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ABSTRACT 

We consider the stationary solution for the Ca2+ concentration near a point Ca2+ source describing 

a single-channel Ca2+ nanodomain, in the presence of a single mobile Ca2+ buffer with one-to-one 

Ca2+ binding. We present computationally efficient approximants that estimate stationary single-

channel Ca2+ nanodomains with great accuracy in broad regions of parameter space. The 

presented approximants have a functional form that combines rational and exponential functions, 

which is similar to that of the well-known Excess Buffer Approximation and the linear 

approximation, but with parameters estimated using two novel (to our knowledge) methods. One 

of the methods involves interpolation between the short-range Taylor series of the buffer 

concentration and its long-range asymptotic series in inverse powers of distance from the 

channel. Although this method has already been used to find Padé (rational-function) 

approximants to single-channel Ca2+ and buffer concentration, extending this method to 

interpolants combining exponential and rational functions improves accuracy in a significant 

fraction of the relevant parameter space. A second method is based on the variational approach, 

and involves a global minimization of an appropriate functional with respect to parameters of the 

chosen approximations. Extensive parameter sensitivity analysis is presented, comparing these 

two methods with previously developed approximants. Apart from increased accuracy, the 

strength of these approximants is that they can be extended to more realistic buffers with multiple 

binding sites characterized by cooperative Ca2+ binding, such as calmodulin and calretinin. 

STATEMENT OF SIGNIFICANCE 

Mathematical and computational modeling plays an important role in the study of local Ca2+ 

signals underlying vesicle exocysosis, muscle contraction and other fundamental physiological 

processes. Closed-form approximations describing steady-state distribution of Ca2+ in the vicinity 

of an open Ca2+ channel have proved particularly useful for the qualitative modeling of local Ca2+ 

signals. We present simple and efficient approximants for the Ca2+ concentration in the presence 

of a mobile Ca2+ buffer, which achieve great accuracy over a wide range of model parameters. 

Such approximations provide an efficient method for estimating Ca2+ and buffer concentrations 

without resorting to numerical simulations, and allow to study the qualitative dependence of 

nanodomain Ca2+ distribution on the buffer’s Ca2+ binding properties and its diffusivity. 

Keywords: calcium nanodomain, calcium buffer, stationary nanodomain 
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I. INTRODUCTION 

Some of the most fundamental physiological cell processes such as synaptic neurotransmitter 

release, endocrine hormone release, muscle contraction and cytotoxic immune cell response are 

directly and quickly triggered by the Ca2+ influx into the cytoplasm (1-4). Due to the diversity of 

Ca2+-controlled cellular processes, intracellular Ca2+ signals are localized in time and space to 

allow selective activation of specific reactions (2-5). This localization is maintained in part by 

intracellular Ca2+ buffers, which absorb most of the Ca2+ influx soon upon its entry into the cell (6, 

7). In the context of secretory vesicle exocytosis, local Ca2+ concentration elevations around 

individual Ca2+ channels or clusters of channels are termed Ca2+ nano- or micro-domains (4, 8). 

Although Ca2+ concentration can be measured experimentally using Ca2+ sensitive dyes, inherent 

physical limitations pose challenges for optical Ca2+ imaging on small temporal and spatial scales 

relevant for vesicle exocytosis and other processes controlled by local Ca2+ elevations. Therefore, 

mathematical and computational modeling has played an important role in the study of vesicle 

exocytosis and other cell processes activated by localized Ca2+ signals (8-15). In particular, these 

computational studies were instrumental in showing that local Ca2+ elevations form and collapse 

very rapidly in response to channel gating. This suggests that quasi-stationary solutions of the 

reaction-diffusion equations describing Ca2+ influx, diffusion and binding to intracellular Ca2+ 

buffers may achieve sufficient accuracy in estimating Ca2+ concentration in the vicinity of a Ca2+ 

channel, obviating computationally expensive solutions of partial differential equations describing 

buffered Ca2+ diffusion (16, 17). Several of such stationary approximations have been introduced 

in the early works of E. Neher, M.D. Stern, J. Keizer, G.D. Smith and others (14, 18-28), most 

notably the Excess Buffer approximation (EBA), the Rapid Buffering approximation (RBA), and 

the linear approximation (LIN) (see Table 1). These approximations proved quite useful in 

understanding the properties of Ca2+ nanodomains and their dependence on the properties of cell 

Ca2+ buffers, and widely used in modeling studies (9, 14, 21, 29-32). However, most of the 

previously developed approximations have two limitations: (1) their accuracy is restricted to 

specific regions in buffering parameter space, and (2) they have been developed for simple, one-

to-one Ca2+-buffer binding, and are hard to extend to more realistic buffers that have multiple Ca2+ 

binding sites (33).  

