjugate function v can always be defined in this way; and by construction
u and v satisfy the Cauchy-Riemann equations

vy = ux, vx = −uy,

so that u + iv defines an analytic function on D by theorem 3.21.

5 Cauchy’s theorem

5.1 Cauchy’s theorem I

We shall now prove the main result concerning complex integration, from
which many other useful theorems follow. There are many different ways
of proving this theorem; in general the fewer restrictions we impose in the
theorem statement, the more technical the proof required. We shall give
the most general theorem statement later, and for now restrict ourselves to
proving a more basic version.

Theorem 5.1 (Cauchy) Let f(z) be analytic in a simply-connected domain
D. Then for any simple closed contour γ in D,

�

γ

f(z) dz = 0.

Later we will be able to remove the restrictions on simple connectedness of D,
and on simpleness of γ, provided (loosely speaking) that γ does not encircle
any ”holes” in D.

The proof given below relies on a key result from real analysis (Green’s
theorem in the plane, stated as theorem 4.12 above) and follows that given in
Ablowitz & Fokas [1]. Alternative proofs are possible that are more closely
allied with results from topology, and that give stronger versions of the
theorem.

Before proving Cauchy’s theorem, we remark that the proof given below
using Green’s theorem “requires” also that f �(z) be continuous in the do-
main D of the theorem statement. In fact this property is automatic for any
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analytic function – but we have not proved this yet! (This proof of the exis-
tence and continuity of (all) higher derivatives of f relies itself on Cauchy’s
theorem.) It is possible to prove Cauchy’s theorem without the assumption
of continuity on f �, but the proof is more technical.

Proof (Cauchy’s theorem) We use the result (41),
�

γ

f(z) dz =

�

γ

(udx− vdy) + i

�

γ

(udy + vdx).

With f �(z) continuous, u and v also have continuous partial derivatives (see
(25), (26)), thus Green’s theorem 4.12 is applicable, and

�

γ

f(z) dz = −
� �

R

�
∂v

∂x
+

∂u

∂y

�
dxdy + i

� �

R

�
∂u

∂x
− ∂v

∂y

�
dxdy.

Analyticity of f means that the Cauchy-Riemann equations (24) hold, and
hence the theorem is proved.

Example 5.2 Evaluate the integral of f(z) = zn around the unit circle |z| =
1.

By Cauchy’s theorem we know that the result must be zero for integers n ≥ 0,
because f is analytic then. We can show the result directly by parametrizing
the contour by z = eiθ, dz = ieiθ, then

�

γ

f(z) dz =

� 2π

0

e
inθ

ie
iθ

dθ = i

� 2π

0

(cos(n + 1)θ + i sin(n + 1)θ)dθ

= i

�
sin(n + 1)θ

n + 1

�2π

0

+

�
cos(n + 1)θ

n + 1

�2π

0

= 0, n �= −1.

So in fact the result is zero for a wider range of n than predicted by Cauchy’s
theorem. This was easy to demonstrate for the chosen circular contour, but
would be more difficult if we chose (e.g.) the square contour in the next
example. We will soon prove another theorem (again due to Cauchy) that
can predict the above result for all values of n and for all contours (Cauchy’s
Residue theorem).

Example 5.3 The integral of f(z) = sin z around the square contour γ with
sides �(z) = 0, π, �(z) = 0, π, is zero by Cauchy’s theorem.
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We could of course have chosen a more complicated contour, but then we
would not be able (easily) to verify the result directly. For a direct verification
we parametrize each part of the contour separately, writing

γ1 = {z = π + iy : 0 < y < π},
γ2 = {z = x + iπ : π > x > 0},
γ3 = {z = 0 + iy : π > y > 0},
γ4 = {z = x + i0 : 0 < x < π}.

Then on γ1, dz = idy, and f(z) = sin(π + iy) = − sin(iy) = −i sinh y, so
�

γ1

f(z) dz =

� π

0

sinh y dy = [cosh y]π0 = (cosh π − 1).

On γ2, dz = dx, and f(z) = sin(x + iπ) = sin x cos(iπ) + cos x sin(iπ) =
cosh π sin x + i sinh π cos x, so

�

γ2

f(z) dz =

� 0

π

(cosh π sin x + i sinh π cos x) dx

= − cosh π[cos x]0π + i sinh π[sin x]0π = −2 cosh π.

On γ3, dz = idy, and f(z) = sin(0 + iy) = i sinh y, so

�

γ3

f(z) dz = −
� 0

π

sinh y dy = −[cosh y]0π = (−1 + cosh π).

On γ4, dz = dx, and f(z) = sin x, so
�

γ4

f(z) dz =

� π

0

sin x dx = −[cos x]π0 = 2.

Adding the four contributions, the result is zero, as predicted by Cauchy’s
theorem.

Homework: Ablowitz & Fokas, problems for section 2.6, questions 1,3,4.

5.2 Cauchy’s theorem II

Though the proof given above is adequate for most purposes, it is useful
to have a proof that does not assume continuity of f �(z), since this result
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can actually be deduced from Cauchy’s theorem. However, as indicated
above, such a proof, though possible, is much more technical, requiring the
development of several topological ideas, and the proof of several preliminary
results. Since many of these concepts are interesting and useful in their own
right however; and since results such as infinite smoothness of f may be
deduced from Cauchy’s theorem (so it would be nice not to have to assume
any smoothness of f � in the proof); we shall investigate how Cauchy’s theorem
may be proved in more generality.

Our first step is to prove Cauchy’s theorem for an arbitrary triangular
contour.

Theorem 5.4 (Cauchy’s theorem for a triangle) Let f be analytic inside
and on a triangular contour γ, then

�

γ

f(z) dz = 0.

Proof We use the notation ABC to denote the triangle formed by joining
points z = a, z = b, z = c, and we suppose γ is the triangle A0B0C0.
Take points A1, B1, C1 to be the midpoints of edges B0C0, A0C0, A0B0,
respectively, from which we can construct 4 more “ABC” triangles (A1B1C1,
A0B1C1, A1B0C1 and A1B1C0). We denote these 4 triangles by γk

1 , k =
1, . . . , 4 (the ”1” to denote that this is the first step in an iterative triangu-
lation process, and the k just as a convenient label for each sub-triangle).
Then we have

I :=

�

γ

f(z)dz =
4�

k=1

�

γk
1

f(z)dz,

using (42) (line integrals along interior segments of the sub-triangles cancel).
The inequality (8) applied to this result gives

|I| ≤
4�

k=1

�����

�

γk
1

f(z)dz

����� ≤ 4

�����

�

γk∗
1

f(z)dz

����� ,

where k∗ is the choice of k giving the maximal absolute value to the integral.
Label this triangle γ

k∗
1 as γ1, and repeat the above argument, with sub-

triangles (γk
2 ) of γ1. This procedure, illustrated schematically in figure 3,
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Figure 3: Iterative triangulation of the original contour γ (the outermost
triangle), so as to maximize |

�
γk

f(z) dz| at each step.
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generates a sequence of triangles (γj) (with γ0 = γ), such that, for all j ≥ 1,

(i) I(γj+1) ⊂ I(γj)
(ii) L(γj) = 2−jL(γ)
(iii) 4−j|I| ≤ |

�
γj

f(z) dz|.

Claim: The set ∩∞j=0I(γj) contains a point Z common to all I(γj). [Recall
that I(γ) is the interior of the contour γ, a bounded open set.]
Proof of claim: For each j choose zj ∈ I(γj). The resulting sequence
(zj) is bounded, since all points zj ∈ I(γ). By result 2 of §3.1, we have a
convergent subsequence with limit Z. For any j, Z is a limit point of the se-
quence {zk : k ≥ j} ⊂ I(γj), and so (since I(γj) is closed), Z belongs to I(γj).

Now let � > 0 (arbitrarily small). f is differentiable at Z so, for some δ > 0,

|f(z)− f(Z)− (z − Z)f �(Z)| < �|z − Z| ∀z ∈ B(Z; δ). (46)

Choose N sufficiently large that I(γN) ⊂ B(Z, δ). Then, we have

|z − Z| ≤ 2−N
L(γ) for z ∈ I(γN), by (ii) above, (47)

and
�

γN

(f(Z) + (z − Z)f �(Z))dz = 0, (48)

by application of theorem 4.4 (recall that Z, f(Z), f �(Z) are all fixed con-
stants here). Hence, using (46)–(48), and the estimation theorem 4.7, we
have
����
�

γN

f(z) dz

���� =

����
�

γN

f(z) dz −
�

γN

(f(Z) + (z − Z)f �(Z))dz

���� using (48)

≤
�

γN

|f(z)− f(Z)− (z − Z)f �(Z))|dz

< �

�

γN

|z − Z| dz using (46)

≤ �2−N
L(γ)L(γN) using corollary 4.8

= �(2−N
L(γ))2 using (ii) above.
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Finally we use result (iii) listed above to deduce that

|I| ≤ 4N

����
�

γN

f(z) dz

���� < �L(γ)2
.

Since � > 0 was arbitrary, and L(γ) is fixed, I = 0 as required.

Remark Cauchy’s theorem for polygonal contours: Of course, it follows
from this proof that Cauchy’s theorem holds for any polygonal contour γ

(triangulate the polygon and write the integral of f around γ as a sum of
integrals along triangular contours).

In order to extend Cauchy’s theorem to more general contours and do-
mains, we need to derive a few results that give conditions under which an
analytic function f can be shown to have an antiderivative F . Our first goal
is to extend Cauchy’s theorem to arbitrary contours γ lying within a convex
domain on which f is analytic. The following theorem guarantees that an
antiderivative can be found for any f analytic on a convex domain; though
in fact in its statement it is somewhat stronger than that.

Theorem 5.5 (Antiderivative on a convex domain) Let f(z) be continuous
on the convex domain D, and suppose that

�
γ f(z) dz = 0 for any triangle

γ ∈ D. Let a ∈ D be arbitrary, then

F (z) =

�

[a,z]

f(w) dw

is analytic in D, with F � = f .

Here the integral is taken along the line segment [a, z]. Note that this the-
orem is immediately applicable to any f analytic on D, since we have just
proved that for such f , the integral along arbitrary triangular contours is
zero (theorem 5.4).

Proof Let z ∈ D. Since D is open, ∃δ > 0 such that B(z; δ) ⊂ D. Then for
all |h| < δ, z + h ∈ D. For such h, the three line segments [a, z], [z, z + h],
[a, z +h], all lie in D (convexity), and form a triangle within D. The integral
of f around this triangle must be zero, by the theorem hypothesis. Hence we
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have

F (z + h)− F (z) =

�

[a,z+h]

f(w)dw −
�

[a,z]

f(w)dw

= −
�

[z+h,a]

f(w)dw −
�

[a,z]

f(w)dw

=

�

[z,z+h]

f(w)dw.

We then have
����
F (z + h)− F (z)

h
− f(z)

���� =
1

|h|

����
�

[z,z+h]

(f(w)− f(z))dw

����

≤ 1

|h| |h| sup
w∈[z,z+h]

|f(w)− f(z)|

by the estimation theorem result 4.8. The right-hand side here goes to zero
as h→ 0 by continuity; and the theorem is proved.

For convenience, we restate this result specifically for analytic functions (for
which it holds automatically as noted above):

Theorem 5.6 (Antiderivative for analytic function on convex domain) Let
f be analytic on a convex domain D. Then ∃ F , analytic on D, such that
F � = f .

We can now extend Cauchy’s theorem to any convex domain:

Theorem 5.7 (Cauchy’s theorem on a convex domain) Let f be analytic on
a convex domain D. Then

�

γ

f(z) dz = 0

for every closed path γ ∈ D.

Proof Theorem 5.6 guarantees the existence of an analytic antiderivative
F , such that F � = f on D. Then the result follows from the fundamental
theorem of calculus (corollary 4.5).
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An immediate consequence of theorem 5.7 is that for any function that is
complex analytic on a convex domain D, its integral along a path between
two points a, b ∈ D is path independent – the result is the same no matter
which path within D we choose.

The next version of Cauchy’s theorem that we give (theorem 5.10 below)
relates to the integral of an analytic function around an arbitrary simple
closed contour, and is sufficient for most purposes. Since we cannot assume
that we are dealing with contours composed of simple line segments as in the
results derived so far, we must first prove an important preliminary result,
which we now state:

Theorem 5.8 (Covering theorem for contours) Let γ be a contour, with
parametric description (39), and suppose γ ⊂ D where D ⊂ C is open. Then
∃ δ > 0 (fixed), and open balls Bk = B(z(tk); δ), with k = 0, . . . , N and
a = t0 < t1 < . . . < tN = b, such that
(i) Bk ∩Bk+1 �= ∅, k = 0, . . . , N ;
(ii) γk := z([tk, tk+1]) ⊂ Bk, k = 0, . . . , N ;
(iii) γ ⊂ ∪N

k=0Bk ⊂ D.

Informally, this theorem guarantees that when a contour lies inside an open
subset D ⊂ C, it may be entirely covered by a finite sequence of (N + 1)
overlapping balls, of fixed radius, such that all the balls lie within D. The
construction also partitions the contour into N individual segments, each of
which is entirely contained within one of the balls.

The proof of theorem 5.8 requires the following Lemma:

Lemma 5.9 Let D be an open subset of C, and γ ∈ D. Then ∃ δ > 0 such
that ∀z ∈ γ, B(z; δ) ⊂ D.

The informal statement of this lemma is that a contour in an open subset of
C cannot get arbitrarily close to the boundary of D.

Proof of Lemma 5.9. Let ρ(z) be the distance of z from Dc = C \ D:

ρ(z) = inf{|z − w| : w �∈ D}.

For points z, z� ∈ C and w �∈ D we have

ρ(z) ≤ |z − w| ≤ |z − z
�| + |z� − w|

⇒ |z� − w| ≥ ρ(z)− |z� − z|.
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Taking the infimum over w �∈ D we find

ρ(z�) ≥ ρ(z)− |z − z
�|.

But clearly we can reverse the roles of z and z�, so that also

ρ(z) ≥ ρ(z�)− |z − z
�|;

and so −|z − z�| ≤ ρ(z)− ρ(z�) ≤ |z − z�|, that is,

|ρ(z)− ρ(z�)| ≤ |z − z
�|, ∀z, z� ∈ C.

Thus ρ(z) is a continuous function; and on the compact set represented by the
contour γ, ρ is bounded and attains its bounds (theorem 3.13). In particular
it attains its infimum at some point z∗ ∈ γ. Then, because D is open and
z∗ ∈ D, ∃δ > 0 such that B(z∗; δ) ⊂ D. By definition of the infimum on the
set γ, and of the distance function ρ

ρ(z) ≥ ρ(z∗) ≥ δ ∀z ∈ γ.

Again using the definition of the distance function ρ, ρ(z) ≥ δ⇔B(z; δ) ⊂ D,
proving the theorem.

With the lemma in hand, we can prove theorem 5.8.

Proof (of theorem 5.8). Let δ be as in lemma 5.9 above, so that ∀z ∈ γ,
B(z; δ) ⊂ D. We have to show that γ can be covered by a finite chain of
such disks, each overlapping the next.

Assume that γ is smooth (for piecewise smooth contours the following
arguments can be used for each smooth portion of γ). The Mean Value theo-
rem applied to the real and imaginary parts of the parametrization function
z(t) (see (39)) gives

�(z(t))−�(z(s)) = (t− s)�((z�(c)) for some c ∈ [a, b],

with a similar result for �(z(t)). The continuous real functions �(z�(t)),
�(z�(t)) are defined on the compact set [a, b], so are bounded (and attain
their bounds) on [a, b]. Let M be a common bound for these functions. We
therefore have

|�(z(t))−�(z(s))| < δ/2 whenever |t− s| < η = δ/(2M),

|�(z(t))−�(z(s))| < δ/2 whenever |t− s| < η = δ/(2M),
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which together imply (using (8)), that

|z(t)− z(s)| < δ whenever |t− s| < η = δ/(2M).

As noted above, this result holds for an arbitrary contour γ by applying
the argument to its smooth constituent parts.

We now select points a = t0 < t1 < . . . < tN = b, such that tk+1 − tk < η

for k = 0, 1, . . . , N . Taking Bk = B(z(tk), δ), the conditions of the theorem
are all satisfied.

We can now prove a yet stronger version of Cauchy’s theorem:

Theorem 5.10 (Cauchy’s theorem, version 3) Suppose that f is analytic
inside and on a simple closed contour γ. Then

�

γ

f(z) dz = 0.

Proof Note that if γ is a polygonal contour then the result is immediate from
Cauchy’s theorem for triangular contours (theorem 5.4). As noted earlier,
we can simply triangulate the polygon and write

�

γ

f(z) dz =
�

j

�

γj

f(z) dz,

where the γj are the triangulating contours (the integrals along the interior
line segments are each covered twice, in the opposite sense, and thus cancel).
Since the integral around each γj vanishes (theorem 5.4), the result follows.

For an arbitrary contour γ, our approach is to approximate γ by a
polygonal contour. We use theorem 5.8 to cover γ by overlapping discs
Bk = B(z(tk); δ), k = 0, . . . , N satisfying all conditions listed there and,
additionally, with z(tN) = z(t0) (a closed contour with z(a) = z(b)). Within
each disk, which is a convex domain, Cauchy’s theorem 5.7 applies, giving

�

γk

f(z) dz =

�

[zk,zk+1]

f(z) dz,

where γk is the restriction of the contour γ to the parameter interval [tk.tk+1],
and [zk, zk+1] is the line segment from zk = z(tk) to zk+1 = z(tk+1). Hence,
the total integral along the contour γ is equal to the integral along the closed
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polygonal contour γP made by joining the line segments [z0, z1], [z1, z2], . . . ,
[zN−1, zN ],

�

γ

f(z) dz =
N−1�

k=0

�

[zk,zk+1]

f(z) dz =

�

γP

f(z) dz.

The result then follows, by the noted result for polygonal contours.

Remark We note that we require the concept of the interior of the con-
tour (introduced in definition 2.20), since it is not possible to triangulate an
unbounded domain. Hence the theorem is applicable only to the contour’s
interior. This appeal to triangulation in the final step is also the reason
why the theorem works only for a simply-connected domain – we cannot
triangulate a closed polygonal curve on a non-simply-connected domain, in
general.

An important consequence of theorem 5.10 is the following contour deforma-
tion theorem.

Theorem 5.11 (Contour deformation) Let γ1 and γ2 be positively-oriented
closed contours, with γ2 ⊂ I(γ1), and suppose that f is analytic in the region
(I(γ1) ∩ E(γ2)) ∪ {γ1} ∪ {γ2}. Then

�

γ1

f(z) dz =

�

γ2

f(z) dz.

The analyticity of f in the region between the two contours means that one
contour can be ”deformed” smoothly into the other, without changing the
value of the integral. The proof is almost immediate from Cauchy’s theorem
5.10:

Proof (of theorem 5.11). Introduce two adjacent straight-line contours: γ12,
joining γ1 to γ2, and γ21 = −γ12, joining γ2 to γ1. Then the composite contour
γ1 ∪ γ12 ∪ (−γ2) ∪ γ21 is a simple closed contour, within which f is analytic.
By Cauchy’s theorem 5.10 then,

�

γ1

f(z) dz +

�

γ12

f(z) dz +

�

−γ2

f(z) dz +

�

γ21

f(z) dz = 0.

Since
�

γ21
=

�
−γ12

= −
�

γ12
and

�
−γ2

= −
�

γ2
the result follows.
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We also have the contour deformation theorem for two open contours with
the same endpoints:

Theorem 5.12 Let f(z) be analytic on a domain D, and let a, b be two
distinct points in D. Then if γ1 and γ2 are any two open contours in D

connecting a and b, we have
�

γ1

f(z) dz =

�

γ2

f(z) dz.

Proof If γ1 and γ2 do not intersect except at their endpoints then together
they form a simple closed curve to which Cauchy’s theorem 5.10 applies, and
the result is immediate. If γ1 and γ2 intersect at one or more points then
simply apply Cauchy’s theorem to the closed portions of contour between
successive pairs of intersection points.

For completeness, we note the other forms of Cauchy’s theorem that may
be proved:

Theorem 5.13 (Cauchy’s theorem, version 4) If f(z) is analytic in a simply-
connected domain D then

�
γ f(z) dz = 0 for every closed path γ ∈ D.

This version is easily proved from 5.10 applied to individual closed loops of
γ, inside (and on) each of which f is analytic.

Finally, the theorem may also be proved for a non-simply-connected do-
main, provided we impose certain conditions on the contour γ: loosely speak-
ing, it must not ”wind around” any ”holes” in the domain.

