
Contour Integral Theorems 

Suppose f(z) is continuous in domain (connected open set) D 
______________________________________________________ 

 

 
 

 

“Practical” corollaries of above theorems for evaluating an integral over a given simple 
closed contour (Jordan contour, JC): 

1. JC integral = 0 if integrand has an anti-derivative along entire contour 

2. JC integral = 0 if integrand is analytic inside and on the contour 

3. Use Cauchy Integral Formula for pole singularity inside the contour: 
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4. Use Residues for any number of isolated singularities within the contour 

5. If none of the above applies, use contour parametrization (direct integration) 
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f (z) has an anti-derivative in D, F(z) 

(note: F(z) is analytic by definition) 

f (z) is analytic in D 

Fund’l Theorem of 
Calculus for contour 
integration 
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C-G Theorem: 
Only if D is simply 
connected! 
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For any domain D: 

Deformation theorem 
or cross-cutting 

Generalized contour integral over total boundary of 
non simply-connected domain of analyticity = 0 

Extended Cauchy Integral Formula:  
If F(z) analytic, derivatives of all orders exist 