Here we present several improved approaches allowing to better approximate single-channel 

Ca2+ nanodomains with more accuracy and for a wider range of model parameters. One of these 

approximation methods is based on matching the coefficients of short-range Taylor series and 

long-range asymptotic series of the nanodomain Ca2+ distance dependence using simple ansätze. 

Although this method has already been used to obtain Padé (rational function) nanodomain 

approximations (34), we show that significant improvement can be achieved in some parameter 

regimes using alternative interpolants that are similar in their functional form to EBA and LIN 

approximants. Similar ansätze can also be extended to buffers with multiple binding sites (work 

in progress). Apart from the local-series interpolation approach, we also present a different class 

of methods based on global optimization of a relevant functional with respect to parameters of the 

same ansätze that we use with the series interpolation method, which have superior accuracy in 

certain parameter regimes, as demonstrated below. 
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II. METHODS 

II.1 Single-channel Ca2+ nanodomain equation 

Following prior work, we will consider a Ca2+ buffer whose molecules possess a single active site 

that binds a Ca2+ ion according to the reaction 







 2 *,
k

k

B Ca B                                                   (1) 

where B and B* are the free buffer and Ca2+-bound buffer, respectively, and k+/k are the Ca2+-

buffer binding/unbinding rates. We consider a semi-infinite diffusion domain bounded by a flat 

plane containing point Ca2+ channel sources. Following previous modelling studies (18, 19, 27), 

we assume Dirichlet boundary conditions on the outer boundary representing the background 

concentrations for Ca2+ and buffer in the bulk of the cell cytoplasm, and zero flux boundary 

condition on the flat boundary representing the cell membrane. Although this neglects Ca2+ pumps 

and exchangers along the flat boundary, numerical simulations show that qualitative agreement 

with more accurate models is retained under this assumption. The reflection symmetry along the 

flat boundary allows to extend the domain to the whole space, while doubling the source strength.  

Assuming mass-action kinetics, this yields the following reaction-diffusion system in 3  (18, 19): 

  



      2 *

1

2 ( )
CaN

t C k k

k

C D C k BC k B r r , 

     2 *

t BB D B k BC k B ,                              (2) 

     * * 2 * *

t BB D B k BC k B . 

Here C, B and B* represents concentrations of Ca2+, free buffer and Ca2+-bound buffer, 

respectively, with diffusivities 𝐷𝐶 , 𝐷𝐵, and 𝐷𝐵
∗ . In the source term, NCa  denotes the number of Ca2+ 

channels, and the source strengths are given by 𝜎𝑘 = 𝐼𝐶𝑎,𝑘/(𝑧 𝐹), where ICa,k are the amplitudes 

of individual open Ca2+ channels located at positions rk 
, F is the Faraday constant, and z=2 is the 

valence of the Ca2+ ion. We note that the point-like channel assumption introduces inaccuracy at 

small spatial scales commensurate with the channel pore width of several nanometers. The 

impact of finite channel diameter and volumetric Ca2+ clearance was considered in a different type 

of single-channel stationary solution derived for the endoplasmic reticulum Ca2+ channel in (16).  

The two linear combinations of Eq. 2 that cancel the reaction terms yield the conservation laws 

for the total Ca2+ and total buffer concentrations: 

     


      * 2 * *

1

2 ( )
CaN

t C B k k

k

C B D C D B r r ,                 (3)   

       * 2 * *

t B BB B D B D B .                  (4) 

We now consider the steady state of this system, where the conservation laws for Ca2+ and buffer 

reduce to (19-21, 27, 35, 36):  
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B B B BD B D B D B D B const
 

    ,                 (5)

  


       2 * *

1

2 ( )
CaN

C B k k

k

D C D B r r .         (6) 

Our approach is somewhat more general than prior modeling work in that we do not assume that 

buffer mobility is unaffected by Ca2+ binding. Given our simplifying assumptions on the domain 

geometry and boundary conditions, Eq. 6 has an exact solution: 