We can formalize this concept of ”winding number” of a contour γ by the
following definition:

Definition 5.14 (Index of a contour) Let γ be a closed contour and w0 �∈ γ.
The index (or winding number) of γ about w0, denoted n(γ; w0), is defined
by

n(γ; w0) =
1

2πi

�

γ

1

w − w0
dw. (49)

Clearly this definition always gives zero for points w0 that lie exterior to
the closed contour, by Cauchy’s theorem 5.10 (because the function f(z) =
1/(z − w0) is analytic inside and on the contour). However, if w0 lies inside

72



the contour the integrand has a singularity there, and we expect a nonzero
result in general. Consider the simplest case in which γ = C(w0, r), traversed
N times. We parametrize γ by γ = {w(t) : w(t) = w0 + reiθ, 0 ≤ θ ≤ 2Nπ}
then the formula (49) gives

n(γ; w0) =
1

2πi

� 2Nπ

0

ireiθ

reiθ
dθ = N,

so the definition holds true for this case at least. More generally then the
result should hold true by adapting the contour deformation results we have
already proved – an arbitrary contour wrapping N times round w0 being
equivalent to the circle wrapping N times around it.

The definition 5.14 is given meaning by the following theorems. We state
and prove the theorems for w0 = 0, but the results generalize easily to nonzero
w0. Not surprisingly, given its definition and our knowledge of real calculus,
the winding number is closely related to the complex logarithm that we came
across in §3.5.2. We first prove a result on conditions under which an analytic
branch of the logarithm may be found on a domain D, and then use this result
to deduce properties of the winding number.

Theorem 5.15 Let D be a convex domain, and 0 �∈ D. Then there exists a
function f = logD, analytic on D, such that ef(z) = z ∀z ∈ D, and

f(z)− f(a) =

�

γ

dw

w
, (50)

where γ is any path in D with endpoints a and z. f is uniquely determined
up to the addition of an integer multiple of 2πi, and

f(z) = logD z = log |z| + iθ(z)

where θ(z) ∈ arg(z) is continuous on D.

Proof As in the proof of theorem 5.5, it is easily checked that with the
definition (50) we have f �(z) = 1/z and, since 0 �∈ D (so that 1/z is analytic
on D), f is analytic on D. (Note that, without loss of generality, we may in
fact take the contour γ joining a and z to be a straight line, since the definition
is path-independent – this is easily shown by the deformation theorem 5.12
just proved.)
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We also have

d

dz
(ze

−f(z)) = e
−f(z) − zf

�(z)e−f(z) = 0.

Hence, z = Cef(z) (C �= 0). Since we seek f such that ef(z) = z, C = 1.
To check uniqueness, suppose that there exists another function g(z) an-

alytic on D such that ef(z) = eg(z) = z for all z ∈ D. Differentiation of both
sides of this relation gives zf �(z) = zg�(z) ⇒ f �(z) = g�(z) for all z ∈ D, and
thus f(z) − g(z) = K, constant, where eK = 1. This gives K = 2nπi; thus
all such representations f differ by additive multiples of 2πi.

The final part of the theorem follows as in our definition of the complex
logarithm earlier, using the relation z = ef(z) with z = |z|eiθ and f = u + iv,
which gives |z| = eu and v = θ (modulo 2π).

Theorem 5.16 (Properties of the winding number) Let γ be a closed path
with parameter t ∈ [a, b], and 0 �∈ γ. Then
(1) n(γ; 0) is an integer, where 2πin(γ; 0) =

�
γ w−1dw

(2) There exists a continuous function Θ : [a, b]→ R, unique up to an integer
multiple of 2π, such that
(i) Θ(t) ∈ arg(z(t)) for all z(t) ∈ γ;
(ii) 2πn(γ; 0) = Θ(b)−Θ(a).

The first part of the theorem relates the winding number to the complex
logarithm of the previous theorem 5.15, while the second part guarantees
that for such contours γ (not containing the origin) we can ensure that the
argument of the complex number z(t) varies in a continuous manner as we
traverse the contour. The net change in a continuously-varying argument is
directly related to the winding number of the contour.

Proof Let R be a region containing γ, with 0 �∈ R. We cannot yet apply the
above theorem 5.15 directly since R may not be convex. Recalling the proof of
the covering theorem 5.8, we construct points a = t0 < t < 1 < . . . < tN = b

and overlapping balls Bk = B(z(tk), δ) (0 ≤ k ≤ N) whose union contains γ

and is contained within R. We write zk = z(tk) for the centers of the balls
Bk (0 ≤ k ≤ N), noting that, since γ is closed, zN = z(b) = z(a) = z0, and
the balls B0 and BN will coincide. Theorem 5.15 then applies to each Bk, so
we can define an analytic logarithm fk on each Bk, such that

fk(z)− fk(zk) =

�

[zk,z]

dw

w
,
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and

fk(z) = log |z| + iθk(z), where θk ∈ arg(z),

and for z ∈ Bk ∩ Bk+1 we have θk+1(z) − θk(z) = 2πnk, where nk ∈ Z. In
particular, since B0 and BN coincide, we may take fN(z) = f0(z), so that
θN(zN) = θ0(z0).

Writing γk = {z ∈ γ : z = z(t), tk ≤ t < tk+1} for 0 ≤ k ≤ N − 1 (the
portion of γ between zk and zk+1; this is contained within Bk according to
the Covering theorem 5.8), we then have

n(γ; 0) =
1

2πi

�

γ

dw

w

=
1

2πi

N−1�

k=0

�

γk

dw

w

=
1

2πi

N−1�

k=0

[fk(zk+1)− fk(zk)] by theorem 5.15

=
1

2π

N−1�

k=0

[θk(zk+1)− θk(zk)] (real parts cancel)

=
1

2π

N−1�

k=0

[θk+1(zk+1)− 2πnk]−
1

2π

N−1�

k=0

θk(zk)

=
1

2π

N�

k=1

θk(zk)−
1

2π

N−1�

k=0

θk(zk)−
N−1�

k=0

nk

=
1

2π
(θN(zN)− θ0(z0))−

N−1�

k=0

nk

= −
N�

k=1

nk−1 ∈ Z (since θN = θ0 and zN = z0). (51)

The second part of the theorem relates to the fact that the sequence of loga-
rithms fk defined above do not necessarily give a single continuous function
when “patched” together; but if one defines an argument function Θ suit-
ably, then one can ensure continuous variation of argument as the contour γ

is followed.
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To do this, we use the parametrization of the contour, and first define
argument functions on each section of γ: Θk(t) = θk(z(t)), t ∈ [tk, tk+1].
Each Θk(t) is continuous (since z(t) and θk(z) are), but in general there is
no continuity between Θk and Θk+1 at t = tk+1 (they differ by an integer
multiple of 2π: Θk+1(tk+1)−Θk(tk+1) = 2πnk). If we define Θ(t) recursively
by

Θ(t) =

�
Θ0(t) t ∈ [t0, t1]
Θk(t)− (Θk(tk)−Θ(tk)) t ∈ (tk, tk+1], 1 ≤ k ≤ N − 1,

(52)

then it is easy to check that this definition gives a function Θ continuous on
the entire interval, by checking that the right-hand limit at each tk gives the
appropriate value. At t = t1 we have

Θ(t+1 ) = Θ1(t1)− (Θ1(t1)−Θ(t1)) = Θ(t1),

and then at t = tk (k > 1) we have

Θ(t+k ) = Θk(tk)− (Θk(tk)−Θ(tk)) = Θ(tk).

Noting the recursion in the definition of Θ(t) we can re-express it on the
interval (tk, tk+1] (k ≥ 1) as

Θ(t) = Θk(t)−Θk(tk) + Θ(tk)

= Θk(t)−Θk(tk) + Θk−1(tk)−Θk−1(tk−1) + Θ(tk−1)

= Θk(t)−Θk(tk) + Θk−1(tk)−Θk−1(tk−1) + Θk−2(tk−1)−Θk−2(tk−2) + Θ(tk−2)
...

= Θk(t)− (Θk(tk)−Θk−1(tk))− (Θk−1(tk−1)−Θk−2(tk−1))−
· · · − (Θ1(t1)−Θ0(t1))

= Θk(t)−
k�

j=1

(Θj(tj)−Θj−1(tj))

= Θk(t)− 2π
k�

j=1

nj−1, t ∈ (tk, tk+1] (k ≥ 1) (53)

showing explicitly that Θ(t), since it only ever differs from one of the argu-
ment functions by an integer multiple of 2π, is indeed an argument of the
complex number z on γ. This proves part 2(i).
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Finally, using (53) with t = tN = b and k = N − 1 we have

Θ(b) = ΘN−1(b)− 2π
N−1�

j=1

nj−1 = ΘN(b)− 2π
N�

j=1

nj−1.

Recalling that ΘN(b) = θN(zN) = θ0(z0) = Θ0(a) = Θ(a) (using the equality
of the complex logarithms fN and f0, and (52)), this leads to

Θ(b)−Θ(a) = −2π
N�

j=1

nj−1 ≡ 2πn(γ; 0),

proving 2(ii).

An immediate consequence of this theorem is that for closed contours γ that
satisfy the conditions of the theorem, n(γ; 0) does indeed give the number of
times that γ encircles the origin. This is because the function Θ(t) defines
a continuously-varying argument of the complex number z(t) as it moves
along γ; thus Θ(b) − Θ(a) is the net change in the argument of a point z

as it completes a full circuit of γ. Since each complete circuit of the origin
corresponds to a change of 2π in the argument of z, a change of 2πn(γ; 0)
corresponds to n(γ; 0) complete circuits of the origin.

Theorem 5.17 (Cauchy’s theorem – FINAL version! Let f be analytic on
an open region D. If γ is a closed contour in D such that n(γ; w) = 0
∀w �∈ D, then

�
γ f(z) dz = 0.

6 Beyond Cauchy’s (first) theorem

Cauchy’s theorem, as we are beginning to see, is a very powerful result that
forms one of the basic building-blocks of complex analysis. In this section we
will continue this process of building, working towards ever-stronger results.
We will see, for instance, that analyticity of a function implies that it is
infinitely differentiable, a result that is certainly not true for (say) real-
valued functions that are continuously differentiable.

We begin by proving another result due to Cauchy that gives us an in-
tegral representation of any analytic function. It is this key result that will
lead to the conclusion of infinite smoothness.
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Theorem 6.1 (Cauchy’s Integral Formula) Let f(z) be analytic inside and
on a simple closed contour γ. Then for any z inside γ (z ∈ I(γ)),

f(z) =
1

2πi

�

γ

f(w)

w − z
dw. (54)

This theorem is remarkable – it says that, if a function is known to be ana-
lytic inside and on a given curve, then its values on that curve are sufficient
to determine uniquely its values everywhere inside the curve. Recall the
connection that we know exists between harmonic functions and analytic
functions – we know from PDE theory (or we should know!) that, if we wish
to solve Laplace’s equation in a given domain, then the solution u is uniquely
determined by the values of u at all points of the boundary. We also know
(lemma 3.24) that a harmonic conjugate v of u may be defined, unique up to
an additive constant, such that u + iv is a complex analytic function. Hence
theorem 6.1 does fit with several facts we already knew. What we cannot
do, however, is arbitrarily prescribe the values of a function f on a curve
γ and expect (54) to yield an analytic function at all points of the interior of
γ. As the results for Laplace’s equation suggest, in fact we can really only
arbitrarily prescribe either the real or imaginary part of an analytic function
on a simple closed contour γ – and this is sufficient to uniquely determine
the values of the corresponding analytic function at all points within γ (at
least, up to an arbitrary constant). The real and imaginary parts of f are
closely related, and cannot be prescribed independently, even on a contour
in C.

Proof Let z ∈ I(γ), then since I(γ) is open ∃� > 0 such that B(z; �) ⊂ I(γ).
For any 0 < δ < �,
�

γ

f(z)

w − z
dw =

�

C(z;δ)

f(z)

w − z
dw, and

�

γ

f(w)

w − z
dw =

�

C(z;δ)

f(w)

w − z
dw,

(where C(z; δ) denotes the circle with center z and radius δ), by the defor-
mation theorem 5.11. Thus, using the result

�

C(z;δ)

dw

w − z
=

� 2π

0

iδeiθ dθ

δeiθ
= 2πi,

in which we parametrized C(z; δ) by w = z + δeiθ, 0 ≤ θ < 2π, we have
����

1

2πi

�

γ

f(w)

w − z
dw − f(z)

���� =

����
1

2πi

�

C(z;δ)

f(w)− f(z)

w − z
dw

����
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=

����
1

2πi

� 2π

0

f(z + δeiθ)− f(z)

δeiθ
iδe

iθ
dθ

����

≤ 1

2π
sup

0≤θ<2π
|f(z + δe

iθ)− f(z)|.

Since f is analytic at z it is certainly continuous (Lemma 3.16), hence the
last expression on the right-hand-side goes to zero as δ → 0. Since δ > 0 was
arbitrary, the theorem is proved.

Corollary 6.2 (Cauchy’s formula for derivatives) If f is analytic inside and
on a simple closed contour γ then all its derivatives exist in I(γ), and

f
(k)(z) =

k!

2πi

�

γ

f(w)

(w − z)k+1
dw. (55)

Proof For k = 0 this is just theorem 6.1 proved above. So, we suppose (55)
holds for k = n, and show that it must then hold for k = n + 1 (the general
result will then hold, by induction). As above we may use theorem 5.11 to
deform the contour of integration to a (sufficiently small) circle, C = C(z; 2r)
for some fixed r > 0. We use the definition of derivative, (23), to try to
evaluate f (n+1)(z) from f (n)(z) which, by our induction hypothesis, is given
by (55).

We now let h ∈ C with |h| < r. Then

f
(n)(z + h)− f

(n)(z) =
n!

2πi

�

C

f(w)

�
1

(w − z − h)n+1
− 1

(w − z)n+1

�
dw

=
(n + 1)!

2πi

�

C

f(w)

��

[z,z+h]

1

(w − ζ)n+2
dζ

�
dw,

using the Fundamental Theorem of Calculus 4.4. Then

F (h) :=
f (n)(z + h)− f (n)(z)

h
− (n + 1)!

2πi

�

C

f(w)

(w − z)n+2
dw

=
(n + 1)!

2πih

�

C

f(w)

��

[z,z+h]

1

(w − ζ)n+2
− 1

(w − z)n+2
dζ

�
dw

=
(n + 2)!

2πih

�

C

f(w)

��

[z,z+h]

��

[z,ζ]

1

(w − τ)n+3
dτ

�
dζ

�
dw,
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again applying theorem 4.4. Since f is analytic, it is continuous, and therefore
bounded (by M , say) on the compact set C. Note that for any w ∈ C =
C(z; 2r), we have |w − z| = 2r, while |h| < r; and in the above integrals,

τ ∈ [z, ζ], ζ ∈ [z, z + h] ⇒ |z − ζ| ≤ |h| < r and |w − τ | ≥ r.

Using the estimation theorem 4.7 then:

|F (h)| ≤ M(n + 2)!

2π|h| × 4πr × |h| × |h| × 1

rn+3
→ 0 as |h| → 0,

for fixed r > 0. The result is therefore proved.

As well as being useful in proving many important subsequent results,
theorems 6.1 and 6.2 can also provide us with a quick way to evaluate certain
complex integrals.

Example 6.3 Evaluate the integrals

(a)

�

γ

w3 + 5

w − i
dw, (b)

�

γ

1

w2 + w + 1
dw, (c)

�

γ

sin w

(w + 4)2(w − 1)3
dw.

where γ is the circle C(0; 2) (with center 0 and radius 2).

For (a) we use the result (54) with f(w) = w3 + 5 and z = i to deduce that

�

γ

w3 + 5

w − i
dw = 2πif(i) = 2πi(5− i).

For (b) we note that w2+w+1 = (w−w0)(w−w0), where w0 = (−1+i
√

3)/2.
Since |w0| = 1 both zeros of the denominator lie within the integration
contour, and we cannot apply (54) directly (whether we choose f(w) =
1/(w − w0) and z = w0, or f(w) = 1/(w + w0) and z = w0, we always
have a singularity of f inside the integration contour). However, we can use
partial fractions to decompose the integrand as
�

γ

1

w2 + w + 1
dw =

1

w0 − w0

�

γ

�
1

w − w0
− 1

w − w0

�
dw =

1

w0 − w0
(1− 1) = 0,

applying (54) to each term of the decomposition, with f(w) = 1 and z = w0,
z = w0, respectively.
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For (c) we use (55) with k = 2, f(w) = sin w/(w+4)2 and z = 1 to obtain

�

γ

sin w

(w + 4)2(w − 1)3
dw =

2πi

2!
f
��(1).

The integrals in this example could all be worked out by a similar, but much
more general method, using Cauchy’s residue theorem, which we shall soon
derive. (Both Cauchy’s integral formula and Cauchy’s formula for derivatives
may be thought of as special cases of the Residue theorem).

Corollary 6.4 (Mean value representations for f) If f is analytic inside
and on a circular contour of radius R centered at z then

f(z) =
1

2π

� 2π

0

f(z + Re
iθ)dθ (56)

and

f(z) =
1

πR2

� R

0

� 2π

0

f(z + re
iθ)rdrdθ. (57)

These representations (56) and (57) state that the value of f at the point
z is equal to its mean value integrated around the circle of radius R, and
is also equal to its mean value integrated over the area of the same circle,
respectively. [Of course, Cauchy’s integral formula (54) itself may be con-
sidered as a generalized mean value result relating the value of f at any
point z ∈ γ to a weighted average of its values along γ.] Proofs of (56)
and (57) are easy – for (56) just take the contour γ in theorem 6.1 to be
γ = {z ∈ C : z = Reiθ, 0 ≤ θ < 2π}. Then (57) follows by multiplying both
sides of (56) by r dr and integrating from r = 0 to r = R.

Theorem 6.5 (Maximum modulus theorem, 1) (i) If f is analytic in a do-
main D then |f | cannot have a maximum in D unless f is constant. (ii)
If f is analytic in a bounded domain D and |f | is continuous on the closed
domain D, then |f | assumes its maximum on the boundary of the domain.

Proof We use (57) to establish this theorem, by contradiction. Suppose that
|f | has an interior maximum at z ∈ D, |f(z)| ≥ |f(w)| ∀w ∈ D. Since z

is an interior point we can fit a ball of some radius R around it such that
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B(z; R) ⊂ D. Writing ζ = z + reiθ for any point ζ in this ball (0 ≤ r < R)
(57) then gives

f(z) =
1

πR2

� R

0

� 2π

0

f(ζ)rdrdθ

⇒ |f(z)| =
1

πR2

����
�

B(z;R)

f(ζ)dS

����

≤ 1

πR2

�

B(z;R)

|f(ζ)|dS

≤ |f(z)|
πR2

�

B(z;R)

dS

= |f(z)|,

where we used a variant of the estimation theorem 4.7 (for double integrals;
the proof is exactly similar) in the first inequality, and the contradiction
assumption in the second. Since we end up again with |f(z)| at the end of
this chain of inequalities we must have equality throughout; and in particular,

|f(z)| =
1

πR2

�

B(z;R)

|f(ζ)|dS

⇒ 1

πR2

�

B(z;R)

(|f(z)| − |f(ζ)|)dS = 0.

The integrand here is real and non-negative; so the only way it can integrate
to zero is if it is identically zero. This implies that |f(ζ)| = |f(z)| on B(z; R),
and hence f is constant on this ball. (The fact that f is constant on a
region where |f | is constant is a simple deduction from the Cauchy-Riemann
equations.)

The above shows that f must in fact be constant on the largest ball that
can fit around an interior maximum point z within D. Since all points of
this ball are now maxima of |f | we can repeat the argument for a different
point near the ball boundary and, proceeding in this way, cover the whole of
D with balls on which f must be constant. This proves part (i).

The proof of (ii) is almost immediate from (i). The continuity of the
real function |f | on the closed bounded region D (a compact set) guarantees
that |f | is bounded and attains its bounds; so we know that |f | does have a
maximum on D. Part (i) tells us that there are then two possibilities: if |f |
has a maximum in D, then f is constant on D and, by continuity therefore,
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f is constant on D, so that |f | attains its maximum on ∂D trivially. The
second possibility is that |f | is non-constant, and has no maximum in D.
Then the only possibility is that the maximum of |f | on D occurs on ∂D.

