Math 111 FINAL EXAM, May 9, 2003

Read each problem carefully. Show all your work for each problem! No Calculators!

1. (12) Evaluate the following limits:

(a)
$$\lim_{x \to -2} \frac{x+2}{x^2+4}$$
, (b) $\lim_{\theta \to 0} \frac{\theta}{\tan(\pi\theta)}$, (c) $\lim_{t \to -3} \frac{t^2+6t+9}{t^2-9}$, (d) $\lim_{x \to 5^-} \frac{x-5}{|x-5|}$.

- 2. (8) Find two positive real numbers such that their sum is 50 and their product is as large as possible.
- 3. (8) Find the area of the region bounded by the curves $y = x^2$ and y = 2x.
- 4. (12) Calculate dy/dx for the following:

(a)
$$y = \frac{6x+2}{3x-4}$$
; (b) $y = \sqrt{x+\sqrt{x}}$; (c) $xy = \tan(xy)$; (d) $y = \int_2^{3x} \sin(t^2) dt$.

- 5. (8) Apply the h-definition of the derivative to find f'(x) for the function f(x) = 1/x.
- 6. (8) Calculate the trapezoidal approximation, with n=4, to the integral $\int_1^3 x^2 dx$.
- 7. (14) Evaluate the following integrals (a,b,c: 3 points; d: 5 points):

(a)
$$\int (2 + \frac{1}{x^2}) dx$$
; (b) $\int x\sqrt{9 + x^2} dx$; (c) $\int_0^{\pi/4} \sin(x) \cos(x) dx$; (d) $\int_0^1 \sqrt{1 - \sqrt{x}} dx$; (Hint: substitute $u = 1 - \sqrt{x}$).

- 8. (10) For the function $f(x) = 2x + \frac{1}{x^2}$, find the following if they exist: (i) all local extrema, (ii) points of inflection, (iii) intervals where the function is increasing or decreasing, (iv) intervals of upward and downward concavity, and (v) all asymptotes. Also, sketch a plot of the curve y = f(x).
- 9. (10) Find the volume of the solid that is generated by rotating the plane region bounded by the curves $y = 1 x^2$ and y = 0 about the x-axis.
- 10. (10) The acceleration, a(t), initial velocity, v(0), and initial position, x(0) of a particle for the time interval $t \in [0, 9]$ are given by

$$a(t) = \frac{6}{\sqrt{t}} - 6;$$
 $v(0) = 0,$ $x(0) = 0,$ $t \in [0, 9].$

- (a) Find the particle's position function, x(t).
- (b) What are the particle's maximum and minimum velocities on this interval?