Contour Integral Theorems
Suppose f(z) is continuous in domain (connected open set) D

F.T.C. for f(z) has an anti-derivative in D, F(z)
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“Practical” corollaries of above theorems for evaluating an integral over a given simple
closed contour (Jordan contour, JC):

1. JCintegral =0 if integrand has an anti-derivative along entire contour
2. JCintegral = 0if integrand is analytic inside and on the contour
3. Otherwise, C.I.F. can be used if there are only pole (powers of 1/(z—zo))
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(If none of above helps, use anti-derivative difference or contour parametrization)