6.1 Morera and Liouville theorems

We have already seen that non-analytic functions can integrate to zero around
simple closed contours in the complex plane – recall example 4.3 earlier –
so certainly the condition that a given function f integrate to zero around a
given contour is not sufficient to guarantee analyticity of f . Morera’s theorem
gives the necessary converse to Cauchy’s theorem:

Theorem 6.6 (Morera’s theorem – a Cauchy converse) If f(z) is continuous
in a domain D and if

�

γ

f(z) dz = 0

for every simple closed contour γ lying in D, then f(z) is analytic in D.

Proof Choose an arbitrary point ζ ∈ D. Since D is open, ∃δ > 0 such that
B(ζ; δ) ⊂ D. Define a function F (z) on this ball by

F (z) =

�

[ζ,z]

f(w) dw

(remember theorem 5.5). Then, exactly as shown in the proof of theorem
5.5, F is analytic on the ball, with F � = f . From the theorem 6.2 (Cauchy’s
formula for derivatives), in fact F is infinitely differentiable; thus f is too.
Hence f is analytic on B(ζ; δ). Since the point ζ ∈ D was arbitrary, we
conclude that f is analytic on D.

Remark In fact a slightly stronger (though not much more useful) version
of Morera’s theorem could be stated above: we only require that f integrate
to zero around any given triangular contour in D (the construction used to
demonstrate that F � = f uses only this fact).

Definition 6.7 (Entire function) A function that is analytic in the whole
complex plane C is called an entire function.
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Entire functions are quite rare in the space of all complex functions, and
strong results can be proved for them. There is some ambiguity in the lit-
erature regarding the notion of analyticity of a function at infinity. Some
would define a function f(z) to be analytic at infinity only if f̃(z) := f(1/z)
is analytic at the origin. However, it is normally accepted that functions such
as complex polynomials (e.g. zn) – which do not satisfy the above criterion
for analyticity at infinity, are entire.

Theorem 6.8 (Liouville) If f(z) is entire and bounded in C (including at
infinity) then f(z) is constant.

Proof The proof uses the expression (55) for f �(z). Since f is entire we may
choose any contour γ we wish in this expression, and we choose the circle of
arbitrary radius R centered on z: |ζ − z| = R, or ζ = z + Reiθ, 0 ≤ θ < 2π.
Then, since we know |f | ≤M for some M > 0, and dζ = iReiθdθ, we have

|f �(z)| =
1

2π

����
�

C

f(ζ)

(ζ − z)2
dζ

���� ≤
1

2π

�

C

|f(ζ)|
|ζ − z|2 |dζ| ≤ M

2πR

� 2π

0

dθ =
M

R
.

Since the contour radius R is arbitrary, we may take it to be as large as we
wish, and we conclude that f �(z) = 0, so that f is constant as claimed.

We note without proof the following much stronger result due to Picard:

Theorem 6.9 (Picard’s little theorem) If f is entire and non-constant, then
the range of f is either the entire complex plane, or the plane minus a single
point.

Homework: Ablowitz & Fokas, problems for section 2.6. Questions 1
(a),(b),(c),(d) (integrate by direct parametrization), 3,4,5,7. You could also
try 9.

Liouville’s theorem can be used to give a quick and elegant proof of the
fundamental theorem of algebra:

Theorem 6.10 (Fundamental theorem of algebra) Let p(z) be a non-constant
polynomial, with complex coefficients. Then ∃ζ ∈ C with p(ζ) = 0.
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Proof The proof proceeds by contradiction: we suppose that p(z) �= 0 ∀z ∈
C. Since |p(z)| → ∞ as |z| → ∞, ∃ R > 0 such that 1/|p(z)| < 1 for
|z| > R. On |z| ≤ R, which is a compact set, 1/|p(z)| is continuous, and hence
bounded. Hence 1/p(z) is bounded on the whole complex plane. It is also
analytic (since p(z) nowhere vanishes; see homework question (2) in §3.3).
By Liouville’s theorem 6.8 then, p(z) must be constant. This contradiction
proves the theorem.

It is a simple matter to prove inductively from this result that a polynomial
of order N (such that |p(z)| = O(|z|N) as |z| → ∞) has exactly N zeros,
counted according to multiplicity.

Another result that may be deduced from Liouville’s theorem relates to
the behavior of entire functions at infinity:

Theorem 6.11 Suppose f(z) is an entire function such that lim|z|→∞ |f(z)/zN | =
M , 0 < M <∞. Then f(z) is a polynomial of degree N .

Remark The condition lim|z|→∞ |f(z)/zN | = M , 0 < M < ∞, is often
written |f(z)/zN | = O(1) as |z| → ∞, or equivalently, |f(z)| = O(|z|N) as
|z| → ∞.

7 Taylor series and related results

7.1 Taylor’s theorem

Given that we now know analytic functions to be infinitely differentiable
within their domain of analyticity, we might expect to be able to express
such functions in terms of convergent power series, as we can real functions.
This turns out to be the case (in fact the result is stronger in the complex
than the real case), and the following theorem gives the exact result.

Theorem 7.1 (Taylor series) Suppose f(z) is analytic on B(z0; R). Then

f(z) =
∞�

n=0

f (n)(z0)(z − z0)n

n!
. (58)

This is the Taylor series expansion of f about the point z0, and it converges
uniformly on |z − z0| ≤ R.
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The theorem utilizes Cauchy’s integral formula, and in the proof we will need
to interchange the order of summation and integration. This is always fine
for a finite sum, but can pose problems when the sum is infinite, as in the
theorem statement. We shall therefore first prove the following theorem (and
a corollary):

Theorem 7.2 Let Gn be a sequence of continuous functions, with Gn(z)→
G(z) as n→∞, uniformly on a region D. Then G(z) is continuous, and for
any finite contour γ ∈ D,

lim
n→∞

�

γ

Gn(z) dz =

�

γ

lim
n→∞

Gn(z) dz =

�

γ

G(z) dz. (59)

By uniform convergence on D here we mean that, for any z ∈ D, and any � >

0, ∃ N , dependent on � but independent of z, such that |Gn(z)−G(z)| < �

for all n ≥ N .

Proof We first prove continuity of G. For any two points z, z0 in D we have

G(z)−G(z0) = Gn(z)−Gn(z0) + Gn(z0)−G(z0) + G(z)−Gn(z)

so that

|G(z)−G(z0)| ≤ |Gn(z)−Gn(z0)| + |Gn(z0)−G(z0)| + |G(z)−Gn(z)|.

Uniform convergence of the sequence on D means that given �1 > 0, ∃N
(independent of z or z0, but depending on �1) such that

|Gn(z0)−G(z0)| < �1/3 and |Gn(z)−G(z)| < �1/3, ∀n ≥ N.

Since all the Gn are continuous on D ∃δ > 0 such that

|Gn(z)−Gn(z0)| < �1/3 for |z − z0| < δ.

Thus, for n ≥ N and |z − z0| < δ, we have

|G(z)−G(z0)| < �1,

so G is continuous on D. It remains to prove that we can take the limit
of the sequence through the integral. Let � > 0 be arbitrary. By uniform
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convergence of the sequence Gn to G we know we can find N such that, for
n ≥ N , |Gn(z)−G(z)| < �/L(γ). Then,

����
�

γ

Gn(z) dz −
�

γ

G(z) dz

���� ≤
�

γ

|Gn(z)−G(z)||dz| <
�

L(γ)
L(γ) = �,

using theorem (4.8). The result follows.

Corollary 7.3 (Integrals of convergent series) If gn(z) is a sequence of con-
tinuous functions on D such that the series

�
n gn(z) converges uniformly to

the sum G(z) on D, then for any closed curve γ ∈ D,

∞�

n=1

��

γ

gn(z) dz

�
=

�

γ

� ∞�

n=1

gn(z) dz

�
=

�

γ

G(z) dz.

Proof Apply theorem 7.2 to the sequence of partial sums Gn(z) =
�n

k=0 gk(z),
using the fact that each Gn(z) is continuous on D and Gn(z) → G(z) uni-
formly as n→∞.

Proof (of Taylor’s theorem 7.1) We use Cauchy’s integral formula. Let
z0 ∈ B(z0; R) and choose r > 0 such that |z− z0| < r < R. Let γ = C(z0; r),
then (54) gives

f(z) =
1

2πi

�

γ

f(w) dw

(w − z)
. (60)

We write the factor 1/(w − z) here as

1

w − z
=

1

(w − z0)

1

(1− [(z − z0)/(w − z0)])

and, noting that for w ∈ γ we have |z − z0| < |w − z0|, we can expand the
right-hand side here as a convergent series. Thus, (60) becomes

f(z) =
1

2πi

�

γ

∞�

n=0

(z − z0)n

(w − z0)n+1
f(w) dw. (61)

The contour γ is a compact set, on which the analytic (therefore continuous)
function f is bounded, by M say. Thus,

����
(z − z0)n

(w − z0)n+1
f(w)

���� ≤
M

r

�
|z − z0|

r

�n

=: Mn (say),
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where
�

Mn converges, since |z − z0| < r. By theorem 7.2 and its corol-
lary 7.3, summation and integration may be interchanged in (61), since the
integrand is uniformly convergent on γ, giving

f(z) =
∞�

n=0

�
1

2πi

�

γ

f(w)

(w − z0)n+1
dw

�
(z − z0)

n
.

From Cauchy’s formula for derivatives (55), we note that this is exactly

f(z) =
∞�

n=0

f (n)(z0)

n!
(z − z0)

n
,

and the theorem is proved.

Strictly speaking, the proof above shows only that the expansion (58) is
one possible power series expansion of a given analytic function f about the
point z0. Unsurprisingly, however, the power series expansion of f about z0

is unique, as we will shortly prove.

Example 7.4 Find the Taylor series expansion of (a) f(z) = ez about z = a,
(b) f(z) = 1/z about z = 1.

For (a) we note that f (n)(z) = ez, ∀n, and so we have the Taylor series

f(z) =
∞�

n=0

ea(z − a)n

n!
. (62)

This power series is convergent for all z ∈ C (infinite radius of convergence).
Note that if a = 0 we get exactly the usual exponential power series, as we
would expect.

For (b) we have

f
(n)(z) = (−1)n

n!z−(n+1)
,

and thus the Taylor series about z = 1 is given by

f(z) =
∞�

n=0

(−1)n(z − 1)n
, (63)
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convergent for |z−1| < 1. Here we note that the function f can be rewritten
as

f(z) = z
−1 = (1 + (z − 1))−1

which, for |z − 1| < 1 can be expanded binomially to give exactly the result
(63). We will show soon that the power series expansion for an analytic
function about a given point is unique, so that if, by any means, we are able
to find a power series expansion of the function about the given point, then
that expansion must be its Taylor series. The above example (b) illustrates
this fact. Alternatively, once we know that the Taylor expansion is unique,
we can view example (b) as a proof that the binomial theorem is valid here.
Similarly for example (a) there are alternative ways to obtain the power series
– we could write ζ = z − a and ez = ea+ζ = eaeζ . Then use the definition of
eζ , to obtain the same result as (62).

Example 7.5 (Binomial expansion) Show that, for positive integers n, the
binomial expansion

(z + h)n =
n�

k=0

n!

(n− k)!k!
h

n−k
z

k

is valid for all z ∈ C.

Writing f(z) = (z+h)n, f(z) is analytic for all z ∈ C. Thus Taylor’s theorem
is applicable for all z ∈ C.

f
(k)(z) = n(n− 1) . . . (n− k + 1)(z + h)n−k =

n!

(n− k)!
(z + h)n−k

, k ≤ n

(f (n)(z) = n!), and

f
(k)(z) = 0, k > n.

By Taylor’s theorem then,

(z + h)n =
n�

k=0

f (k)(0)zk

k!
=

n�

k=0

n!

(n− k)!k!
h

n−k
z

k ≡
n�

k=0

n!

(n− k)!k!
z

n−k
h

k
.

This example shows that the “standard” binomial expansion holds good for
complex as well as real variables.
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The power series expansion in Taylor’s theorem 7.1 contains only positive
powers of (z − z0), reflecting the fact that the function f is analytic at the
point z0 (so the power series is well-behaved there). If we know only that f

is analytic in some annulus about z0, R1 ≤ |z − z0| ≤ R2, then we will see
that we can find a more general Laurent series expansion for f(z) on the
annulus, that contains both positive and negative powers of (z− z0). Clearly
any function whose power series expansion about z0 contains negative powers
of (z−z0) is singular at the point z0. We discuss singularities in detail below,
but first we note a couple of useful consequences of Taylor’s theorem 7.1.

The proof above demonstrates the uniform convergence of the Taylor
series about z0 for balls on which f is analytic. Therefore we are able to
differentiate the Taylor series term-by-term to obtain the Taylor series of the
derivative:

Theorem 7.6 (Termwise differentiation) If f(z) is analytic for |z−z0| < R,
given by the Taylor series (58), then the series obtained by differentiating the
Taylor series term-by-term converges uniformly to f � in |z − z0| < R.

Proof We know (corollary 6.2) that f analytic on |z − z0| < R implies
analyticity of f � on |z − z0| < R (and of all higher derivatives of f). Thus
Taylor’s theorem 7.1 applies to f �, giving its Taylor expansion as

f
�(z) =

∞�

n=0

f (n+1)(z0)

n!
(z − z0)

n
, (64)

uniformly convergent for |z − z0| < R by the arguments in the proof of 7.1.
On the other hand, termwise differentiation of the Taylor series for f about
z0 gives

d

dz

� ∞�

n=0

f (n)(z0)

n!
(z − z0)

n

�
=

∞�

n=1

f (n)(z0)

(n− 1)!
(z − z0)

n−1 =
∞�

n=0

f (n+1)(z0)

n!
(z − z0)

n
.

Hence the term-by-term differentiation of f gives the same result as direct
application of Taylor’s theorem to f �, as claimed.

Taylor’s theorem gives us a recipe for finding convergent power series ex-
pansions of given analytic functions. It is also useful to be able to deduce
properties of a given power series. The following theorem tells us that, where
a given power series in z is uniformly convergent, it necessarily defines an
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analytic function; and within its region of uniform convergence it may (like a
Taylor series) be differentiated term-by-term to obtain the function’s deriva-
tive.

Theorem 7.7 If the power series defined by

f(z) =
∞�

n=0

bn(z − z0)
n (65)

converges uniformly for |z − z0| < R then it is analytic on this disk, and
can be differentiated termwise to obtain a uniformly convergent series for
|z − z0| < R.

Proof For the proof we take z0 = 0 for simplicity, noting that the result is
easily extended to general z0 by a shift of origin. Let g(z) be the power series
defined by

g(z) =
∞�

n=1

nbnz
n−1 =

∞�

n=1

gn(z). (66)

Then g(z) has the same radius of convergence as f(z), because if we take
z ∈ B(0; R) and ρ ∈ (|z|, R), then

|gn(z)| = |nbnz
n−1| =

n

|z|

�
|z|
ρ

�n

|bnρ
n|.

The series
�

n(|z|/ρ)n converges for |z| < ρ, by the ratio test for real series.
Therefore its terms (which are all positive) are all bounded, n(|z|/ρ)n ≤ M

say, for some M > 0. Then

|gn(z)| ≤ M

|z| |bnρ
n|,

and so
�

gn(z) is absolutely convergent for 0 < |z| < R, by the comparison
test. The absolute convergence of the series

�
n gn(z) for z = 0 is immediate

from setting z = 0 in the sum; thus we have absolute convergence for all |z| <

R. We note that the same argument applied to the power series
�

n gn(z)
also guarantees absolute convergence of

�∞
n=2 n(n − 1)bnz

n−2 on B(0; R), a
result we shall use below.
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We must now show the analyticity of the general power series (65) within
its radius of convergence: we shall show that f �(z) exists and is given by
g(z). Let z, z + h ∈ B(0; R), then

����
f(z + h)− f(z)

h
− g(z)

���� =

�����

∞�

n=1

bn

�
(z + h)n − zn

h
− nz

n−1

������

(the term in n = 0 is identically zero). By the binomial expansion (example
7.5), the term (z + h)n on the right-hand side here can be written

(z + h)n =
n�

k=0

�
n

k

�
z

n−k
h

k
,

giving

f(z + h)− f(z)

h
− g(z) =

1

h

∞�

n=1

bn

�
n�

k=0

n!

(n− k)!k!
h

k
z

n−k − z
n

�
−

∞�

n=1

bnnz
n−1

=
∞�

n=1

bn

n�

k=1

n!

(n− k)!k!
h

k−1
z

n−k −
∞�

n=1

bnnz
n−1

=
∞�

n=1

bn

n�

k=2

n!

(n− k)!k!
h

k−1
z

n−k

= h

∞�

n=1

bn

n�

k=2

�
n

k

�
z

n−k
h

k−2

⇒
����
f(z + h)− f(z)

h
− g(z)

���� = |h|

�����

∞�

n=1

bn

n�

k=2

�
n

k

�
z

n−k
h

k−2

�����

≤ |h|
∞�

n=1

n(n− 1)

2
|bn|

n−2�

m=0

�
n− 2

m

�
|z|n−2−m|h|m

≤ |h|
∞�

n=1

n(n− 1)

2
|bn|(|z| + |h|)n−2

, (67)

where we used the result�
n

k

�
=

n(n− 1)(n− 2)!

k(k − 1)(n− k)!(k − 2)!
=

n(n− 1)(n− 2)!

(m + 2)(m + 1)(n− 2−m)!m!

≤ n(n− 1)

2

�
n− 2

m

�
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with m = k − 2 ≥ 0. Choosing ρ ∈ (|z|, R), we now recall that, as shown
above,

�∞
n=2 n(n − 1)|bn|ρn−2 converges (to K, say). It follows that for

|h| < ρ− |z|,
����
f(z + h)− f(z)

h
− g(z)

���� ≤
|h|
2

∞�

n=1

n(n− 1)|bn|ρn−2 ≤ K|h|
2

.

Hence f �(z) exists and equals g(z), as claimed.

Note The above proof can be easily adapted to the power series (65) for
arbitrary z0 �= 0.

Corollary 7.8 The power series defined by (65), with radius of convergence
R > 0, has derivatives of all orders within B(z0; R). In particular, f (n)(z0) =
n!bn.

It is immediate from this corollary that the coefficients in a power series
expansion are unique. In particular, the Taylor series expansion of theorem
7.1 is unique.

7.1.1 Taylor expansion about infinity

The foregoing discussion implicitly assumed that we are dealing with the
Taylor series expansion of a function about some finite point a ∈ C, but
the ideas are applicable to the point at infinity also. To obtain the Taylor
series of a function about infinity, we simply write ζ = 1/z and the Taylor
expansion about ζ = 0 then provides the appropriate Taylor series at infinity.

Example 7.9 Find the Taylor series expansions of (a) f(z) = e1/z and (b)
f(z) = (az − b)/(cz − d) about the point z =∞.

For (a), note that f(ζ) = eζ =
�∞

n=0 ζn/n! gives the Taylor series about
ζ = 0 (infinite radius of convergence). Therefore the Taylor series of f about
z =∞ is

f(z) = e
1/z =

∞�

n=0

1

znn!
.

93



For (b), writing ζ = 1/z gives

f(ζ) =
a− bζ

c− dζ
= c(a− bζ)(1− dζ

c
)−1 = c(a− bζ)

∞�

n=0

�
dζ

c

�n

= ac

∞�

n=0

�
d

c

�n

ζ
n − bc

∞�

n=0

�
d

c

�n

ζ
n+1

= ac +
∞�

n=1

�
d

c

�n−1

(ad− bc)ζn
.

This power series converges absolutely for |ζ| < |c/d|. Thus the Taylor series
of the function about infinity is

f(z) = ac +
∞�

n=1

�
d

c

�n−1

(ad− bc)z−n
,

convergent for |z| > |d/c|.

Example 7.10 Can we find the Taylor expansion of the function ez about
z =∞?

Again we write ζ = 1/z, then the power series expansion of e1/ζ about ζ = 0
is what we need. However, e1/ζ is not analytic in any neighborhood of ζ = 0!
Taylor’s theorem is not applicable, and there is no Taylor series expansion of
ez at z =∞ – the function is not analytic there.

Multiplication of power series

We conclude this section by noting that two power series may be multiplied
together within the radius of convergence of both, to get a single uniformly
convergent power series. This result is familiar from real analysis. We can
justify the procedure here by noting that, if we have two power series that
are uniformly convergent on some common domain |z| < R, then each of
these series defines a function analytic on |z| < R, by theorem 7.7:

f(z) =
∞�

n=0

fnz
n
, g(z) =

∞�

n=0

gnz
n
, f , g analytic on |z| < R.