 



   


* * * *

1

1

2 | |

CaN

k
C B C B

k k

D C D B D C D B
r r

,               (7) 

where C and B are the background Ca2+ and buffer concentrations infinitely far from the 

channel, which are in equilibrium with each other: 

 
*B C K B

  
 .  (8) 

Here 𝐾 = 𝑘−  𝑘+⁄  is the buffer affinity, equal to the Ca2+ concentration at which half the buffer is 

bound at steady state. Conservation laws allow to eliminate two variables, and we choose to 

retain the equilibrium unbound buffer concentration as the remaining unknown:  

2 *

BD B k BC k B    .           (9) 

We will now non-dimensionalize these equations similar to the method of Smith et al (19) (see 

also (34)), rescaling Ca2+ by the buffer affinity: c=C/K, c=C/K. However, we normalize the buffer 

concentration by its background value B instead of total concentration. This will simplify analytic 

results, with many expression formally unchanged whether or not c=0 (see Table 1). Note also 

that in this case a very simple relationship holds between background concentrations of Ca2+ and 

bound buffer: Eq. 8 yields 𝑐∞ = 𝑏∞
∗ . We will consider the case of a single channel at the origin, 

and re-scale the spatial coordinate (𝐫 /𝐿 → 𝐫) using the scale parameter that depends on the 

strength of the Ca2+ current, which simplifies the source term in Eq. 7 (19):   

                 2 CL D K .                                  (10) 

Recalling that 𝑐∞ = 𝑏∞
∗ , we obtain the following non-dimensional form of free buffer dynamics 

given by Eq. 9, and the conservation laws, Eqs. 5, 7:  



 

   



 

   


  


   

2 *

* * *

* * *

,

1 ,

1 / | | ,

B B

B B

b bc b

b b c

c b c c r

                 (11) 

where the four non-dimensional model parameter are (with L given by Eq. 10): 

   


   
*

*

2
, , ,B B B

B

C B

D B D D C
c

L k K D D K
.      (12) 

Here  is the dimensionless buffer diffusion coefficient (denoted as εb in (20)), which quantifies 

the diffusion rate relative to the rate of Ca2+ binding and influx, while   (denoted as 1/  in (20)) 

represents the overall buffering strength at rest, given by the product of the resting buffering 

capacity (B /K) and the relative buffer mobility (DB/DC). In this non-dimensionalization, unbuffered 
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Ca2+ solution corresponds to =0 and has a particularly simple form, 𝑐 = 1 |𝒓| + 𝑐∞.⁄  For the sake 

of simplicity, we will also use the following auxiliary parameters: 

                                       *1/ ; 1/Bc q   


    .                                                    (13) 

This allows to specify the problem using only 3 parameters, either {, ,  } or {, q,  }. In the 

case of binding-independent buffer mobility (𝛿𝐵
∗ = 1), parameter  equals non-dimensionalized 

total buffer concentration: (B + 𝐵
∗  ) / B = 1 + c = . 

Eliminating bound buffer and Ca2+ concentrations using the two conservation laws in Eqs. 11, the 

free buffer equation takes on a simple form: 

                        2 1 | |b b b b r .                                                                (14) 

Ca2+ concentration can be obtained from the solution of Eq. 14 using the Ca2+ conservation law 

in Eq. 11, which can be simplified to the following intuitive form: 

                                              


   1 1/ | |c b c r .                                                              (15)  

For b<1, Ca2+ concentration is reduced in proportion to the buffering strength parameter , as 

expected. The conservation laws in Eq. 11 along with the physical constraints c  0, b*  0, c  0  

imply a priori bounds  

               

     

 

 

 



 




 

 

 
   

 

  *

,

1
max 0, 1 ,

| |

1 .B

b b b

c
b

b c

r r r

r
r

r

               (16) 

Solutions satisfy the following boundary conditions (here and below, we denote | |r r ): 

 

 




  





0
0

lim const,

lim 1.

r

r

b b

b

r

r
                             (17) 

where the value of buffer at the source location, b0, is unknown a priori. As is rigorously proved in 

Appendix 4, Eq. 14 has a unique solution in a suitable function space, and this solution is 

spherically symmetric. Therefore, Eq. 14 may be reduced to 

    


 
 

       
 

2

2
1 0

d db b
E b r b b

dr dr rr
.        (18) 

Although Eq. 18 superficially resembles the Lane–Emden-Fowler equations (37), it has no local 

Lie symmetries allowing analytical solution. Further, it is not of Painlevé type (38), despite its 

simple algebraic form. We carried out the numerical solution of Eq. (18) using the relaxation 

method and the shooting method, cross-validating the results of these two methods. For certain 

extreme values of model parameters, accurate numerical solution is computationally intensive. 

