
Contour Integral Theorems 
Suppose f(z) is continuous in domain (connected open set) D 
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“Practical” corollaries of above theorems for evaluating an integral over a given simple 
closed contour (Jordan contour, JC): 

1. JC integral = 0 if integrand has an anti-derivative along entire contour 

2. JC integral = 0 if integrand is analytic inside and on the contour 

3. Otherwise, C.I.F. can be used if there are only pole (powers of 1/(z−z0)) 

singularities inside the contour: ( )
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 (If none of above helps, use anti-derivative difference or contour parametrization) 
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f(z) has an anti-derivative in D, F(z) 
(which is analytic by definition) 

f(z) has a derivative in D, f’ (z) 
(E.g., f(z) is analytic in D) 

F.T.C. for 
contour 
integration 
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C.G.T. 
if D is simply 
connected 

Extended Cauchy Integral Formula:  
If F(z) analytic, derivatives of all orders exist 
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C.G.T. corollary 
any domain 
of analyticity 

Deformation theorem 
or cross-cutting 

Generalized contour integral over total boundary of 
non simply-connected domain of analyticity 