The product of these functions, f(z)g(z), is then also analytic on |z| ≤ R

(the product of two analytic functions is another analytic function – Exercise:
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prove this from first principles) which, by Taylor’s theorem 7.1, has a power
series expansion

f(z)g(z) =
∞�

n=0

(fg)nz
n
,

absolutely convergent on |z| < R, where the coefficients (fg)n are given by
the usual formula in theorem 7.1. We then have

∞�

n=0

(fg)nz
n =

� ∞�

n=0

fnz
n

� � ∞�

n=0

gnz
n

�
, |z| < R.

Comparison of terms on left- and right-hand sides here then gives the usual
formula

(fg)n =
n�

r=0

frgn−r

for the coefficient of zn, using the fact that the power series (Taylor series)
expansion of an analytic function is unique.

7.2 Zeros of analytic functions

It is often important to know where a given analytic function vanishes on
its domain of analyticity, as this can have implications for singularities of
related functions, and knowledge of zeros can even sometimes tell us that
a function vanishes identically on a domain (see the Identity theorem 7.13
below). Taylor’s theorem gives a straightforward way of characterizing zeros
of an analytic function f .

Definition 7.11 (Order of a zero) Suppose f is analytic at a ∈ C, and
f(a) = 0. We say that a is a zero of order m if

0 = f(a) = f
�(a) = . . . = f

(m−1)(a) and f
(m)(a) �= 0.

A zero of order 1 is usually called a simple zero.

This is a sensible definition since the Taylor series for such a function about
z = a takes the form

f(z) =
∞�

n=m

cn(z − a)n = (z − a)m
∞�

n=0

cn+m(z − a)n
, (68)
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where cn = f (n)(a)/n!, and cm �= 0. An alternative characterization of a zero
of order m that can be useful is given by the following:

Lemma 7.12 Suppose f is analytic on a domain D ⊂ C. Then f has a zero
of order m at a ∈ D if and only if ∃ δ > 0 and g analytic and nonzero on
B(a; δ) such that

f(z) = (z − a)m
g(z).

Proof f(z) is analytic at a ∈ D and thus it has a Taylor series expansion
about z = a that converges uniformly on the largest disk B(a; r) ⊂ D. If f

has a zero of order m at a ∈ D then by (68) we have

f(z) = (z − a)m
g(z), where g(z) =

∞�

n=0

cn+m(z − a)n
, cm �= 0.

Clearly g(a) �= 0, and by analyticity of f and convergence of its Taylor
series, the series defining g also converges uniformly on B(a; r). By theorem
7.7 then, g is analytic on B(a; r) (the above series representation is in fact
its Taylor series about z = a). It is thus also continuous at z = a, and so
given � > 0 ∃δ� > 0 such that

|g(z)− g(a)| < � when |z − a| < δ�.

Applying the triangle inequality in the form |g(z)− g(a)| ≥ ||g(z)| − |g(a)||
we then have

−� < |g(z)| − |g(a)| < � when |z − a| < δ�,

and so choosing � = |g(a)| > 0, and δ = min{δ�, r},

|g(z)| > 0 when |z − a| < δ.

This proves the result one way. The converse is easier; if f(z) has the assumed
representation in terms of g then the Taylor expansion of g must take the
form

g(z) =
∞�

n=0

cn+m(z − a)n
, cm �= 0,
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uniformly convergent on some B(a; δ), which gives

f(z) = (z − a)m
g(z) =

∞�

n=m

cn(z − a)n
, cm �= 0

as the unique Taylor expansion of f on B(a; δ). It follows then from the
definition 7.11, and from the definition of the Taylor coefficients in (58), that
f has a zero of order m at a.

7.2.1 Identity theorem for analytic functions

Once we know that an analytic function has a unique Taylor series expansion
about one of its zeros, valid within some disk, a straightforward corollary is
the following identity theorem:

Theorem 7.13 (Identity theorem) Suppose f(a) = 0 and f is analytic on
B(a; r) (r > 0). Then if Za,r(f), the set of zeros of f in B(a; r), has a limit
point in B(a; r), then f is identically zero in B(a; r).

An equivalent statement is, of course, that in such a disk, the zeros of the
analytic function f are isolated unless f is identically zero. The theorem has
several stronger variants, but we shall prove only this simplest case before
stating a stronger form and hand-waving.

Proof of theorem 7.13. By Taylor’s theorem, f has the (unique) power series
expansion

f(z) =
∞�

n=0

cn(z − a)n
, z ∈ B(a; r). (69)

Then there are two possibilities:
(i) All coefficients cn are zero, in which case f is identically zero on B(a; r).
(ii) There exists a smallest integer m > 0 such that cm �= 0. The series
g(z) :=

�∞
n=0 cn+m(z − a)n has radius of convergence R ≥ r. To see this,

recall theorem 7.7, where it was shown that a differentiated power series has
the same radius of convergence as the original power series. We use this
result for the power series (69), differentiated m times:

f(z) =
∞�

n=0

cn+m(z − a)n+m
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⇒ f
(m)(z) =

∞�

n=0

(n + m)(n + m− 1) . . . (n + 1)cn+m(z − a)n
,

together with the comparison test (the terms of g(z) have absolute value less
than or equal to those of f (m)(z), which we know converges).

Since g(a) �= 0 and g is continuous at a (theorem 7.2, or the stronger
theorem 7.7), g(z) �= 0 for z ∈ B(a; �), some � > 0. In the punctured ball
B�(a; �), f(z) = (z − a)mg(z) �= 0, so a is not a limit point of Z(f).

In conclusion, if a is a zero of f , then either f ≡ 0 on B(a; r) (some r > 0),
or a cannot be a limit point of zeros (that is, it is an isolated zero). The
theorem follows.

More generally, we have:

Theorem 7.14 (Identity theorem 2) Let f be analytic on a domain D. If
ZD(f), the set of zeros of f in D, has a limit point in D, then f ≡ 0 in D.

Equivalently: the zeros of an analytic function are isolated in a domain,
unless the function is identically zero. A handwaving proof of this theorem
follows the proof of theorem 7.13 above. Let a ∈ D be a zero of f , then
choose r > 0 to be the largest number such that B(a; r) ⊂ D (r always exists
since D is open). Then, as above, a is either an isolated zero, or else f is
identically zero on B(a; r) (in fact f ≡ 0 on B(a; r), by continuity). In the
latter case, we may choose another zero a1 of f from the edge of B(a; r) and
repeat the argument to show that f ≡ 0 on the largest ball centered on a1

and contained within D. Continuing in this way, we cover D with a sequence
of overlapping balls on each of which f ≡ 0, so that f ≡ 0 on D. The only
alternative to this is that each zero of f is isolated on D, so that we can
never deduce that f ≡ 0 on any ball contained within D.

This theorem has a useful corollary for analytic functions that are equal
on some subset of their domain of analyticity.

Corollary 7.15 Let f and g be functions analytic on some common domain
D, and suppose that f(z) = g(z) for z ∈ S ⊂ D, where S contains at least
one of its limit points. Then f(z) ≡ g(z) on D.

Proof Apply the identity theorem to the function F (z) = f(z)− g(z). F (z)
is analytic on D, and its set of zeros S contains a limit point. Thus F (z) ≡ 0
by theorem 7.14.
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We illustrate the results by example.

Example 7.16 Using the identity theorem, show that there exists a unique
analytic function f(z), defined on a domain D containing the origin, such
that

f

�
1

n

�
= (n2 − 1)−1 (70)

for all but finitely many n ∈ N. Give f(z).

Suppose there are two such functions, f1 and f2. Then g(z) = f1(z)− f2(z)
has zeros at points zn = 1/n for all but finitely many n ∈ N. It follows that 0
is a limit point of zeros of g in D. By the identity theorem 7.14 then, g ≡ 0
in D. The function f is therefore unique, and the only such function is

f(z) =
z2

1− z2

(replace n by 1/z in (70)).

Example 7.17 Let f(z) = u(x, y) + iv(x, y) be analytic on B(0; 1). Prove
that the function g(z) defined by

g(z) = f(z)− f(−z̄)

is analytic on B(0; 1). Show further that, if f takes real values on the imag-
inary axis, then

u(x, y) = u(−x, y), v(x, y) = −v(−x, y)

for all points (x, y) in B(0; 1).

The analyticity of g(z) follows once we’ve established that f(−z̄) is ana-
lytic on B(0; 1), and this can be done by appealing to the Cauchy-Riemann
equations, noting that f(−z̄) = f(−x + iy) = p(x, y) + iq(x, y), where
p(x, y) = u(−x, y), q(x, y) = −v(−x, y). The point (−x, y) lies in B(0; 1)
if and only if (x, y) does. Checking the Cauchy-Riemann equations for p and
q we find that

px(x, y) = −ux(−x, y) = −vy(−x, y) = qy(x, y),

py(x, y) = uy(−x, y) = −vx(−x, y) = −qx(x, y),
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where we used the Cauchy-Riemann equations for u and v. Thus, the Cauchy-
Riemann equations hold for the real and imaginary parts of f(−z̄), and so
this function is analytic on B(0; 1).

For the second part, observe that z = iy = −z̄ on the imaginary axis,
and thus on this line

g(z) = f(iy)− f(iy) = 0, −1 < y < 1,

since f(iy) ∈ R. The zeros of the analytic function g are not isolated; there-
fore by the identity theorem we have g(z) = 0 on its domain of analyticity,
as required.

The indentity theorem 7.14 (or the uniqueness corollary 7.15) allows certain
functional identities to be extended from subsets of C to larger subsets, or
the whole of C.

Example 7.18 The identity cos2 z + sin2
z = 1 holds for all z ∈ C.

We know the identity to hold for z ∈ R by results from real analysis. Writing
f(z) = sin2

z + cos2 z − 1 we have f(z) ≡ 0 for z ∈ R ⊂ C. Since R contains
limit points (every point of R is a limit point of itself), the identity theorem
tells us that f(z) ≡ 0 on C.

Example 7.19 (The binomial theorem for negative integers n) Show that,
for any negative integer n,

(1 + z)n =
∞�

k=0

n!

(n− k)!k!
z

k
, |z| ≤ 1.

We write

f(z) = (1 + z)n
, g(z) =

∞�

k=0

n!

(n− k)!k!
z

k
.

Clearly f is analytic except at z = −1, while the series defining g has radius of
convergence 1. By theorem 7.7 g then defines an analytic function on B(0; 1).
We know from real analysis that f(z) = g(z) when z ∈ R with z| < 1. The
uniqueness corollary 7.15 then tells us that f ≡ g for all z ∈ B(0; 1).

The result embedded in theorems 7.13, 7.14 and 7.15 represent an elemen-
tary form of a more general principle known as analytic continuation. The
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basic idea of analytic continuation is to take limited information about an
analytic function f (e.g. its values on some small subset, such as a line or
curve in C), and use this information to deduce the values of the function
in some larger set (even perhaps the whole complex plane). This concept,
which will be explored in more detail in Math 756, is linked to our ear-
lier observations about the connection between analytic functions and real
“harmonic conjugate” functions (see remarks following the Cauchy Integral
formula, theorem 6.1), though it is more general. We observed there that
the values of a harmonic function u on some boundary curve are sufficient
to determine uniquely its values inside the boundary curve (or even on one
side of a semi-infinite boundary curve, provided we impose suitable bounds
on the growth at infinity). Once we have the harmonic function then we
can determine its harmonic conjugate v, and hence construct the associated
analytic function f = u + iv. Since we need only the real (or imaginary)
part of the analytic function on a curve to construct the whole analytic func-
tion away from the curve, it should be no surprise that knowledge of both
real and imaginary parts are certainly sufficient to “continue” the analytic
function away from the curve (or other subdomain in question). In fact if
anything, one has to worry about the compatibility of the data on the subset
– as we saw earlier, the real and imaginary parts of f cannot be prescribed
arbitrarily on a boundary curve or subset of C.

7.3 The Open Mapping theorem, and Maximum prin-
ciples revisited

The identity theorem proved above can be used to prove an important re-
sult known as the Open Mapping Theorem: loosely-speaking, open sets are
mapped to open sets by analytic functions. We state and prove the theorem
for a function analytic on a domain D:

Theorem 7.20 (Open Mapping Theorem) If f(z) is analytic and non-constant
on a domain D ⊂ C (open), then f(D) is open.

Proof Choose an arbitrary point a ∈ D, then f(a) ∈ f(D). To show that
f(D) is open we need to find a ball centered on f(a) that is contained within
f(D), that is, we must find �2 > 0 such that B(f(a); �2) ⊂ f(D).
By considering f(z) − f(a), we may assume that f(a) = 0 without loss of
generality. Since f is non-constant (and therefore not identically zero on
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D), the identity theorem 7.13 tells us that a is not a limit point of zeros.
Therefore, ∃δ > 0 such that B(a; 2δ) ⊂ D and f(z) �= 0 on B�(a; 2δ).
We next note that f(z) is analytic (thus continuous) on the compact set
represented by C(a; δ) (C(a; δ) = {z : |z − a| = δ} ⊂ B(a; 2δ)); and so it is
bounded and attains its bounds on C(a; δ). We let 2m > 0 be the minimum
of |f(z)| on C(a; δ).
We shall show that B(f(a) = 0; m) ⊂ f(D), proving that f(D) is open
(since a ∈ D was arbitrary). Let w ∈ B�(0; m), so 0 < |w| < m; and for
a contradiction, assume that w �= f(z) for any z ∈ D. Then in particular,
w �= f(z) for any z ∈ B(a; 2δ), and so the function

h(z) =
m

f(z)− w

is analytic on B(a; 2δ). On C(a; δ) we have |f(z) − w| ≥ |f(z)| − |w| >

2m − m = m, and so |h(z)| ≤ 1. By the maximum principle theorem 6.5
then, |h(a)| ≤ 1 also. But

h(a) =
m

−w
⇒ |h(a)| > 1,

giving the required contradiction. Hence B(0; m) ⊂ f(B(a, 2δ)) ⊂ f(D).

Note that this result is not true for infinitely differentiable real-valued
functions f(x). A simple counterexample is given by the function f(x) = x2,
which maps the open interval (−1, 1) to [0, 1), which is not open.

Example 7.21 The function f(z) = zz̄ takes the unit ball, B(0; 1), onto the
real interval 0 ≤ �(f(z)) < 1, �(f(z)) = 0. This is not an open subset of C,
since we cannot fit an open ball that lies within the set around any point of
the set. Therefore f cannot be analytic on B(0; 1) (as we already knew).

It is also true that analytic functions map compact sets to compact sets in
C – but note that we cannot prove this simply by taking complements in
the open mapping theorem. While it is true that Dc is closed if and only
if D is open, we have no guarantee that f(D)c = f(Dc); and indeed this is
not true in general. For example, the simple function f(z) = z(z − 2) takes
both points z = 0 and z = 2 to the origin in the image plane. Therefore
for this function, taking D = B(0; 1), both f(D) and f(Dc) have a point in
common (the origin), and thus they are not complementary sets. We will not
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prove the result that compact sets are mapped to compact sets by analytic
functions.

The open mapping theorem allows us to give a very easy proof of the max-
imum modulus theorem 6.5 – which was used in proving the open mapping
theorem! The maximum modulus theorem (and its variants) has implications
for real harmonic functions, as we shall see. We now restate the theorem, in
a slightly different form, and give the simple proof.

Theorem 7.22 (Maximum modulus theorem for analytic functions, 2) (i) If
f is a non-constant analytic function on the domain D ⊂ C then |f(z)| has
no maximum in D.
(ii) If g is analytic on the bounded domain D ⊂ C and continuous on D =
D ∪ ∂D then ∃zmax ∈ ∂D such that |g(z)| ≤ |g(zmax)|∀z ∈ D.

Proof The open mapping theorem 7.20 guarantees that the image of a do-
main D under a non-constant analytic function f , f(D), is open. (In fact,
f(D) is a domain if D is a domain.)
(i) Let a ∈ D. Then f(a) ∈ f(D), and f(D), being open, contains a neigh-
borhood of f(a), and therefore a point of larger modulus.
(ii) Since the real function |g| is continuous on the closed bounded set D, |g|
has a maximum at some point zmax ∈ D,

|g(zmax)| = M = sup{|g(z)| : z ∈ D}.

If zmax ∈ D then g is constant by (i) (so it attains its maximum modulus
trivially on ∂D). Otherwise zmax ∈ ∂D.

Corollary 7.23 (Minimum modulus principle) If f(z) does not vanish on
the domain D ⊂ C then |f | attains its minimum value on the boundary ∂D.

Proof If f does not vanish on D then g(z) = 1/f(z) is analytic on D and
so, by theorem 7.22, attains its maximum modulus on the boundary ∂D (or
is constant, in which case the result follows trivially).

Corollary 7.24 (Maximum principle for the Laplace equation) A function
u(x, y) harmonic on a domain D attains both its maximum and minimum
values on the boundary ∂D.

103



Proof Since u is harmonic on D it is the real part of a function f(z) analytic
on D. The function g(z) = exp(f(z)) is also analytic and nonvanishing on
D, and so attains its maximum modulus and its minimum modulus on the
boundary ∂D. Since

|g(z)| = | exp(f(z))| = | exp(u + iv)| = exp(u),

it follows that u(x, y) must attain its maximum and minimum values on the
boundary ∂D. (Note that this last equality above makes it clear that g(z) is
nonvanishing on D.)

Note: the desired result can also be deduced from the maximum modu-
lus principle, theorem 7.22, alone, by consideration of the analytic function
exp(−f(z)) to show that u(x, y) attains its minimum value on the boundary.

Homework: Ablowitz & Fokas, Problems for Section 2.1, questions 4,5,7.

8 Laurent expansions

Taylor’s theorem, giving power-series expansions about a given point z0,
only applies to functions that are analytic in a disk about z0. If f fails
to be analytic at z0, but is analytic in some annular region about z0, then
a generalization of Taylor’s theorem may be found, in which negative as
well as positive powers of (z − z0) appear in the series expansion. Such a
series expansion for a function f is called a Laurent series. It is certainly
clear that such an expansion can be written down sometimes: consider for
example the function f(z) = ez2

/z2. We know that ez2
has a power series

expansion about the origin z = 0 that converges uniformly ∀z ∈ C, given by�∞
n=0 z2n/n!. Therefore

f(z) =
1

z2

∞�

n=0

z2n

n!
=

∞�

n=−1

z2n

(n + 1)!
.

The expansion contains negative powers of z and is clearly divergent at z = 0,
as we would expect. It is, however, convergent on any annulus about the
origin, if we cut out a small disk around z = 0. Such an expansion represents
a generalization of the Taylor expansion for analytic functions. The following
theorem guarantees that such a generalized power series expansion can always
be found for functions that are analytic on some annular domain.
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8.1 Laurent’s theorem

Theorem 8.1 (Laurent series) A function f(z) analytic in an annulus R1 ≤
|z − z0| ≤ R2 may be written as

f(z) =
∞�

n=−∞
Cn(z − z0)

n (71)

in R1 ≤ |z − z0| ≤ R2, where

Cn =
1

2πi

�

γ

f(w)dw

(w − z0)n+1
(72)

and γ is any simple closed contour lying within the region of analyticity and
enclosing the inner boundary |z − z0| = R1. This series representation for f

is unique, and converges uniformly to f(z) for R1 < |z − z0| < R2.

Definition 8.2 (Residue) The coefficient of the term (z− z0)−1 in the Lau-
rent expansion, C−1, is known as the residue of the function f at z0.

Definition 8.3 (Principal part) The singular part of the Laurent expansion,�−1
n=−∞Cn(z − z0)n, is known as the principal part of the Laurent expan-

sion.

Remark In the case that f is analytic on the whole disc |z| ≤ R2 it is easily
checked, using Cauchy’s formula for derivatives (55) for n ≥ 0, and Cauchy’s
theorem 5.10 for n < 0, that the Laurent expansion (71) for f reduces to the
Taylor expansion (58).