We note that the chosen non-dimensionalization is identical to the one in (20,32) in the case of 

binding-invariant buffer mobility (𝛿𝐵
∗ = 1) and zero background Ca2+ concentration (c=0). More 

generally, there is a simple equivalence with the non-dimensionalization in (19, 34); indicating 

variables and parameters in the latter work with the hat symbol, this equivalence reads: 
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                                       


  ˆ ˆˆ , 1/ , / .b b b                                             (19) 

For the sake of simplicity, most numerical results shown below focus on the special case c=0, 

𝛿𝐵
∗ = 1, corresponding to =1 (Figs. 1-6). However, all results were verified for a wide range of  

values. In particular, results for =10 are shown in the results summary, Fig. 7. 

Method Free buffer concentration, b(r) Conditions References 

LIN  1 exp 1q r q r   
 

 Linearization around 

b=1 
(14, 19, 22-26) 

EBA     1 exp / 1r r     
 

  





  1, 1, 1O  (14, 19, 28) 

IBA 
   

 


  

 
   
    

2

3 4

2

1 1 1

r r

r r r
  





  1, 1, 1O  (19) 

RBA 




 
       

  
 

2 21 4
1 1 1

2

q q q

q r r r
     1, 1O  (14, 18-21, 29) 

RBA2    
2

2
2 1 4RBAb r r q r 



   
 

     1, 1O  (19) 

Padé   
1

1 8 2q r q q q


    
  

 Series interpolation (34) 

Padé2 
   
   

     

     

 

 

2

1 2

2

1 2

, , , ,

, , , ,

r A r A

r B r B
 Series interpolation (34) 

Table 1. Previously established single-channel equilibrium Ca2+ nanodomain approximations. For 

each method, only the free buffer concentration expression is shown, since the non-dimensional 

Ca2+ concentration can be found from the Ca2+ conservation law (Eq. 15). Note that LIN and EBA become 

identical in the limit >>1. RBA approximations valid up to orders O(1) and O() are denoted as 1st-order 

RBA (or simply RBA, bRBA(r)) and 2nd-order RBA (RBA2), respectively. Two lowest orders of the Padé 

method are denoted Padé for the 1st order case, and Padé2 for the 2nd order case. For Padé2, the 

parameter-dependent rational function constants A1,2 and B1,2  are given by the solution of a 4th order 

polynomial equation (34), which has a closed-form solution shown in Appendix 3. The 2nd order EBA for 

[Ca2+] is derived in (20), and is not shown.   

One of the contributions of early modeling efforts was the development of accurate analytical 

approximations of the solution of Eq. 18. They allow avoiding computationally expensive 

integration of reaction-diffusion equations while retaining considerable accuracy (19, 34). These 

approximations are summarized in Table 1, and apart from the Padé and LIN approximants, their 

regimes of applicability can be explained in intuitive physical terms. Namely, the Excess Buffer 
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Approximation (EBA) is applicable when the buffer concentration is so large that it is practically 

unsaturable by the given Ca2+ current, leading to an additional exponential decay factor for the 

Ca2+ concentration with increasing distance from the channel (14, 19, 28, 39). The Rapid Buffering 