Proof (of theorem 8.1) We take circular contours γ1 = C(z0; R1) and γ2 =
C(z0; R2), and introduce a cut between them. Denoting by γ12 the cut fol-
lowed from γ1 to γ2, and by γ21 the cut from γ2 to γ1, f is analytic on the
region D enclosed by the contour γ = γ2 ∪ γ21 ∪ γ1 ∪ γ12. Applying Cauchy’s
integral theorem 6.1 to f(z) on this region, the line integrals along the two
cuts cancel (being taken in opposite directions) and thus for any point z

within D we have

f(z) =
1

2πi

�

γ2

f(w) dw

w − z
− 1

2πi

�

γ1

f(w)

w − z
. (73)
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In the first integral we have |z − z0| < |w − z0| for any w ∈ γ2, and thus

1

w − z
=

1

(w − z0)− (z − z0)
=

1

(w − z0)
�
1− z−z0

w−z0

�

=
1

w − z0

∞�

j=0

�
z − z0

w − z0

�j

, (74)

where the sum is uniformly convergent. In the second integral (around γ1)
in (73), on the other hand, we have |w − z0| < |z − z0| for any w ∈ γ1, and
thus

− 1

w − z
=

1

(z − z0)− (w − z0)
=

1

(z − z0)
�
1− w−z0

z−z0

�

=
1

z − z0

∞�

j=0

�
w − z0

z − z0

�j

; (75)

again the sum converges uniformly. Using (74) and (75) in (73) gives

f(z) =
1

2πi

�

γ2

∞�

j=0

(z − z0)j

(w − z0)j+1
f(w) dw +

1

2πi

�

γ1

∞�

j=0

(w − z0)j

(z − z0)j+1
f(w) dw. (76)

The sums and integrals can be interchanged, by theorem 7.3. We also relabel
in the second sum, writing j = −(m + 1), for m running from −∞ to −1.
Then (76) becomes

f(z) =
∞�

j=0

�
1

2πi

�

γ2

f(w) dw

(w − z0)j+1

�
(z − z0)

j +

−1�

m=−∞

�
1

2πi

�

γ1

f(w) dw

(w − z0)m+1

�
(z − z0)

m
.

Finally, noting that the integrand in all cases is analytic within D, we can
use theorem 5.11 to replace each of γ1 and γ2 by an arbitrary contour lying
between γ1 and γ2, giving

f(z) =
∞�

j=−∞

�
1

2πi

�

γ

f(w) dw

(w − z0)j+1

�
(z − z0)

j ≡
∞�

j=−∞

Cj(z − z0)
j
,
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as claimed.

Remark From the form of the Laurent expansion and our knowledge of the
properties of power series, it is clear that the function f is analytic at the
point z0 if and only if all the Laurent coefficients Cj for j < 0 are zero. If
some Cj �= 0 for j < 0 then f is unbounded at z0, and cannot be analytic
there. For such singular functions, the Laurent expansion can be used to
classify the type of singularity, as we discuss in §8.2 below.

We first prove that the Laurent expansion derived above is unique.

Theorem 8.4 (Uniqueness of Laurent expansion) Suppose f is analytic on
the annulus R1 ≤ |z − z0| ≤ R2, and that it has a uniformly convergent
expansion

f(z) =
∞�

n=−∞
Bn(z − z0)

n
, R1 ≤ |z − z0| ≤ R2. (77)

Then Bn = Cn for all n, where Cn is defined by (72).

Proof Assume z0 = 0 for simplicity (the proof easily generalizes). Let R1 <

r < R2, then

2πiCn =

�

C(0;r)

f(w)w−(n+1)
dw =

�

C(0;r)

∞�

k=−∞

Bkw
k−n−1

dw

=

�

C(0;r)

∞�

k=0

Bkw
k−n−1

dw +

�

C(0;r)

∞�

m=1

B−mw
−m−n−1

dw.

By the results on uniform convergence of power series (theorem 7.2 and its
corollary 7.3) summation and integration can be interchanged in each of these
two power series to give

2πiCn =
∞�

k=−∞

Bk

�

C(0;r)

w
k−n−1

dw = 2πiBn

(it is easily shown by parametric integration that
�

C(0;r) wk−n−1dw = 2πiδkn).
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This theorem is useful because in general it is very difficult to evaluate the
Laurent coefficients using the formula (72) derived in the theorem 8.1. How-
ever, the uniqueness result assures us that if by any other means we can find
a valid Laurent expansion for the given function f , then by uniqueness, this
expansion must be the unique Laurent expansion for f .

We now consider a few examples to illustrate.

Example 8.5 Discuss Laurent expansions of the function f(z) = 1/[z(1 −
z)].

This function has singularities at z = 0 and at z = 1, so f will not be analytic
in any disk containing either of these points. Considering first the singular
point at z = 0, the function is analytic in two distinct annuli: A1 = {z : 0 <

|z| < 1}, and A2 = {z : |z| > 1}. We can write f as

f(z) =
1

z
+

1

1− z
,

and the second term here is actually analytic on A1, with power series ex-
pansion given by the usual binomial representation; therefore

f(z) = z
−1 +

∞�

n=0

z
n
.

By uniqueness, this must be the Laurent series for f on A1:

f(z) =
∞�

n=−1

z
n
, z ∈ A1.

On A2 we have

1

1− z
=

−1

z(1− z−1)
= −z

−1(1− z
−1)−1

,

and the final bracketed term here can again be binomially expanded since
|z|−1 < 1 on A2. Then

f(z) =
1

z
+

1

1− z
= z

−1 − z
−1

∞�

n=0

z
−n = −

−2�

k=−∞

z
k
, z ∈ A2.
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If we had not noted the partial fraction decomposition we could still obtain
the Laurent expansion quite easily, noting that on A1

f(z) =
1

z(1− z)
= z

−1(1− z)−1 = z
−1

∞�

n=0

z
n =

∞�

n=−1

z
n
,

uniformly convergent for z ∈ A1; and on A2,

f(z) =
1

z(1− z)
= z

−1(1− z)−1 = −z
−2(1− z

−1)−1 = −z
−2

∞�

n=0

z
−n =

−2�

n=−∞
z

n
,

uniformly convergent for z ∈ A2.
We can also find Laurent expansions about the singular point z = 1,

noting that f is analytic in annuli A3 (0 < |z − 1| < 1), and A4 (|z − 1| > 1)
about z = 1. We can either start from the partial fraction decomposition, or
take the direct approach as above. Then on the annulus A3,

f(z) =
1

z(1− z)
= −(z − 1)−1(1 + (z − 1))−1

= −(z − 1)−1
∞�

n=0

(−1)n(z − 1)n

=
∞�

n=−1

(−1)n(z − 1)n
,

uniformly convergent for z ∈ A3. For z ∈ A4, the direct approach gives

f(z) =
1

z(1− z)
= −(z − 1)−1(1 + (z − 1))−1

= −(z − 1)−2(1 + (z − 1)−1)−1

= −(z − 1)−2
∞�

n=0

(−1)n(z − 1)−n

=
−2�

n=−∞
(−1)n+1(z − 1)n

uniformly convergent on |z − 1| > 1 (region A4).

Example 8.6 Find a Laurent series expansion for the function tan z, about
z = π/2.
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Writing u = z − π/2 we have

f(z) =
sin z

cos z
=

sin(π/2 + u)

cos(π/2 + u)
= −cos u

sin u
= −

�∞
n=0

(−1)nu2n

(2n)!�∞
n=0

(−1)nu2n+1

(2n+1)!

= −1

u

�∞
n=0

(−1)nu2n

(2n)!�∞
n=0

(−1)nu2n

(2n+1)!

= −1

u

�
1− u2

2!
+

u4

4!
+ · · ·

� �
1− u2

3!
+

u4

5!
+ · · ·

�−1

= −1

u

�
1− u2

2!
+

u4

4!
+ · · ·

� �
1 +

u2

3!
+ u

4

�
− 1

5!
+

1

(3!)2

�
+ · · ·

�

= −1

u

�
1− u2

3
+ u

4

�
1

(3!)2
− 1

5!
+

1

4!
− 1

2!3!

�
+ · · ·

�
.

Setting u = z − π/2 in here we obtain the desired Laurent expansion.

Example 8.7 Find a Laurent series expansion of the function f(z) = e−1/z2
.

Considered as a real function of a real variable z = x, although (strictly
speaking) it is singular at x = 0, this function can be plotted for all real
x and is actually very smooth, approaching zero exponentially as x → 0.
However in the complex plane it is very badly-behaved as z → 0, because if
we consider z = iy, y → 0, we have −1/z2 = 1/y2 → +∞, so that e−1/z2

blows up exponentially as z → 0 along the imaginary axis. This bad behavior
is reflected in its Laurent series expansion which, for z �= 0, can be obtained
from the usual power series representation of the exponential function:

e
−1/z2

=
∞�

n=0

(−1)nz−2n

n!
=

0�

n=−∞

(−1)nz2n

|n|! ,

uniformly convergent for any z �= 0. Hence this expansion is valid for |z| > R

for any R > 0.

Example 8.8 Find a Laurent series expansion of the function

A(z) =

� ∞

z

e−1/w

w2
dw (78)

about z = 0, valid on |z| > R, R > 0.
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The function e−1/w in the integrand has a Laurent expansion convergent on
any |z| > R as above:

e
−1/w =

∞�

n=0

(−1)nw−n

n!
,

and thus

e−1/w

w2
=

∞�

n=0

(−1)nw−(n+2)

n!

also uniformly convergent on |z| > R for any R > 0. By theorem 7.3 then,
we can interchange the order of summation and integration in the definition
of A(z) and integrate term-by-term, to find

A(z) =
∞�

n=0

(−1)n

n!

� ∞

z

w
−(n+2)

dw

=
∞�

n=0

(−1)n+1

(n + 1)!
[w−(n+1)]∞z

=
∞�

n=0

(−1)n

(n + 1)!
z
−(n+1)

=
−1�

−∞

(−1)n+1

|n|! z
n
.

Looking at the third equality above we see that

A(z) = −
∞�

1

(−1)n

n!
z
−n = 1−

∞�

0

(−1)n

n!
z
−n = 1− e

−1/z
, (79)

suggesting that we could have evaluated the integral explicitly; and indeed
we see that differentiation of each of (78) and (79) leads to the same result,
A�(z) = −e−1/z/z2.

This procedure does not always work – for example, consider the function
E(z) defined by

E(z) =

� ∞

z

e−w

w
dw.

The integral is convergent, but the above procedure leads to divergent inte-
grals.
Homework: Ablowitz & Fokas, problems for §3.3, questions 2,3,5.
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8.2 Singular points

We begin by discussing the simplest kind of functional singularities: where
the function f(z) is analytic on some punctured disk about z0 (0 < |z−z0| <

R for some R > 0), but is not analytic at z0 itself. Such a singular point z0 is
known as an isolated singular point of f . (Branch points are not isolated
singular points.) There are several types of such isolated singular points.
(i) If z0 is an isolated singular point of f at which |f | is bounded (i.e. there
is some M > 0 such that |f(z)| ≤M for all |z| ≤ R) then z0 is a removable
singularity of f . Clearly, all coefficients Cn with n < 0 must be zero
in the Laurent expansion (71), thus f in fact has a regular power series
expansion f(z) =

�∞
n=0 Cn(z − z0)n valid for 0 < |z − z0| < R. Since

this power series converges at z = z0 it follows that if we simply redefine
f(z0) = C0 then f is analytic on the whole disc |z − z0| < R, with Taylor
series f(z) =

�∞
n=0 Cn(z − z0)n.

Example 8.9 The function f(z) = sin z/z has a removable singularity at
z = 0. Strictly speaking this function is undefined at zero, but it has Laurent
series

f(z) =
∞�

n=0

(−1)nz2n

(2n + 1)!
, |z| > 0,

so z = 0 is a removable singularity of f , which we remove by defining f(0) =
1.

Example 8.10 The function

f(z) =
ez2 − 1− z2

z4

has a removable singularity at z = 0. It is undefined at z = 0, but has
Laurent expansion

f(z) =
∞�

n=0

z2n

(n + 2)!
, |z| > 0,

so redefining f(0) = 1 removes the singularity.
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(ii) If f(z) can be written in the form

f(z) =
g(z)

(z − z0)N

where N is a positive integer and g(z) is analytic on |z − z0| < R with
g(z0) �= 0, then the point z0 is a pole of order N (a simple pole if N = 1).
Clearly f(z) is unbounded as z → z0.

Example 8.11 The function

f(z) =
e2z − 1

z2

has a simple pole at z = 0.

Its Laurent expansion is given by

f(z) =
∞�

n=−1

2(n+2)zn

(n + 2)!
,

so the residue at z = 0 is C−1 = 2.

Example 8.12 The function f(z) = 1/ sinh z has a simple pole at z = 0.

The Laurent expansion is found from inverting the Taylor expansion of sinh z:

f(z) =

�
z +

z3

3!
+

z5

5!
+ · · ·

�−1

=
1

z

�
1 +

z2

3!
+

z4

5!
+ · · ·

�−1

=
1

z

�
1− z2

3!
− z4

5!
+

z4

(3!)2
+ · · ·

�
,

so the residue at z = 0 is 1.

Functions having poles as their only singularities are known as meromor-
phic.
(iii) An isolated singular point that is neither removable nor a pole is called
an essential singular point. The Laurent expansion of the function about
such a singular point is non-terminating for n < 0, that is, there is no positive
integer N such that C−n = 0 for all n > N .
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Example 8.13 The function

f(z) = e
1/z2

with Laurent expansion f(z) =
0�

n=−∞

z2n

|n|!

has an essential singularity at z = 0. It is analytic on the rest of the complex
plane, and the Laurent series converges uniformly everywhere except z = 0.

Other types of non-isolated singularities include branch points and cluster
points. From the definition 3.26 we already know that a multi-function
with branch points cannot be analytic in any punctured disk surrounding
the branch point (although sometimes an analytic branch of the function
may be constructed in an annular region surrounding two or more branch
points – recall, for example, the composite square-root function f(z) = [(z−
a)(z − b)]1/2 considered in §3.6.1).

A function with a cluster point singularity is one that is singular at points
an ∈ C, where an is a convergent complex sequence. The limit of the sequence
will be a cluster point singularity of the function.

Homework: Review your notes on branch points, branch cuts and multi-
functions.

The residue of a function at a singular point is very important in contour
integral applications, as we’re about to see. Therefore we need ways to
evaluate this quantity quickly and easily for a given function. The following
theorem gives one easy way to extract the residue at a singularity:

Theorem 8.14 (Evaluating residues at poles) If f(z) has a pole of order k

at z = z0 then

Res(f(z), z0) =
1

(k − 1)!
lim
z→z0

dk−1

dzk−1
((z − z0)

k
f(z)) (80)

Proof Direct manipulation of the Laurent expansion of f about z0,

f(z) =
∞�

n=−k

Cn(z − z0)
n

yields the result for Res(f(z), z0) = C−1.
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Homework: Ablowitz & Fokas, problems for section 2.1, question 3.
Ablowitz & Fokas, problems for section 3.2, question 2(b),(f), 6(c).
Ablowitz & Fokas, problems for section 3.3, question 4.
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9 Cauchy’s Residue Theorem

9.1 Preliminaries: Motivation

We have seen that Cauchy’s theorem is a very powerful result that applies to
functions analytic on a domain in C. However, we also now know that many
functions are not analytic, and have singularities of various kinds within
the domain of interest. We need to be able to evaluate integrals involving
non-analytic functions too (after all, it would be quite boring if the answer
were always zero). Cauchy’s residue theorem enables us to evaluate many
such integrals around closed contours, sometimes even where functions have
infinitely many singularities within the contour of integration.

There are many reasons why we might want to perform integration of
complex functions around contours in the complex plane. A very common
application of such contour integration arises in the inversion of Laplace
(and Fourier) transforms, which can be used to solve many ordinary and
partial differential equations (and which are considered in detail in Math
756). A more commonplace application of complex contour integration is
in the evaluation of certain real integrals that are hard to do by standard
methods from real calculus. We begin with an example of a real integral that
can be reduced to a contour integral.

Example 9.1 Evaluate I =
�∞

0 (1 + x4)−1dx.

Method 1: Try to think of a clever (real) substitution that reduces this
integral to one we can evaluate explicitly.
Method 2: Try to rewrite the (real) integral as a complex contour integral.
Methods from complex analysis can often be used to evaluate such integrals
quickly and easily.

Of course, we shall focus on method 2 here. Note that, considered as a
complex function, f(z) = 1/(1 + z4), the integrand has singularities (simple
poles, in fact) at the points z = ei(2k+1)π/4 (k = 0, 1, 2, 3) in C, so we should
make sure any contour of integration avoids these points. We note also that
by symmetry we have

I = lim
R→∞

� R

0

f(x)dx =
1

2
lim

R→∞

� R

−R

f(x)dx;
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and, recalling example 4.9, we would expect the integral of f(z) along a large
circular arc to go to zero as the arc radius R → ∞. We therefore consider
f(z) integrated around a semicircular contour γ composed of the real axis
from −R to R (this part will correspond to the integral we want), and a
semicircle in the upper half plane (this part will go to zero as R → ∞); see
figure 4. Parametrizing the semicircular contour in the usual way, z = Reiθ,
0 ≤ θ ≤ π, we have

lim
R→∞

�

γ

f(z) dz = 2

� ∞

0

f(x) dx + lim
R→∞

� π

0

iReiθdθ

1 + R4e4iθ
.

For the second term on the right-hand side we have
����
� π

0

iReiθdθ

1 + R4e4iθ

���� ≤
� π

0

R

R4 − 1
dθ =

πR

R4 − 1
→ 0 as R →∞.

Hence,
� ∞

0

dx

1 + x4
=

1

2
lim

R→∞

�

γ

dz

1 + z4
,

so if we can evaluate this contour integral then we have the value of the real
integral. The contour integral is not zero; Cauchy’s theorem does not apply
to this case because the contour contains singularities at z = eiπ/4, e3πi/4.
Cauchy’s Residue theorem will tell us how to evaluate such integrals.

Similar tricks can be used to convert real integrals involving trigonometric
functions to complex integrals around closed contours, in many instances.
Again, the procedure is best illustrated by example, but often the trick is to
consider an appropriate function integrated around the unit circle, using the
fact that z = eiθ on such a circle.

Example 9.2 Use a complex substitution to evaluate I =
� 2π

0 (1+8 cos2 θ)−1.

Note that on the contour, z = eiθ, z−1 = e−iθ, and thus 2 cos θ = z + z−1.
Also, dz = ieiθdθ, and so dθ = −idz/z. Then

I =

�

C(0;1)

−i dz

z(1 + 2z2 + 4 + 2/z2)
= −i

�

C(0;1)

z dz

2z4 + 5z2 + 2
.

If the complex integrand here was analytic on the unit disk (within the con-
tour) then Cauchy’s theorem would give a zero result immediately. However,
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Figure 4: The semicircular contour can be used to evaluate certain real
integrals from −∞ to ∞, or from 0 to ∞, as the circle radius R → ∞.

the denominator factorizes as 2z4 +5z2 +2 = (z2 +2)(2z2 +1), giving singu-
larities within C at z = ±i/

√
2. Again, if we know how to evaluate contour

integrals of functions with pole singularities, then we can evaluate the real
trigonometric integral. [From our discussion of Cauchy’s integral formula
(54) and Cauchy’s formula for derivatives (55) we know that we might be
able to evaluate the integral by decomposing the rational function as partial
fractions and applying those results, but this is unwieldy and we need a more
general method.]

9.2 The residue theorem

Such examples demonstrate (in part) the utility of evaluating complex con-
tour integrals with singularities. Cauchy’s residue theorem enables us to
do exactly that, for integrands that contain isolated singularities within the
integration contour.

We first state and prove a simple version of the theorem, framed as the
following lemma:

Lemma 9.3 (Function with a single pole within γ) Let f be analytic inside
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and on a simple closed (positively-oriented) contour γ, except at z0 ∈ γ where
it has an isolated singularity, with Laurent expansion

f(z) =
∞�

−∞
Cn(z − z0)

n
.

Then
�

γ

f(z) dz = 2πiC−1.

Proof Choose r > 0 such that B(z0; r) ⊂ I(γ). Then

�

γ

f(z) dz =

�

C(z0;r)

f(z) dz by the deformation theorem 5.11

=

�

C(z0;r)

∞�

n=−∞
Cn(z − z0)

n
dz

=
∞�

n=−∞
Cn

�

C(z0;r)

(z − z0)
n
dz by uniform convergence theorem 7.3

=
∞�

n=−∞
Cn

� 2π

0

r
n
e

inθ
ire

iθ
dθ

=
∞�

n=−∞
Cnr

n+1(2πiδn,−1)

= 2πiC−1.

Cauchy’s residue theorem is just a simple extension of this result.

Theorem 9.4 (Cauchy’s Residue Theorem) Let f be analytic inside and
on a positively oriented contour γ, except for a finite number of isolated
singularities at points z1, . . . zm ∈ I(γ). Then

�

γ

f(z) dz = 2πi

m�

k=1

Res(f(z); zk).
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Proof Let fk be the principal part of the Laurent expansion of f about each
zk. Then

g(z) = f(z)−
m�

k=1

fk(z)

has only removable singularities at each zk and so we remove them to define
an analytic function on I(γ). By Cauchy’s theorem 5.1,

�
γ g(z) dz = 0, and

thus
�

γ

f(z) dz =
m�

k=1

�

γ

fk(z) dz = 2πi

m�

k=1

Res(f(z); zk),

by lemma 9.3 applied to each fk.

9.3 Applications of the theorem to simple integrals

Returning to our earlier examples, we can now evaluate the required integrals.
In example 9.1 we need to evaluate

�

γ

dz

1 + z4
,

where γ is a large semicircular contour in the upper half plane. We know
that the integrand is singular at z = eiπ/4 and z = e3πi/4 inside the contour;
once we have evaluated the residue at these points we are done. Writing

f(z) =
1

(z − eiπ/4)(z − e3πi/4)(z − e−3πi/4)(z − e−iπ/4)

and using theorem 8.14 we easily find

Res(f(z); eiπ/4) =
1

(eiπ/4 − e3iπ/4)(eiπ/4 − e−3iπ/4)(eiπ/4 − e−iπ/4)

=
2
√

2

((1 + i)− (−1 + i))((1 + i)− (−1− i))((1 + i)− (1− i))

=
2
√

2

2.2(1 + i)2i
× i(1− i)

i(1− i)

=
i
√

2(1− i)

−8
,

120



and

Res(f(z); e3iπ/4) =
1

(e3iπ/4 − eiπ/4)(e3iπ/4 − e−3iπ/4)(e3iπ/4 − e−iπ/4)

=
2
√

2

((−1 + i)− (1 + i))((−1 + i)− (−1− i))((−1 + i)− (1− i))

=
2
√

2

−2.2i.(−2)(1− i)
× i(1 + i)

i(1 + i)

=
i
√

2(1 + i)

−8
.

Thus by Cauchy’s residue theorem 9.4 we have

� ∞

0

dx

1 + x4
=

1

2

�

γ

dz

1 + z4
= πi

�
i
√

2(1− i)

−8
+

i
√

2(1 + i)

−8

�
=

π
√

2

4
.

For our second example 9.2 we need
� 2π

0

dθ

1 + 8 cos2 θ
= 2π

�
Res(f(z); i/

√
2) + Res(f(z);−i/

√
2)

�
,

where f(z) = z/(2z4 + 5z2 + 2) = z/((z2 + 2)(2z2 + 1)). Writing

f(z) =
z

(z2 + 2)(
√

2z + i)(
√

2z − i)

and using theorem 8.14 we find

Res(f(z); i/
√

2) =
i/
√

2

(3/2)(2i)
=

1

3
√

2
,

and

Res(f(z);−i/
√

2) =
−i/

√
2

(3/2)(−2i)
=

1

3
√

2
,

so that finally
� 2π

0

dθ

1 + 8 cos2 θ
=

2π
√

2

3
.

When using complex contour integration to evaluate real integrals, the choice
of complex integration (function or contour) to make is not always absolutely
straightforward, as the following examples show.
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Example 9.5 Use complex contour integration and the residue theorem to
evaluate

� ∞

−∞

cos x

x2 + x + 1
dx.

The denominator here, considered as a complex function, has zeros at (−1±
i
√

3)/2, one in the upper half plane and one in the lower. Our first thought
might be to use the same large semicircular contour as above (figure 4),
simply replacing f(x) in the integrand by f(z), hoping that the integral along
the large circular arc ΓR again tends to zero as R →∞ so that the contour
integral gives the result we need. However, if we take f(z) = cos z/(z2+z+1)
then on the arc z = Reiθ = R(cos θ + i sin θ) (0 ≤ θ ≤ π) we have

2|f(z)| =

����
eiR(cos θ+i sin θ) + e−iR(cos θ+i sin θ)

R2e2iθ + Reiθ + 1

����

≥ eR sin θ − e−R sin θ

R2 + R + 1

∼ eR sin θ

R2
as R →∞,

and the integral does not go to zero as the semicircle goes to infinity, but
diverges exponentially. Taking a semicircle in the lower half-plane with π ≤
θ ≤ 2π does not help either, since then the other exponential dominates in
the numerator. So the ”obvious” choice does not work. (The same is true
of functions f(z) containing the sine function in the numerator, along large
circular arcs.) However, if instead we take

f(z) =
eiz

z2 + z + 1
,

whose real part, when z = x ∈ R, gives the integrand we need, then on ΓR

we have

|f(z)| =

����
eiR(cos θ+i sin θ)

R2e2iθ + Reiθ + 1

����

≤ e−R sin θ

R2 −R− 1

≤ 1

R2 −R− 1
on ΓR,
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and thus for this choice of f(z),
����
�

ΓR

f(z) dz

���� ≤
�

ΓR

R

R2 −R− 1
dθ → 0 as R →∞.

Putting this together, we have
� ∞

−∞

cos x

x2 + x + 1
= lim

R→∞
�

��

γ

eiz dz

z2 + z + 1

�

= �
�
2πiRes(f(z); (−1 + i

√
3)/2)

�
.

Using theorem 8.14, with the denominator of f factored as (z+(1+i
√

3)/2)(z+
(1− i

√
3)/2), we have

Res(f(z); (−1 + i
√

3)/2) =
eiz

z + (1 + i
√

3)/2

����
z=(−1+i

√
3)/2

=
e−
√

3/2(cos(1/2)− i sin(1/2))

i
√

3
,

and so
� ∞

−∞

cos x

x2 + 1 + 1
= �

�
2π√

3
e
−
√

3/2(cos(1/2)− i sin(1/2))

�
=

2π√
3

cos(1/2)e−
√

3/2
.

9.4 Jordan’s inequality and Jordan’s lemma

This is a very useful inequality from real analysis, that can often be applied
to contour integrals (as we shall see).

Lemma 9.6 (Jordan’s inequality) Let θ ∈ (0, π/2]. Then

2

π
≤ sin θ

θ
≤ 1. (81)

This inequality can be proved by taking a circle C(O; 1), of unit radius and
center O, and considering the geometry of a point P in the upper right
quadrant, where OP makes an angle θ with the horizontal diameter of the
circle, as sketched in figure 5. The perpendicular from P meets the horizontal
diameter at a point M , and the circle C(M ; sin θ) with center M and pass-
ing through P is also constructed (of radius sin θ). If A is the intersection of
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Figure 5: Geometric construction used in the proof of Jordan’s inequality.

C(O; 1) with the horizontal diameter, and B is the intersection of C(M, sin θ)
with the horizontal diameter, and Q is the reflection of P in this horizontal,
then the inequality is proved by noting that the length of the straight line
PQ (2 sin θ) is less than or equal to the arc length PAQ = 2θ, and the arc
length PAQ is less than or equal to the arc length PBQ = π sin θ (half the
circumference of circle C(M ; sin θ)).

This inequality can be used to prove a general result about integrals of an-
alytic functions along semicircular contours which, as we are seeing, arise
frequently in applications of the residue theorem.

Lemma 9.7 (Jordan’s Lemma) Suppose f(z) is a complex function that
tends to zero, uniformly in z, on the semicircular arc ΓR in the upper half
plane:

f(z)→ 0 for z ∈ ΓR as R →∞, where ΓR = {z : z = Re
iθ
, 0 ≤ θ ≤ π}.(82)

Then

lim
R→∞

�

ΓR

e
ikz

f(z) dz = 0 (k > 0). (83)
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Proof The condition on the limiting behavior of f means that on ΓR (z =
Reiθ) we have |f(z)| ≤ MR, where MR is independent of θ but depends on
R, and MR → 0 as R →∞. Defining

I =

�

ΓR

e
ikz

f(z) dz

we then have z = Reiθ, dz = iReiθ, and eikz = e−kR sin θ+ikR cos θ, so that

|I| ≤
� π

0

e
−kR sin θ

MRR dθ = 2MRR

� π/2

0

e
−kR sin θ

dθ.

We now apply Jordan’s inequality, sin θ ≥ 2θ/π, which holds on the range of
integration, to deduce that e−kR sin θ ≤ e−2kRθ/π for 0 ≤ θ ≤ π/2. Thus

|I| ≤ 2MRR

� π/2

0

e
−2kRθ/π

dθ =
MRπ

k
(1− e

−kR)→ 0 as R →∞,

because MR → 0 as R →∞.

Remark Note that if k < 0 in the integral then a similar result holds for
the contour Γ−R, the semicircle in the lower half plane.

Remark If the condition (82) in the statement of Jordan’s lemma 9.7 is
replaced by the stronger assumption |zf(z)| → 0 as |z| → ∞, then we do
not need to invoke the Lemma, as a straightforward estimate then gives the
result: since |eikz| = e−kRsinθ ≤ 1 (for k > 0, 0 ≤ θ ≤ π) we can say

����
�

ΓR

e
ikz

f(z) dz

���� ≤ |f(Re
iθ)|2πR → 0 as R →∞.

Observe, e.g., that we did not need Jordan’s lemma in example 9.5 (eval-
uation of cos x/(x2 + x + 1) from x = −∞ to ∞), because the function
1/(z2 + z + 1) decayed sufficiently fast as |z| → ∞. It decays as 1/R2, which
is enough to compensate for the factor of R that arises in the numerator from
the |dz|. If, however, we wished to evaluate the real integral

� ∞

−∞

x sin x

x2 + 1
dx
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then we do need the lemma, since a straightforward estimate will not give
the required decay in this case. Here we must consider the complex integral

�

γ

zeiz

z2 + 1
dz,

around the contour made up of ΓR and the straight-line segment along the
real axis from −R to R. The integrand has poles at z = ±i, and so the
Residue theorem gives the result as

�

γ

zeiz

z2 + 1
dz = 2πiRes(ze

iz
/(z2 + 1); i) = 2πi lim

z→i
(z − i)

zeiz

z2 + 1
=

πi

e
.

Thus,
� R

−R

xeix

x2 + 1
dx +

�

ΓR

zeiz

z2 + 1
dz =

πi

e
.

Since the function z/(z2 + 1) goes to zero uniformly on ΓR as R → ∞,
Jordan’s lemma 9.7 applies, and gives

����
�

ΓR

zeiz

z2 + 1
dz

����→ 0 as R →∞.

Thus,

lim
R→∞

� R

−R

xeix

x2 + 1
dx =

πi

e
,

and taking the imaginary part gives the result we seek,
� ∞

−∞

x sin x

x2 + 1
dx =

π

e
.

(Note that the real part gives
� ∞

−∞

x cos x

x2 + 1
dx = 0,

a result we could have deduced by symmetry considerations.)
It is important to remember when the “k < 0” generalization of Jordan’s

lemma is required, because then the contour of integration to be used changes,
and the residues must be taken from within the appropriate contour. The
following example (taken from Ablowitz & Fokas [1]) shows such a case:
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Example 9.8 Evaluate
� ∞

−∞

x sin ax cos bx

x2 + c2
dx, c > 0, a, b ∈ R.

We first note that the trigonometric identity

sin ax cos bx =
1

2
(sin(a− b)x + sin(a + b)x)

suggests considering the complex integrals

J1 =

�

γ1

zei(a−b)z

z2 + c2
dz and J2 =

�

γ2

zei(a+b)z

z2 + c2
dz,

around appropriate contours γ, since the integrands here can be summed to
give the result we want along the real axis. Suppose now for definiteness that
0 < a < b (leaving other cases for you to consider).

The contours of integration for each of J1 and J2 will be taken as large
semicircular contours; and we require Jordan’s lemma because a straight-
forward estimate of these integrals will not give convergence to zero on the
circular portion of the contour. We take the function f(z) = z/(z2+c2) in the
statement of the lemma 9.7. The application of the lemma follows straightfor-
wardly for J2, since k = a + b > 0; and therefore taking γ2 = Γ+

R ∪{[−R, R]}
and letting R →∞, we obtain

I2 :=

� ∞

−∞

xei(a+b)x

x2 + c2
dx = 2πiRes(ze

i(a+b)z
/(z2 + c

2); z = ic),

since there is just one pole of the integrand at z = ic within the contour γ2.
For J1 the quantity k = (a− b) < 0, giving exponential divergence of the

quantity eikz on the contour Γ+
R in the upper half plane as R →∞. However

(as already noted) returning to the proof of the lemma we see that with
k < 0, if we instead consider the contour Γ−R in the lower half plane, then the
integral along this semicircle will go to zero as R →∞. Hence here we take
our contour of integration γ1 = Γ−R ∪ {[R,−R]} (note that the requirement
for the contour to be positively oriented gives the line integral in the opposite
sense). Letting R → ∞ then, and applying the variant of Jordan’s lemma,
we obtain

−I1 :=

� −∞

∞

xei(a−b)x

x2 + c2
dx = 2πiRes(zei(a−b)z

/(z2 + c
2); z = −ic),
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since the only pole of the integrand inside γ1 is z = −ic. Putting these results
together then, the quantity we require is

I =
1

2
�(I1 + I2)

=
2π

2
�

�
−Res

�
zei(a−b)z

z2 + c2
; z = −ic

�
+ Res

�
zei(a+b)z

z2 + c2
; z = ic

��

= π

�
−ec(a−b)

2
+

e−c(a+b)

2

�

= −πe
−bc sinh(ac).

9.5 More complicated integration contours

There are many integrals we wish to evaluate for which a straightforward
choice of integration contour (such as the unit circle, or the large semicircle
in either lower or upper half-plane) will not give the result we need, even
with an imaginative choice of integrand f(z). In such cases we can sometimes
be more creative with the choice of contour and devise a complex contour
integral that can give the desired result; and we now consider several such
examples.

9.5.1 Avoiding a singularity on the integration contour by inden-
tation

If we wish to use residue calculus to evaluate improper integrals such as

I =

� ∞

0

sin x

x
dx,

then it can happen that the function we need to integrate has a singularity
somewhere on the contour of integration. For the example above we might
think to try the function f(z) = sin z/z integrated around a semicircular con-
tour (this function has only a removable singularity at the origin, so we can
define a convergent Taylor series expansion there, and the function is really
analytic); but as we saw above with the cosine function, the sine function
does not decay on the circular arc portion ΓR of such a contour (whether in
the upper or the lower half plane), but in fact grows exponentially as R →∞.
So, we have to try integrating f(z) = eiz/z, which decays exponentially on
ΓR as R → ∞, and whose imaginary part on the real axis, z = x ∈ R,
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is exactly the integrand we require. However, this function has a pole at
z = 0, and so we cannot take a contour of integration that passes through
the origin. The way around this difficulty is to use the basic semicircular
contour, but make a small semicircular indentation (of vanishingly small ra-
dius 0 < �� 1) around the pole at the origin. For such a contour γ we have,
with f(z) = eiz/z,

�

γ

f(z) dz =

� −�

−R

f(x) dx−
�

Γ�

f(z) dz +

� R

�

f(x) dx +

�

ΓR

f(z) dz = 0,

by Cauchy’s theorem, where Γ� is the semicircular contour of radius � in
the upper half-plane. The integrals along the straight-line portions of this
contour will give the result we seek, since in the limits � → 0, R → ∞ we
have

lim
�→0,R→∞

� R

�

f(z) dz =

� ∞

0

eiz

z
dz =

� ∞

0

cos x + i sin x

x
dx,

and

lim
�→0,R→∞

� −�

−R

f(z) dz =

� 0

−∞

eiz

z
dz =

� 0

∞

e−ix

x
dx =

� ∞

0

− cos x + i sin x

x
dx,

so that

lim
�→0,R→∞

�� R

�

+

� −�

−R

�
eiz

z
dz = 2i

� ∞

0

sin x

x
dx.

For the integral along the small semicircle we have z = �eiθ, so that
�

Γ�

eiz

z
dz =

� π

0

ei�(cos θ+i sin θ)

�eiθ
i�e

iθ
dθ → πi as �→ 0.

Finally, for the integral along the semicircular contour Γ+
R Jordan’s lemma

applies, giving
�

Γ+
R

eiz

z
dz → 0 as R →∞.

Putting all this together, we have
� ∞

0

sin x

x
dx =

π

2
.
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The above uses a special case of a general result when we indent a contour
of integration along a (vanishingly) small circular arc to avoid a singularity
in the integrand.

Lemma 9.9 Let f be analytic in some B�(a; r) (r > 0), with a simple pole
of residue b at z = a. Then with Γ� = {z : z = a + �eiθ, θ1 ≤ θ ≤ θ2}, we
have

lim
�→0

�

Γ�

f(z)dz = ib(θ2 − θ1).

Proof If f has a simple pole then by Laurent’s theorem 8.1, on B�(a; r) it
has the form

f(z) =
b

z − a
+ g(z), g(z) =

∞�

n=0

bnz
n
,

where g is analytic on B(a; r) (the regular part of the Laurent expansion
of f converges uniformly on B(a; r)). Thus, |g| is certainly bounded on the
compact set represented by Γ�: |g| ≤ M say, some M > 0. Then, using the
definition of Γ� we have

�

Γ�

f(z) dz = b

� θ2

θ1

i�eiθ

�eiθ
dθ +

� θ2

θ1

g(z)i�eiθ
dθ

= ib(θ2 − θ1) +

� θ2

θ1

g(z)i�eiθ
dθ.

Using the bound on g we have

����
� θ2

θ1

g(z)i�eiθ
dθ

���� ≤ �

� θ2

θ1

|g(z)|dθ ≤ �M(θ2 − θ1)→ 0 as �→ 0.

Note that this result does not generalize to the case of a stronger singularity,
such as a pole of higher order at z = a, as a glance at the proof easily shows.
However, sometimes we may be faced with an integral that appears to require
this generalization, such as the following:

� ∞

−∞

x− sin x

x3
dx.
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The real integrand has only a removable singularity at the origin (consider
the Taylor expansion of x− sin x about x = 0), but we know that we cannot
consider the integral of (z−sin z)/z3 around the large semicircle as this grows
exponentially on ΓR as R →∞. The preceding results suggest that we need
to consider the real part of the complex integrand f1(z) = (z + ieiz)/z3

which, along the real axis z = x ∈ R, gives the function we want. However,
the Laurent expansion of this function about z = 0 is

f1(z) =
1

z3

�
z + i

�
1 + iz − z2

2!
− iz3

3!
+ · · ·

��

=
i

z3

�
1− z2

2!
− iz3

3!
+ · · ·

�
,

which has a triple pole at z = 0, so a simple indentation of the contour as
in the lemma above will not work. We need to find some other function that
also has (x− sin x)/x3 as its real part, but that has at most a simple pole at
the origin, and such a function is

f(z) =
z + ieiz − i

z3
,

with Laurent expansion (from f1 above)

f(z) =
i

z3

�
1− z2

2!
− iz3

3!
+ · · ·

�
− i

z3

= − i

z

�
1

2!
+

iz

3!
+ · · ·

�

(thus we have just a simple pole of residue −i/2). We can integrate this
function around a large semicircle in the upper half-plane, with an indenta-
tion at the origin. The contribution along the portion Γ+

R will go to zero as
R →∞ (Jordan’s lemma and elementary bounds), and lemma 9.9 applies to
the small indentation, giving

lim
�→0

�

Γ�

f(z) dz → iπ
(−i)

2
=

π

2
.

Since f(z) has no singularities within the integration contour chosen, as
�→ 0, R →∞ we obtain (taking care to observe the sense of integration on
each portion of the contour)

π

2
=

�� 0

−∞
+

� ∞

0

� �
x− sin x

x3
+

i(cos x− 1)

x3

�
dx.
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Taking the real part gives the result we want (the imaginary part tells us
that the integral, interpreted in the principal-value sense, of the odd function
(cos x− 1)/x3 over the whole real line, is zero).

9.5.2 Integrals around ”sector” contours

In the preceding examples we have either been integrating functions along
the whole real line or, when seeking the integral over part of the real line (the
positive real axis), we have only considered functions such that the integral
along the negative real axis is the same as that along the positive real axis,
so that the results double up. We now consider a couple of examples where
this is not the case, but where taking an integral of an appropriate function
around a sector contour (possibly indented) can give us the result we want.

Example 9.10 Evaluate the improper integral
� ∞

0

cos x
2
dx.

We recognize the integrand as being the real part of f(z) = eiz2
on the

positive real axis, but if we use the usual semicircular contour then on Γ±
R

we have

|eiz2 | = e
−R2 sin 2θ

,

which does not decay exponentially over the whole contour for either choice
Γ+

R or Γ−R. We need to derive a variant of Jordan’s lemma 9.7 appropriate to
this integrand. Note that Jordan’s inequality (81) gives

2

π
≤ sin 2θ

2θ
≤ 1 for θ ∈ (0, π/4],

suggesting that we restrict the arc to a quarter of the usual,

ΓR,1/4 = {z : z = Re
iθ
, 0 ≤ θ ≤ π/4},

since on such an arc we have
�����

�

ΓR,1/4

f(z) dz

����� ≤
� π/4

0

e
−R2 sin 2θ

R dθ ≤ R

� π/4

0

e
−4R2θ/π

dθ =
π

4R
(1− e

−R2
)

→ 0 as R →∞.
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Figure 6: Sector contour of angle π/4 used in example 9.10.