Approximation (RBA) corresponds to the parameter regime where the buffering rate is much 

faster relative to the diffusion rate, and at lowest order represents the condition for instantaneous 

equilibrium of the Ca2+ buffering reaction (14, 18-21, 29). The nearly immobile buffer 

approximation (IBA) is applicable in the case of small buffer mobility, implying in turn weak 

buffering strength (19). Finally, the linear approximation (LIN) represents an ad hoc linearization 

around the free unbuffered point-source solution, b = 1, c = 1/r + c, but as Table 1 shows, LIN 

could also be viewed as an improved modification of the EBA. More precise meaning of these 

approximants was given in Smith et al. (20). The latter work showed that EBA, RBA and IBA 

represent asymptotic expansions in either  or =1/, and provided such expansions up to 2nd 

order with respect to these parameters. In contrast, the Padé approximation (34) is based on a 

series matching method explained in detail below. We note that only 2nd order RBA and Padé 

approximations are comparable in accuracy to the approximants presented in this work in large 

regions of parameter space. Since [Ca2+] is uniquely determined by the buffer concentration 

through the conservation law (Eq. 15), [Ca2+] estimation accuracy is only shown in the final 

summary and comparison of all approximations (see Figs. 5-7). We note that accurate estimation 

of free buffer concentration can be as important as the knowledge of the corresponding Ca2+ 

concentration, since it helps in the understanding of cell Ca2+ homeostasis, and in interpreting the 

results of Ca2+ imaging, which requires quantifying Ca2+ binding to  exogenously applied 

fluorescent Ca2+ buffers (2, 3, 5, 8). 

III. RESULTS 

III.1 Local properties of stationary nanodomain solution 

We start by generalizing some of the results previously presented in (32), without the restriction 

of binding-independent buffer mobility. We seek a solution to Eq. 18 which is bounded and 

analytic, and therefore it can be expanded in a Taylor series in r using the Frobenius method: 

 
     

 
  

 

  
   

0 2 3
1 / 2

.
2 6

o oo
o

b b bb
b r b r r O r                            (20) 

The usefulness of this series by itself is limited since the value of buffer at the channel location, 

bo, is a priori unknown, as mentioned above. Further, the convergence radius is finite due to the 

movable non-pole singularities of the solution in the complex r plane. However, the relationship 

between Taylor coefficients in this expansion can be used to constrain parameters of an 

appropriately chosen approximation. Further, by making a coordinate mapping 1/x r , we 

transform our original Eq. 18 to the form: 

              4 1xxx b b b bx .                                     (21) 

This reveals an essential singularity at x=0. In fact, numerical study shows that the analytic 

extension of b(x) to the complex-x plane has a branch cut across x=0, jumping from the physical 

value b=1 at x=0+ (r = +) to the unphysical value b =  / at x=0 (r = ) (see Fig. 7 in (34)). 
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Given that the boundary condition infinitely far from the channel is known, b(x=0+)=1, one can 

readily find the coefficients of a unique asymptotic power series expansion near x=0+: 

      
   

    

  

   

    

   

3 2 4 3

2 4 4 5

1 1 2

2 5 1

b x qx q x q q x

q q q x O x
.                 (22) 

Here we used parameter q = 1/(+) to simplify the coefficients (cf. Eqs. 16,34 in (34)). Note that 

terms of this long-range expansion agree up to order O(x3) with RBA and up to order O(x5) with 

RBA2 (Table 1), indicating that the reaction is approximately at equilibrium far from channel.  

The Padé method introduced in (34) and shown in Table 1 simultaneously matches leading terms 

of the two expansions given by Eqs. 20 (containing unknown b0 as a free parameter) and 22, 

using a simple rational function interpolant, with coefficients of this rational function found as 

functions of model parameters λ,  (or q), and . The simplest Padé interpolant of order 1 yields: 

          1b r q r    ,  where  8 2q q q    
 

.          (23) 

This simple function satisfies both     2( ) / 2o ob r b b r O r  and     2( ) 1b x qx O x . The 

corresponding estimate of free buffer concentration at the channel location is b0 = 1  q / . 

The Padé approximation (see Table 1) was chosen in (34) because of its algebraic simplicity and 

its straightforward expansion in power series in both r and x=1/r. Therefore, it represents an ad 

hoc ansatz, and for a fixed polynomial order, it is not necessary the most natural nor the most 

accurate interpolant between the short-range and long-range power series given by Eqs. 20-22. 

Further, although it does converge to the true solution with increasing order, closed-form 

expressions for its coefficients can only be obtained for the 2 lowest orders listed in Table 1. 

However, we observe that all approximants in Table 1 can be viewed as interpolants between the 

Taylor series in r and asymptotic power series in x=1/r, and therefore the series interpolation 

method first introduced in (34) can and should be applied to the corresponding functional forms, 

as well. Particularly promising in this respect is the simple exponential form of the EBA and LIN 

approximations, which are close to each other when 𝜈 ≫1, and which match in this limit the first 

two terms in the asymptotic expansion in Eq. 22, 𝑏(𝑥) = 1 − 𝑞𝑥 + 𝑂(𝑥2). In fact, standard analysis 

by substitution 𝑏(𝑥) = 1 − 𝑞𝑥 + 𝑒𝑆(𝑥) reveals that in the limit 𝑥 = 1 𝑟⁄ → 0+, the behavior of the 

general solution to Eq. 21 is described by: 

                                   
    
     

11
1

3 2 21 ...

q
q

x qb x qx q x C x x e ,    (24) 

where C(x) is bounded at x=0. Apart from the fractional power of x, this expression has a similar 

form to the EBA and LIN approximations in Table 1, suggesting that the corresponding functional 

form is a natural ansatz for describing long-range behavior of the solution.                                          

III.2 Functional form of approximants 

Given above analysis, we introduce approximants that have a simple functional form inspired by 

EBA and LIN, and which match the long-range asymptotic behavior of the solution, as given by 

Eq. 24. Namely, we consider approximations in one of the following three parametric forms: 
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                                       
 

 
1

1
re

b r q
r

,  (25) 

                                       
  


  

   3

2

1 11
1

rr e re
b r q q

r r
, (26) 

                                       





 
  



3

2

1 1
1

re
b r q q

r r
.  (27) 

We refer to these approximants as exponential (Exp), double exponential (DblExp), and 

exponential-Padé (Exp-Padé), respectively. In the limit r+ (x=1/r 0+), they explicitly satisfy 

the asymptotic expansion 𝑏(𝑥) = 1 − 𝑞𝑥 + 𝜂 𝑞3𝑥2  + 𝑂(𝑥3) to either 1st or 2nd order in x, and are 

analytic at 𝑟 = 0. The Exp and DblExp approximants depend on a single parameter , while Exp-

Padé contains an additional parameter . Note that Eq. 25 reduces to LIN or EBA when  equals 

1 √𝑞𝜆⁄  or 1 √𝜇𝜆⁄ , respectively (see Table 1). The novelty of our approach is that we constrain the 

values of parameters  and   using one of the following methods, described in detail further 

below: 

1. Series interpolation: in this case approximants given by Eqs. 25, 26 are referred to as Exp-

Ser and DblExp-Ser, respectively.  

2. Variational approach: Eqs. 25, 26 in this case are referred to as Exp-Var and DblExp-Var.  

3. Global method (modified variational approach): Eqs. 25, 26 will be called Exp-Global and 

DblExp-Global. 

The value of parameter  is given by the solution of a quadratic equation for the exponential 

ansatz, and cubic equation for the double exponential ansatz, as given in Table 2. Parameters 

of the Exp-Padé approximant are defined by a 4th-order polynomial equation, and are explicitly 

shown in Appendix 2. 

III.2.1 Series interpolation approach: results 

For the simple exponential ansatz, Eq.25, the relationship between the first two coefficients in the 

Taylor series in Eq. 20, 𝑏1 = 𝑏0 / 2𝜆, is satisfied for a unique value of exponent factor   given by 

a root of a quadratic equation, and listed in Table 2:    1 4 / 1 2q     . The corresponding 

approximant will be referred to as Exp-Ser, in contrast to LIN, which has the same functional form, 

but with the exponent factor value of 𝛼 = 1 √𝑞𝜆⁄  (cf. Table 1).  

A slightly more complex expression in terms of two exponentials, Eq. 26, allows to match two 

terms in the long-range asymptotic x-power series, 1 − 𝑞𝑥 + 𝜂𝑞3 𝑥2 + 𝑂(𝑥3). The relationship 

between the first two coefficients in the Taylor series in Eq. 20, 𝑏1 = 𝑏0 / 2𝜆, holds when the value 

of exponent factor   satisfies a cubic equation given in Table 2. This cubic has at most one real 

positive root for all values of model parameters {λ, q, }, which has an explicit solution shown in 

Appendix 1. The correspoding approximant will be referred to as DblExp-Ser. We note that α 

becomes imaginary for sufficiently small  and , inside a parameter region marked by thin lines 

in Fig. 6A1,A2; in that case the real part of Eq. 26 will be used to compare it with other methods. 
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Exp (Exponential): 