Moreover, on the ray z = reiπ/4 we have f(z) = e−r2
, which we can integrate

from r = 0 to ∞. Thus taking the contour γ defined by

γ = {[0, R]} ∪ ΓR,1/4 ∪ {z : z = re
iπ/4

, 0 ≤ r ≤ R},

(see figure 6) we have f(z) analytic inside γ and so by Cauchy’s theorem,

0 = lim
R→∞

�

γ

f(z) dz =

� ∞

0

(cos x
2 + i sin x

2) dx−
� ∞

0

e
−r2

e
iπ/4

dr

⇒
� ∞

0

(cos x
2 + i sin x

2) dx =

� ∞

0

e
−r2

e
iπ/4

dr =
(1 + i)

√
π

2
√

2
.

Taking the real part gives the integral required; the imaginary part gives an
equivalent result for the integral of sin x2.

Another example where a sector contour can be used is the following
(from Ablowitz & Fokas, p.230): Evaluate

I =

� ∞

0

dx

x3 + a3
, a > 0.

In this case, the fact that the integrand is not an even function of x prevents
us from using the usual semicircular contour, since the integral of f(z) =
1/(z3+a3) along the negative real axis does not give a multiple of I. However,
if we consider rays in the complex plane again, z = reiα for fixed α and
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r ∈ R+, then on such a ray f(z) = 1/(r3e3iα + a3); and we see that if
α = 2π/3 then we get the desired integrand, f(z = 1/(r3 + a3). Thus,
if we take the integral of f(z) around a large sector of angle 2π/3 we will
get contributions proportional to I from the two straight sides, a vanishing
contribution from the curved portion as R → ∞; and the total value of the
integral will be given by Cauchy’s residue theorem, since there is a simple
pole of the integrand at z = aeiπ/3 inside the contour. Denoting the sector
contour by γ we have on the one hand, using the residue theorem,

�

γ

dz

z3 + a3
= 2πiRes(f(z); ae

iπ/3)

= 2πi lim
z→aeiπ/3

z − aeiπ/3

z3 + a3

=
2πi

3z2

����
z=aeiπ/3

=
2πie−2πi/3

3a2

=
2πe−iπ/6

3a2
,

where we used l’Hôpital’s rule between the 2nd and 3rd lines to evaluate the
limit. On the other hand, splitting the contour into its constitutive parts we
have

lim
R→∞

�

γ

f(z) dz =

� ∞

0

dx

x3 + a3
− e

2πi/3

� ∞

0

dr

r3 + a3
= (1− e

2πi/3)I.

Thus,

I =
2πe−iπ/6

3a2(1− e2πi/3)
=

−2πe−iπ/6

3a2eiπ/3(eiπ/3 − e−iπ/3)
=

2πi

3a2.2i sin π/3
=

2π

3a2
√

3
.

9.5.3 Integrals of functions with branch-points

So far we have considered only integrals of functions that have isolated sin-
gularities in the complex plane. However, as long as we are careful to define
analytic branches of ”multifunctions” with branch-points, and as long as we
work in the appropriate cut plane and do not try to integrate across branch-
cuts, we can take contour integrals of functions with branch points also. As
usual, rather than prove general results, it is best to illustrate by examples.
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Figure 7: A semicircular contour with branch-cut along the negative real
axis, used in example 9.11.

Example 9.11 Evaluate
� ∞

0

log x

1 + x2
dx.

We consider integrating the complex function f(z) = log z/(1 + z2) around
a suitable contour. We define an analytic branch of this function by cutting
the z-plane along the negative real axis, taking the analytic branch of the
logarithm given by log z = log |z|+iθ, where θ is an argument of z (z = |z|eiθ)
and −π < θ ≤ π. Then, as long as we stay on one side of the cut, θ = π−,
we can use the same indented semicircular contour γ as before (we need to
indent along an �-semicircle about z = 0 to avoid the singularity there); see
figure 7. With the indented semicircle in the upper half-plane we have a
single pole of the integrand inside the contour at z = i, so that

�

γ

log z

1 + z2
dz = 2πiRes(f(z); i).

The contour integral has four contributions. Along Γ+
R we have z = Reiθ,

0 ≤ θ < π, so that
�����

�

Γ+
R

f(z) dz

����� =

����
� π

0

log R + iθ

1 + R2e2iθ
iRe

iθ
dθ

����

≤ R

R2 − 1

� π

0

| log R + iθ|dθ ≤ πR log R

R2 − 1
+

π2R

R2 − 1
→ 0 as R →∞.
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Along the �-semicircle we need another direct estimate of the integral. With
z = �eiθ

����
�

Γ�

f(z) dz

���� =

����
� π

0

log � + iθ

1 + �2e2iθ
i�e

iθ
dθ

����

≤ �(| log �| + π)π

1− �2
→ 0 as �→ 0.

Along the positive real axis we have z = x ∈ R+, and as � → 0 and
R →∞ this integral converges to the one we want. Along the negative real
axis portion of γ we have, since we are on the top side of the cut, z = reiπ

(r = |z|); dz = eiπdr = −dr and log z = log r + iπ, and this portion of the
integral is, as �→ 0, R →∞,

� 0

∞

log r + iπ

1 + r2
(−dr) =

� ∞

0

log r

1 + r2
dr + iπ

� ∞

0

dr

1 + r2
.

Again, the first integral here is equal to the one we seek, and putting all
results together we have, letting �→ 0 and R →∞,

2

� ∞

0

log x

1 + x2
dx = 2πiRes(f(z); i)− iπ

� ∞

0

dr

1 + r2
;

so we can see we will get two real integrals for the price of one here. Since f

has only a simple pole at z = i we have

Res(f(z); i) = lim
z→i

(z − i)f(z) = lim
z→i

(z − i)
log z

z2 + 1
=

log(i)

2i
=

π

4
.

Thus we find
� ∞

0

log x

1 + x2
dx = 0, and

� ∞

0

dx

1 + x2
=

π

2
.

Example 9.12 Show that
� ∞

0

xa−1

1 + x
dx = πcosecπa (0 < a < 1).

The integrand here is another multifunction when considered in the complex
plane, so we must again cut the plane appropriately and define an analytic
branch of the multifunction in the cut plane. This time we make a cut along
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Figure 8: “Keyhole” contour used in example 9.12.

the positive real axis, so that we represent z in the cut plane by z = |z|eiθ,
0 ≤ θ < 2π and define the analytic branch of za−1 by

z
a−1 = |z|a−1

e
i(a−1)θ

.

The contour used in the previous example does not help us here, since the
integral along the negative real axis won’t reduce to something related to the
integral we want (check this). So, we choose a contour that includes straight-
line integrals along both sides of the cut, with a small circular indentation (a
“keyhole”) to avoid the branch-point itself (figure 8). The contour is closed
off by a large circular arc of radius R � 1 that does not cross the cut. This
contour is well-known, and is often called a keyhole contour. Within the
contour the chosen branch of the function is analytic except for a simple pole
at z = −1; and denoting by γ the entire contour we have

�

γ

f(z) dz = 2πiRes(f(z); z = −1).
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On the outer large circular portion of γ we have z = Reiθ, 0 ≤ θ < 2π, and
so

|f(z)| =

����
Ra−1ei(a−1)θ

1 + Reiθ

���� ≤
Ra−1

R− 1
.

Thus, using also dz = iReiθdθ on ΓR,
����
�

ΓR

f(z) dz

���� ≤
� 2π

0

Ra−1R

R− 1
dθ → 0 as R →∞ (since a < 1).

The integral along the upper side of the cut converges trivially to the
desired integral as � → 0, R → ∞. Along the bottom side of the cut the
contribution to

�
γ is such that z = re2πi in the integrand, with r going from

∞ to 0 to preserve the same sense of integration. Thus we have dz = dr,
and, if we call this portion of the curve γ− then in the limit �→ 0, R →∞

�

γ−
f(z) dz =

� 0

∞

ra−1e2πi(a−1)

1 + r
dr = −e

2πi(a−1)

� ∞

0

ra−1

1 + r
dr

which is a (complex) multiple of the integral we want. Finally, we also need
to estimate the integral around the indented �-circle Γ� and show that this
goes to zero as �→ 0. The same estimate used for the large circle ΓR gives

����
�

Γ�

f(z) dz

���� ≤
� 2π

0

�a−1�

1− �
dθ → 0 as �→ 0 (since a > 0).

Putting the above results together we have

(1− e
2πi(a−1))

� ∞

0

xa−1

1 + x
dx = 2πiRes(f(z); z = −1)

= 2πi z
a−1

��
z=−1

= 2πie
iπ(a−1)

,

taking care to use the analytic branch of the multifunction as defined above.
Denoting by I the real integral we seek, we then have

−2iIe
iπ(a−1) sin π(a− 1) = 2πie

iπ(a−1)

⇒ I =
π

sin πa
.
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Remark When calculating integrals such as this, involving integrating a
multifunction in a cut plane, it is important to ensure that you remain con-
sistent in your choice of analytic branch throughout. In example 9.12 just
solved, for example, we would have obtained an incorrect answer had we
worked with the branch

z
a−1 = |z|a−1

e
i(a−1)θ

, −π < θ < π.

This does define an analytic branch, but only in the plane cut along the
negative real axis – which is inconsistent with the contour we have chosen.

9.5.4 Integrals around rectangular contours

For certain classes of integrals involving functions based on exponentials, it
can be useful to take a rectangular contour of integration, one side of the
rectangle being (usually in a limiting sense) the integral we want, and the
opposite side giving a related integral. A rectangular contour can be useful for
two reasons: firstly, we may wish to integrate a function that has an infinite
number of singularities, e.g. along the imaginary axis. A rectangular contour
of finite width in the y-direction will enclose only a finite number of the
singularities, giving a finite sum of residues, where the limiting semicircular
contour of figure 4 (or its reflection in the x-axis) leads to an infinite sum
of residues. Secondly, the integrand may not decay over the whole of the
circular portion of the contour (and a sector may not help either, unless the
integral along the second sector arc gives an integral related to the one we
want, or one that we can easily evaluate).

Example 9.13 Evaluate

I =

� ∞

−∞

epx

1 + ex
dx, 0 < p < 1.

As usual, we consider the limit in which a large but finite sized contour
goes to infinity in some sense. There is no convenient choice of semicircle (or
sector) contour for this example – consideration of integrands such as epz/(1+
ez) integrated along the real axis, or e−ipz/(1 + e−iz) integrand along the
imaginary axis, cannot be closed off with a semicircle on which the integrand
decays uniformly. Moreover, in each case, the integrand has an infinite set of
singular points (along the imaginary or real axis), which would all be enclosed
in the limit that a semicircular integration contour goes to infinity.
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We instead take a rectangle, with one side along the real axis from −R

to R (along y = 0), and the parallel side along y = Y . The two shorter sides
along x = ±R complete the rectangle. We need to make a convenient choice
of Y that allows us to evaluate the real integral we want. We choose complex
integrand f(z) = epz/(1 + ez), since this gives the correct integral along the
real axis. On y = Y we have

f(z) =
ep(x+iY )

1 + ex+iY
=

epxeipY

1 + exeiY
,

and we see that if we choose Y = 2π then we get a multiple of the integral we
want. On the short sides of the rectangle, Γr and Γl say, we have z = ±R+iy,
0 ≤ y ≤ 2π. On Γr,

����
�

Γr

f(z) dz

���� =

����
� Y

0

epReiy

1 + eReiy
idy

���� ≤
� Y

0

epR

eR − 1
dy ≤ Y epR

eR − 1
→ 0 as R →∞,

since p < 1. On Γl we have
����
�

Γl

f(z) dz

���� =

����
� 0

Y

e−pReiy

1 + e−Reiy
idy

���� ≤
� Y

0

e−pR

1− e−R
dy ≤ Y e−pR

1− e−R

→ 0 as R →∞,

since p > 0. By the Residue theorem then, as R →∞ we obtain
� ∞

−∞

epx

1 + ex
dx +

� −∞

∞

e2πipepx

1 + ex
dx = 2πiRes(f(z), iπ)

⇒ (1− e
2πip)I = 2πi lim

z→iπ
(z − iπ)

epz

1 + ez
= 2πi

eiπp

eiπ
= −2πie

iπp
.

Thus,

I =
2πieiπp

eiπp(eiπp − e−iπp)
=

π

sin πp
.

We conclude by considering a more complicated variant.

Example 9.14 Evaluate

I =

� ∞

−∞

epx − eqx

1− ex
dx, 0 < p, q < 1.
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Figure 9: Rectangle with indentations to exclude simple poles from the inte-
rior, used in example 9.14.

Choosing f(z) = (epz−eqz)/(1−ez), there is no convenient choice of rectangle
size Y that will give a multiple of the integrand we want on �(z) = Y .
However, we could evaluate two contributions separately, similar to what
was done above. The only slight complication is that each of the integrands

fp(z) =
epz

1− ez
, fq(z) =

eqz

1− ez
,

have simple poles on their integration contours, at z = 0 and z = 2πi, which
we must indent around. Note that if we work with these integrands, then we
are evaluating principal-value integrals, since the singularity in the integrand
is no longer removable. Writing

Ip =

� ∞

−∞

epx

1− ex
dx, Iq =

� ∞

−∞

eqx

1− ex
dx,

we have I = Ip − Iq. We integrate around a closed rectangular contour
γ, which we take to be the same as in the previous example, except for
two indentations of radius � that exclude the simple poles at z = 0 and
z = 2πi from the contour interior (figure 9). Neither integrand is then
singular inside γ, so Cauchy’s theorem applies to each of fp and fq. The
integral along the real axis will give the result we want, in the limit that the
indentation radius � → 0 and the rectangle size R →∞. The integral along
�(z) = R will again give a multiple of this integral. The contributions from
the contour indentations will come from Lemma 9.9, noting that for each
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case, the indentation round the pole is taken in the opposite sense to that in
the lemma statement (so we get a change of sign). For the integrand fp we
thus obtain

Ip −
� ∞

−∞

e2πipepx

1− ex
dx− iπRes(fp(z), 0)− iπRes(fp(z), 2πi) = 0.

For the residues we have

Res(fp(z), 0) = lim
z→0

zepz

1− ez
= −1,

Res(fp(z), 2πi) = lim
z→2πi

(z − 2πi)epz

1− ez
= −e

2πip
,

and so

Ip(1− e
2πip) = −iπ(1 + e

2πip)

⇒ Ip = iπ
e2πip + 1

e2πip − 1
= iπ

eπip + e−πip

eπip − e−πip
= π cot πp.

Hence finally, since the result for Iq follows exactly similarly,

I = π(cot πp− cot πq).

Homework (1) What is wrong with the following argument: “Let I =�∞
0 (1 + x4)−1 dx. Put x = iy, then

I =

� ∞

0

(1 + y
4)−1

dy = iI.

Hence, I = 0.” How do we obtain the correct value of the integral (π/(2
√

2))?

(2) Prove that

(i)

� ∞

0

cos ax− cos bx

x2
dx =

π

2
(b− a), (a, b > 0),

(ii)

� ∞

0

(log x)2

1 + x2
dx =

π3

8
.
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9.6 Principle of the argument, and Rouché’s theorem

Residue calculus can also be applied to deduce results about the number of
zeros and poles of a meromorphic function in a given region.

Theorem 9.15 (Argument principle) Let f be meromorphic inside and on
a simple closed contour C, with N zeros inside C, P poles inside C (where
multiple zeros and poles are counted according to multiplicity), and no zeros
or poles on C. Then

1

2πi

�

C

f �(z)

f(z)
dz = N − P =

1

2π
[arg(f(z))]C

(the last expression denotes the change in the argument of f as C is traversed
once).

Proof Let zi be a zero/pole of order ni. Then

f(z) = (z − zi)
±nigi(z), (+ for zero, − for pole)

where gi(zi) �= 0 and gi(z) is analytic and nonzero in some neighborhood
B(zi, �i) of zi (see lemma 7.12). Thus in such a neighborhood we can write

f �(z)

f(z)
=

±ni

(z − zi)
+ φi(z)

where φi(z) = g�i(z)/gi(z) is analytic in B(zi, �i), and in the region D� made
up of the interior of the curve C, with each B(zi, �i) removed, f �/f is analytic.
Application of Cauchy’s theorem 5.10 to the region D� then gives

0 =
1

2πi

�

∂D�

f �(z)

f(z)
dz

=
1

2πi

�

C

f �(z)

f(z)
dz − 1

2πi

�

i

�

γ(zi,�i)

f �(z)

f(z)
dz

=
1

2πi

�

C

f �(z)

f(z)
dz − 1

2πi

�

i

�

γ(zi,�i)

±ni

(z − zi)
+ φi(z)dz

⇒ 1

2πi

�

C

f �(z)

f(z)
dz =

�

zeros

ni −
�

poles

nj = N − P,
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Figure 10: A geometrical interpretation of the Argument Principle.

where γ(zi, �i) denotes the circle of center zi and radius �i, and we used the
residue theorem 9.4 in the last step. The quantities N , P are as defined in
the theorem statement.

To demonstrate the final equality in the theorem, we parametrize the
curve C so that

C = {z(t) : t ∈ [a, b], z(a) = z(b)}.

Then

1

2πi

�

C

f �(z)

f(z)
dz =

1

2πi

� b

a

f �(z(t))

f(z(t))
z
�(t)dt =

1

2πi
[log|f(z(t))| + i arg(f(z(t)))]bt=a

=
1

2π
[arg(f(z))]C

(which branch of the logarithm we choose is immaterial for the theorem
result, but for definiteness you can assume the principal branch).

The theorem has an interesting geometrical interpretation, illustrated in fig-
ure 10. The function w = f(z) represents a mapping from the complex
z-plane to the complex w-plane, under which the curve C maps to some im-
age curve C � in the w-plane (see later notes on conformal mappings; Math
756). We then have dw = f �(z)dz, so that

1

2πi

�

C

f �(z)

f(z)
dz =

1

2πi

�

C�

dw

w
=

1

2πi
[log(w)]C� =

1

2π
[arg(w)]C� .
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Remark This quantity (1/2π)[arg(w)]C� is known as the winding number
of the curve C � about the origin in the w-plane – the number of times that
the closed curve C � encircles the origin.

Example 9.16 Find the number of zeros of the function f(z) = z5+1 within
the first quadrant.

We use the principle of the argument to determine the change in arg(f) as
we traverse an appropriate contour. Since f is analytic on the first quadrant
of the z-plane, we may take the contour C to be a large quarter-circle, made
up of the three portions C = C1 ∪ C2 ∪ C3,

C1 = {z : z = x, 0 ≤ x ≤ R},
C2 = {z : z = Re

iθ
, 0 ≤ θ ≤ π/2},

C3 = {z : z = iy, 0 ≤ y ≤ R}.

In the limit that R becomes arbitrarily large the contour will enclose the
whole of the first quadrant. The argument of f satisfies arg(f) = φ, where
tan φ = �(f)/�(f). Along C1 f = 1 + x5 ∈ R+, and arg(f) = 0. Along
C2 f = 1 + R5e5iθ ≈ R5e5iθ, and the argument of f therefore increases from
0 to 5π/2 (in the limit R → ∞) as θ increases from 0 to π/2. Finally,
on C3 f = 1 + iy5, and for y = R � 1 we have arg(f) ≈ 5π/2 (it must
vary continuously from C2 to C3), while as y decreases from R � 1 to 0,
tan φ = �(f)/�(f) decreases (continuously) from +∞ to 0+ and thus arg(f)
decreases (continuously) from 5π/2 to 2π.

Thus, the net change in arg(f) as we traverse C is 2π. Applying theorem
9.15 then, since f has no singularities within the first quadrant (so P = 0),
the number of zeros it has, N , satisfies

N =
1

2π
[arg(f)]C =

2π

2π
= 1.

Theorem 9.17 (Rouché) Let f(z) and g(z) be analytic inside and on a sim-
ple closed contour C. If |f | > |g| on C, then f and f + g have the same
number of zeros inside C.

This theorem makes sense intuitively, since we can think of g as being a
perturbation to f , which will in turn perturb its zeros. If the size of the
perturbation is bounded on the contour C, then (we can show) the size of
the perturbation is bounded inside C as well (this is not surprising, given
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Figure 11: Illustration of the proof of Rouch’e’s theorem.

the maximum modulus principle for analytic functions). Therefore, we have
not perturbed the zeros of f too much by adding g.