 2 /S q S      

DblExp (Double-Exponential): 

      2 3 2 1/ 0q P Q R q  

Series 

interpolation  

Exp-Ser: 

1/ 2S     

DblExp-Ser: 

     22 / 2/ 3, , 1.P Q q R  

Variational 

method 

Exp-Var: 

 1 2 / 3S q     

DblExp-Var: 

   

 





 

 



 
     

 
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 
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1 4
8ln2 5 4 1 ln ,

3 3

2 9 4
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2 / 3.
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Q q q

R q

 

Global 

method 

Exp-Global: 

 
3 4

ln ln
2 3

S q  

DblExp-Global: 

     

   

 













  

 
    

 



 

 

2

2

2 1 ln2

8

1 ln3

1 9
2 1 ln 2 ln ,

32 8

1 ,

2 1 ln 3 / 2 .

P q

Q q q

R

q

q q

 

Table 2. Equations for determining ansatz exponent parameter . The approximants given by Eqs. 

25 and 26 depend on a single constant exponent factor   that in turn depends on model parameters , 

q=(+)1 and   through the solution of a quadratic or a cubic equation. For all three mono-exponential 

approximants (Exp-Ser, Exp-Var, Exp-Global), the value of  is given by a solution to a quadratic equation 

of the same kind, but with different values of parameter S. Note that setting S=0 yields the linear 

approximation (LIN in Table 1). For all three double-exponential approximants (DblExp-Ser, DblExp-Var, 

DblExp-Global), the value of parameter  is given by a solution to a cubic equation of the same type, 

shown in the top row of the Table, but with different values of polynomial coefficients P, Q, and R. There 

is at most one positive real root of the cubic equation, which is given in Appendix 1. 

Finally, the ansatz given by Eq. 27 has an exponential term with parameter , and a rational term 

with parameter . Two free parameters allow to match two relationships between the first three 

Taylor coefficients in the short-range series expansion given by Eq. 20. This results in a 

polynomial system of order 4, with the level of complexity similar to that of the second-order Padé 

approximation (34). This polynomial system and the explicit expression for its roots are provided 

in Appendix 2. We note that the real positive solution for parameters  and  is only possible 

when < (equivalently, 2 q > 1). In the limit , parameter  diverges, and Exp-Padé 

approaches Exp-Ser. 

Figure 1 compares the three approximants described above (Exp-Ser, DblExp-Ser, Exp-Padé) 

with the previously developed Padé series interpolants of two lowest orders, as well as RBA2 
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(Fig. 1A), and LIN (Fig. 1C). The accurate numerical solution is shown as a gray curve. For the 

parameters in Fig. 1A (==0.1), Exp-Ser (black curve) isn’t as accurate as other approximants, 

but the accuracy of Exp-Padé (dashed black curve) and DblExp-Ser (dashed magenta curve) is 

excellent, and comparable to that of Padé2 (dashed green curve); in fact, the three curves 

completely overlap with the numerical solution curve. This is despite the fact that α in DblExp-Ser 

expression is complex for ==0.1, so this is not an optimal parameter region for DblExp-Ser, and 

the real part of Eq. 26 is used in this case. For larger values of  and/or  in Figs. 2B (=0.1, =10) 

and 2C (=1, =10), approximants Exp-Ser and DblExp-Ser are more accurate than Padé and 

even Padé2. These results suggest that these series interpolants may be superior to previously 

developed approximants in estimating Ca2+ nanodomains in a wide range of model parameters. 

Among previously developed approximants listed in Table 1, only RBA2 provides comparable 

accuracy, in the case <1, corresponding to parameters in Fig. 1A (dashed red curve). 

 

Figure 1.  Equilibrium nanodomain buffer concentration approximations obtained using the series 

interpolation method: 1st-order Padé (green), 2nd order Padé (Padé2, dashed green), Exp-Ser (black), 

Exp-Padé, (dashed black), and DblExp-Ser (dashed magenta). Also shown for comparison is RBA2 (A, 

dashed red) and Linear approximation (C, dotted black). All panels show free dimensionless buffer 

concentration as a function of distance from the Ca2+ channel, for 3 distinct choices of model parameters 

 and  , as indicated in the panel title, with  =1. Grey curves show the accurate numerical solution. In 

(A), DblExp-Ser, Padé2 and Exp-Padé are indistinguishable from the numerical solution on this scale. 