Proof Since |f | > |g| ≥ 0 on C it follows that |f | > 0 on C and thus f �= 0
on C. Moreover, f(z) + g(z) �= 0 on C. Let

h(z) =
f(z) + g(z)

f(z)
,

then h is analytic and nonzero on C, and the Argument Principle theorem
9.15 may be applied to deduce that

1

2πi

�

C

h�(z)

h(z)
dz =

1

2π
[arg(w)]C� ,

where w = h(z), and C � is the image of the curve C under this transformation
in the w-plane. However,

w = h(z) = 1 +
g(z)

f(z)

so, since |g| < |f | on C, we have |w − 1| < 1 on C �, so that all points of
C � lie within the circle of radius 1 centered at w = 1 (see figure 11). Thus,
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as we traverse the closed curve C � there is no net change in arg(w), because
C � does not enclose the origin. It follows from the argument principle that
Nh−Ph = 0, where Nh and Ph are the numbers of zeros and poles, respectively
(counted according to multiplicity) of h(z). Since f and g are analytic inside
and on C, the poles of h coincide in location and multiplicity with the zeros
of f , so that Ph = Nf . Also by analyticity of f , h is zero only where f+g = 0,
and we have Nh = Nf+g. Thus,

Nh − Ph = 0 ⇒ Nf = Nf+g,

and the theorem is proved.

Example 9.18 Show that 4z2 = eiz has a solution on the unit disc |z| ≤ 1.

Take the contour C to be |z| = 1, so that points on C are given by z = eit,
t ∈ [0, 2π]. Then, with f(z) = 4z2 and g(z) = −eiz, we have |f | = 4 on C,
while

|g(z)|C = |ei(cos t+i sin t)| = e
− sin t ≤ e < |f(z)|C .

Thus Rouché’s theorem applies, and f + g has the same number of zeros as
f on the unit disc. Clearly, f(z) = 4z2 has exactly 2 zeros (both at z = 0
but we count according to multiplicity). It follows that 4z2 = eiz in fact has
2 solutions on the unit disc.

Homework: Ablowitz & Fokas, problems for section 4.4, questions 3(b),
5(a).
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10 Asymptotic expansions and Stokes lines

10.1 Asymptotic sequences and asymptotic expansions

Asymptotic expansions are about finding an approximation to some function
that depends on a small (usually real) parameter, 0 < � � 1. The function
may be given explicitly, with �-dependence embedded in the definition, or
(as is more common in applications) the function may be a solution of a
differential equation (ordinary or partial) that contains the small parameter.
Typically the approach is to find some means of expanding the function as
a sum, often in powers of the small parameter, to a certain number of terms,
e.g.

f(�) = f0 + �f1 + · · · + �
N

fN + RN(�)

= SN(�) + RN(�), (84)

in order to achieve a desired level of accuracy. Here, RN(�) is some remainder
term, which intuitively we would expect to be much smaller than the pre-
ceding term in the series. In most asymptotic expansions in � of the above
form, we in fact have |RN(�)| = O(�N+1) as � → 0.1 Loosely speaking, this
means that |RN(�)| is bounded by some constant (positive) multiple of �N+1

as � → 0; more precisely, there exists some M > 0 and some �0 > 0 (small)
such that

|RN(�)| ≤M�
N+1 for � < �0.

Thus, for example, any polynomial in �, P (�) =
�N

n=1 an�
n, is of order � as

�→ 0. As well as this “order” notation, we also have the concept of smaller
order”, denoted by “o” instead of “O”. Here we write

f(�) = o(g(�)) as �→ 0 (85)

to signify that f(�) is much smaller than g(�) as �→ 0 – again, more precisely,
we have

lim
�→0

����
f(�)

g(�)

����→ 0 as �→ 0.

The relation (85) may be alternatively expressed as

f(�)� g(�) as �→ 0.

1In words: |RN (�)| is of order �N+1 as �→ 0.
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Returning to our initial idea of approximating a function (see (84)), we say
that SN is an approximation to f valid, or correct, or accurate, to order �N

as �→ 0 if

lim
�→0

f − SN

�N
≡ lim

�→0

RN

�N
= 0.

Thus, if indeed RN = O(�N+1) as �→ 0, or even if RN = o(�N) (a less strong
condition) then SN does approximate f to order �N .

While in many cases it is easy to write down the approximation to a
function to a desired (quantifiable) level of accuracy, using our knowledge of
convergent series expansions, there are many situations in which such notions
are not fully adequate. For example, we may seek to approximate a function
for which there is no closed-form expression – it may be an unknown solution
to a differential equation, or be defined in terms of an integral. For example,
we can say with confidence, using the terminology developed above, that

cos � = 1− �2

2!
+ R, where R = O(�4) as �→ 0

(R has a convergent Taylor series expansion from which we can extract a
factor of �4 and still obtain a bounded result as � → 0). Thus, 1 − �2/2! is
an approximation to cos �, valid to order �3. This is an easy case to analyze;
but what about, e.g.,

f(�) =

� ∞

0

e−t dt

1 + �t
as �→ 0? (86)

We could, disregarding all rigor, attempt to expand the denominator in the
integrand using the binomial theorem; and then (even worse!) interchange
the summation and integration:

� ∞

0

e−t

1 + �t

?∼
� ∞

0

∞�

n=0

(−1)n
�
n
t
n
dt

?∼
∞�

0

(−1)n
�
n

� ∞

0

e
−t

t
n
dt.

Writing In =
�∞

0 e−ttn dt, we easily derive the recurrence relation In = nIn−1,
so that In = n!I0 = n!, and so

� ∞

0

e−t

1 + �t

?∼
∞�

n=0

(−1)n
n!�n; (87)
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but this last series diverges for all � > 0. However, this last exercise is not
futile, because it turns out that if one truncates the divergent infinite series
in (87) at a finite number of terms, N , then for small values of � the finite
sum gives a good approximation to the integral, and the approximation gets
better and better as �→ 0. It can be shown that

� ∞

0

e−t dt

1 + �t
=

N�

0

(−1)n
n!�n + O(�N+1) as �→ 0 for N fixed. (88)

This result can be perhaps more convincingly arrived at by noting that, if
we define

In(�) =

� ∞

0

e−t

(1 + �t)n
dt,

then a single integration by parts gives

In =

�
−e−t

(1 + �t)n

�∞

0

− �n

� ∞

0

e−t

(1 + �t)n+1
dt = 1− n�In+1,

and thus

I1 = 1− 1.�I2 = 1− 1.�(1− 2�I3) = 1− � + 2!�2(1− 3�I4)
...

= 1− � + 2!�2 − 3!�3 + · · · + (−1)N
N !�N + (−1)N+1(N + 1)!�N+1

IN+2,

where IN+2 = O(1) as �→ 0 at fixed N (with limit 1, in fact).
On the other hand, in contrast to (88)

cos � =
N�

n=0

(−1)n�2n

(2n)!
+ O

�
�2N+2

(2N + 2)!

�
as N →∞ for � fixed

(though in fact this result also holds as �→ 0 with N fixed). The sum on the
right-hand-side of (88) provides an asymptotic expansion of the integral
on the left-hand side; and we write

f(�) ∼
∞�

0

(−1)n
n!�n
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to denote the statement (88). (We will sometimes also denote the asymptotic
expansion by the finite sum plus the remainder, or just the finite sum itself.)
Since we know the asymptotic series in (88) diverges as N → ∞, a natural
question to ask is, how to decide where to truncate the series? Obviously
for a given value of �, as one takes more and more terms, the approximation
must eventually get worse, since the terms diverge as N → ∞. A given
asymptotic expansion, for a given value of �, will have an optimal truncation
value N(�). For this particular case, optimal truncation is for N ∼ 1/�.

We now generalize this idea somewhat. The series does not need to be
in powers of � (though this simple form is frequently observed). We define
an asymptotic sequence δn(�) to be a decreasing sequence of functions as
�→ 0, such that

����
δn+1(�)

δn(�)

����→ 0 as �→ 0.

Then, the notation

f(�) ∼
∞�

n=0

δn(�)an (89)

means

f(�) =
N�

n=0

δn(�)an + O(δN+1(�)) as �→ 0 for N fixed.

The right-hand side of (89) is then an asymptotic expansion of the function
f , as � → 0. The function f may also depend on a variable z of course,
as well as the parameter �, in which case the coefficients an in the above
expansion will also be functions of z.

An asymptotic expansion may also be desired as a parameter k approaches
some fixed nonzero value k0, or even as k →∞. The case k → k0 is equivalent
to the case �→ 0 discussed above if one identifies � with k− k0. For the case
k →∞ we may identify � with 1/k and again use the �→ 0 formalism.

Example 10.1 Find an asymptotic expansion for

f(k) =

� ∞

0

e−kt

1 + t
dt

as k →∞, k ∈ R+.
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Writing � = 1/k we have

f =

� ∞

0

e−t/�

1 + t
dt = �

� ∞

0

e−τ

1 + �τ
dτ.

The discussion above showed us how to obtain the asymptotic expansion of
this integral as �→ 0; we have

f ∼ �

∞�

0

(−1)n
n!�n

,

and thus

f ∼
∞�

n=1

(−1)n−1(n− 1)!

kn
,

or equivalently,

f =
N�

n=1

(−1)n−1(n− 1)!

kn
+ R,

where R = O(1/kN+1) as k →∞ at fixed N .

Example 10.2 Find an asymptotic expansion for I =
�∞

k
e−t

t dt as k → ∞
(k ∈ R).

As before we may define

IN =

� ∞

k

e−t

tN
dt =

�
−e−t

tN

�∞

k

−N

� ∞

k

−e−t

tN+1
dt =

e−k

kN
−NIN+1.

Thus,

I1 =
e−k

k
− 1.I2 =

e−k

k
−

�
e−k

k2
− 2I3

�
=

e−k

k
− e−k

k2
+ 2

�
e−k

k3
− 3I4

�

...

=
e−k

k
− e−k

k2
+

2!e−k

k3
+ · · · + (−1)N−1 (N − 1)!e−k

kN
+ (−1)N

N !IN+1.
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This generates an asymptotic expansion for the integral as k →∞ provided
|N !IN+1| � e−k/kN as k →∞, for fixed N . But clearly

|N !IN+!| ≤
N !

kN+1

� ∞

k

e
−t

dt =
N !e−k

kN+1
� e−k

kN
,

as k → ∞, for fixed N . We again have the situation that the infinite series
is divergent; but if we take only a finite number N of terms and let k →∞
then the remainder in the series goes to zero. Note that in this example the
asymptotic series is not a simple power series.

10.2 Asymptotic expansions of complex functions

In the preceding discussion we have mostly supposed that the parameter in
the asymptotic expansion is real, but asymptotic expansions can certainly
be constructed for complex parameters or variables. If a function f(z) is
analytic on an infinite annulus |z| > R then it has a convergent Laurent series
expansion; and if in fact the function is bounded at infinity (= “analytic at
infinity”) also, then the Laurent series will be of the form

f(z) =
0�

−∞
cnz

n = c0 +
c−1

z
+

c−2

z2
+ · · · .

This (convergent) series is equivalent to an asymptotic expansion for the
function (which happens to be convergent here). The corresponding asymp-
totic sequence is, of course, (1/zn)∞n=0. For a function f that is not analytic
at infinity, there can be no convergent asymptotic expansion that is valid
uniformly in z as |z| → ∞. Instead we typically find that a function can
have several different asymptotic expansions that are valid in different sectors
of the complex plane. These need not be of the straightforward power-series
type given above, but may be generalizations such as

f(z) ∼ Φ(z)
�
a0 +

a1

z
+

a2

z2
+ · · ·

�

(cf example 10.2 above) or more complicated variants. It is a curious fact that
two different functions can have the same asymptotic expansion in some
region of the complex plane. Suppose that a function f(z) has a convergent
expansion on a sector S1 = {z : −π/2 < arg(z) < π/2},

f(z) ∼
∞�

n=0

an

zn
valid on −π/2 < arg(z) < π/2. (90)
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Then the function g(z) = f(z)+e−z has an identical asymptotic power series
expansion in S1, because on that sector −π/2 < θ < π/2 we have

|e−z| = e
−r cos θ � |z−n|, as |z| → ∞, for ANY n > 0.

When we move outside S1 however, the two functions will differ in their
asymptotic expansions. If in fact the asymptotic expansion (90) is valid on
an extended sector, say S2 = {z : π/2 < arg(z) < π}, then on the larger
sector S1 ∪ S2 f will have the same expansion as before, but the expansion
of g on S2 as |z| → ∞ will now be dominated by the e−z, which here is
exponentially large:

g(z) ∼ e
−z +

∞�

n=0

an

zn
, as |z| → ∞.

It could be the case that on the remaining portion of the complex plane f

itself has a different asymptotic expansion.
Note that in the above, the (convergent) Taylor series expansion of e−z

does NOT provide an asymptotic expansion, because its terms Tn = (−1)nzn/n!
do not satisfy the criterion of subsequent terms becoming asymptotically
smaller as |z| → ∞, for a fixed point N in the series (zn is not an asymptotic
sequence as |z| → ∞). Therefore, if we were to truncate the series at some
fixed value N , the truncated series would not provide a good approximation
to the function for |z| arbitrarily large.

This example with the function g is a very simple (and vague, at this
stage) example of the Stokes phenomenon, in which the asymptotic ex-
pansion of a given function can change discontinuously across a line in com-
plex space. We see that in the example above, the function e−z possesses an
essential singularity at infinity (consider the singular behavior of the function
e−1/z at the origin), which is what gives rise to this behavior. Another simple
example is given by the function f(z) = sinh(1/z), as z → 0. This function
has an essential singularity at the origin, as is easily seen by writing down its
Laurent expansion about z = 0. The Laurent expansion, though convergent
in any neighborhood of the origin, does not provide an asymptotic expan-
sion for the function, because if we truncate it at a finite number of terms,
we do not get a good approximation to the function – there is no “largest”
term as |z| → 0 that we can start our expansion with and order terms in
decreasing size. Again, it is the exponential representation that gives the
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asymptotic expansion for the function, and different representations are ap-
propriate in different regions of C. The full representation of the function is
f(z) = (e1/z − e−1/z)/2; and

| exp(1/z)| = | exp(r−1(cos θ − i sin θ))| = e
r−1 cos θ

,

| exp(−1/z)| = | exp(−r
−1(cos θ − i sin θ))| = e

−r−1 cos θ
,

so that in the sector −π/2 < θ < π/2 (the right-half plane; θ = arg(z)) we
have cos θ > 0, and

f(z) ∼ 1

2
e
1/z as |z| → 0

is a valid asymptotic expansion for sinh(1/z), while in the sector π/2 < θ <

3π/2 (the left-half plane) we have cos θ < 0, and

f(z) ∼ −1

2
e
−1/z as |z| → 0

is a valid asymptotic expansion for sinh(1/z).

10.3 The Stokes phenomenon

The above example shows that for a function analytic and single-valued in
the neighborhood of infinity (or at another point), but not analytic at infin-
ity, its asymptotic expansion can change discontinuously across certain lines
in the complex plane, even though the function itself has no discontinuous
behavior as |z| → ∞. If a function is analytic at infinity then the asymptotic
expansion varies continuously at infinity (as we traverse an arbitrarily large
circular contour, for example). This discontinuous behavior that can arise in
a function’s asymptotic expansion is known as the Stokes phenomenon.
We will not discuss it in detail here, but will illustrate it by means of a
specific example, which demonstrates that even the functional form of the
asymptotic expansion can be completely different in adjacent regions of the
complex plane. Ablowitz & Fokas [1], from which the following is adapted,
gives a fuller discussion of the phenomenon in §6.6.

Example 10.3 Find the asymptotic behavior of

f(z) =

� ∞

0

e−zt

1 + t4
dt

as |z| → ∞, z ∈ C.
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Suppose first that t ∈ R+ in the integral, with the path of integration taken
along the positive real axis. Then as t→∞, the integral converges provided
�(zt) > 0, that is, provided −π/2 < θ < π/2, where θ = arg(z). In this
case, for large |z| the integrand is exponentially small except near t = 0.
The dominant contribution will therefore come from this region; and we may
expand the factor (1 + t4)−1 in the integrand using the binomial expansion:
(1 + t4)−1 = 1− t4 + O(t8). Thus, for −π/2 < arg(z) < π/2 we have

f(z) ∼
� ∞

0

e
−zt

dt−
� ∞

0

t
4
e
−zt

dt + O

�� ∞

0

t
8
e
−zt

dt

�
.

Writing In =
�∞

0 tne−zt dt, we have

In =

�
e−zt

−z
t
n

�∞

0

+
n

z

� ∞

0

e
−zt

t
n−1

dt =
n

z
In−1 = · · · =

n!

zn
I0 =

n!

zn+1
.

Thus, for −π/2 < arg(z) < π/2 (region 1),

f(z) ∼ 1

z
− 4!

z5
+ O(z−9), as |z| → ∞. (91)

However, this expansion is certainly not valid for values of arg(z) outside this
region. To find the correct far-field behavior in other regions, we consider a
different integration path in t, allowing t complex.

Noting that the function 1/(1 + t4) decays as |t| → ∞, and that Jordan’s
Lemma 9.7 applies to the integrand along (any portion of) a large semicircular
contour in the right-half plane (the integral along any such circular arc will go
to zero as the arc goes to infinity), we may form a closed contour by taking a
large quarter-circle, with radii along the positive real t-axis and the negative
imaginary t-axis. Then, applying the residue theorem to this contour, we
have

f(z) =

� −i∞

0

e−zt

1 + t4
dt− 2πiRes(e−zt

/(1 + t
4); e−iπ/4)

=

� −i∞

0

e−zt

1 + t4
dt +

iπ

2
e
−ze−iπ/4

e
3πi/4

. (92)

The integral in (92) converges provided �(zt) > 0, which now corresponds
to a different range of arg(z), and a different region of the complex z-plane.
With z = reiθ and t = se−iπ/2, for r, s ∈ R+, we have

zt = rse
i(θ−π/2)

, �(zt) = rs cos(θ − π/2),
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and thus a convergent integral for 0 < θ < π (region 2). So, we can
now compute the far-field behavior of f(z) for the range −π/2 < θ < π

((region 1) ∪ (region 2)). (Note that there is overlap between region 1 and
region 2, so potentially two different asymptotic expansions for f on this
overlap domain.)

To evaluate the far-field behavior in region 2 due to (92), note that in the
contribution from the residue we have

e
−ze−iπ/4

= e
−r(cos(θ−π/4)+i sin(θ−π/4))

,

which is exponentially small in −π/4 < θ < 3π/4, but exponentially large in
3π/4 < θ < π.

The same approach as was used to obtain (91) can be applied to the
integral (call it J) in (92), since again, on its region of convergence in the
z-plane, the dominant contribution comes from small values of |t|. Writing
t = −iη in this integral, where η ∈ R+, we find

J = −i

� ∞

0

eizη

1 + η4
dη.

Since the dominant contribution (for |z| � 1, 0 < θ < π) comes from
0 < η � 1, we can again expand the factor (1 + η4)−1 using the binomial,
and writing w = −iz we obtain (exactly as before)

J = −i

�
1

w
− 4!

w5
+ O(w−9)

�
, as |w| → ∞,

=
1

z
− 4!

z5
+ O(z−9), as |z| → ∞.

Thus, on the overlap region, (region 1)∩ (region 2), 0 < θ < π/2, we have an
exponentially small contribution from the residue, and using the approach
for either region, we obtain the same result,

f(z) ∼ 1

z
− 4!

z5
+ O(1/z−9),

since the exponentially-small term e−ze−iπ/4
is much smaller than any element

of the asymptotic sequence in negative powers of z (so would never appear
in the asymptotic expansion). So there is no discrepancy between the two
approaches.
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The above shows that, on the whole region −π/2 < θ < 3π/4 (region
1, plus that part of region 2 where the exponential contribution in (92) is
exponentially small), the appropriate asymptotic expansion is

f(z) ∼ 1

z
− 4!

z5
+ O(1/z−9), as |z| → ∞,

while on the remainder of region 2, 3π/4 < θ < π, the exponential term is
far larger than any of the algebraic terms, so that the asymptotic expansion
there is

f(z) ∼ iπ

2
e
−ze−iπ/4

e
3πi/4 as |z| → ∞.

Hence the form of the asymptotic expansion of f changes discontinuously
across the ray θ = 3π/4 (a Stokes line for this example), as we move from
one region to the next.

It remains, of course, to elucidate the behavior of f in the region 3,
−π < θ < −π/2.
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