Note that Exp-Padé does not yield a solution for  > =1 (B,C). In (A), DblExp-Ser curve shows the real 

part of Eq. 26.  

Comparing the results by eye for several combinations of model parameters is clearly insufficient 

to unveil the parameter-sensitivity of approximant accuracy; in fact, the difference between 

several approximants is almost impossible to tell from Fig. 1. Therefore, following prior work (19, 

33, 34), we explore parameter dependence of the absolute deviation between the given 

approximation bapprox and the accurate numerical solution, bnumer: 

   


 

  

 


1

3 5 /

1
,

10 , 1, 2, ... .

N

approx numer approx n numer n

n

n N

n

b b b r b r
N

r n N

                                (28) 
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The deviations are computed on a set of N=100 points spanning 5 orders of magnitude of distance 

r, from 10-3 to 102. Since we use logarithmically spaced points, this norm is equivalent to an L1 

norm weighted by 1/r, and therefore it requires a short-range cut-off (we pick r  103). The higher 

weight at small r is justified by the fact that the short distance range is of greater interest, 

physically. Fig. 1 indicates that the chosen range of r is sufficient to capture the qualitative 

behavior of solutions for a wide range of parameter values. We checked that none of the 

conclusions are changed qualitatively by choosing an L norm instead. 

 

Figure 2.  Accuracy comparison of equilibrium free buffer concentration approximations obtained by the 

series interpolation method: Exp-Ser (black curves), Exp-Padé (dashed black curves), DblExp-Ser 

(dashed magenta curves), and Padé2 (dashed green curves). Also shown is LIN (dotted black curves) 

and RBA2 (red dashed curve). RBA2 is only shown in A, since it requires <1. All curves show the error 

norm given by Eq. 29, on base-10 logarithmic scale, as a function of model parameter   ranging from 10-

3 to 102, for 3 distinct choices of : =0.02 (A), =2 (B), and =20 (C), with  =1. Since Exp-Padé only 

yields a solution for  <  =1, the corresponding curves terminate at =1.. Magenta circle in (A) indicates 

the value of  below which the exponent parameter   of DblExp-Ser becomes imaginary (this occurs for 

<1.8). For smaller value of , the magenta curve in A corresponds to the real part of Eq. 26.  

The parameter dependence of this error norm is shown in Fig. 2, as the value of   is 

systematically varied from 102 to 102, for three distinct values of . Each curve shows the error 

measure given by Eq. 28 for the corresponding approximation. For the sake of comparison, also 

shown are the error of the 2nd order Padé interpolant (Padé2, dashed green curves), the linear 

approximant (LIN, dashed black curves), and RBA2 (dashed red curve, Fig 2A only). For smaller 

values of  (Fig. 2A), Padé2 and RBA2 are still the superior approximation methods, but with 

increasing , the exponential series interpolation approximants outperform all approximants in 

Table 1 in estimating free buffer concentration. Thus, the choice of the optimal approximation 

method depends on the particular combination of model parameter values. 

III.3 Variational approach 

We now consider a completely different method of approximating solutions, based on a variational 

approach. As we rigorously demonstrate in Appendix 4, the solution to Eq. 14  represents a unique 

minimizer of the following functional, in an appropriate function space: 
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 r r r ,                 (29) 

where V(b, r) is defined by  

             
2 31

,
| | 2 3
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
  

 
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 
r

r
,                                              (30) 

and bRBA(r) is the 1st-order RBA approximants given in Table 1, which solves Eq. 14 when =0. 

Subtraction of V(bRBA(r), r) in Eq. 29 is necessary to ensure boundedness of F[b]. Considering 

perturbations ,b b    where  is a smooth function with compact support   3

cC  , and 

denoting  ' ,V b r  the 1st partial derivatives with respect to b, the variational derivative (the 

Gâteaux derivative) of F[b] in the direction of  is 
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  (31) 

Therefore, setting  

  0D F b    for   3

cC             (32)  

formally yields the weak form [42] of Eq. 14. As is proved in Appendix 4, the minimizer of F[b] is 

unique and radially symmetric. Therefore, we seek an ansatz of the form 𝑏(𝑟; 𝛼𝑘), and consider 

perturbations with respect to the ansatz parameters 𝛼𝑘 , i.e. we take      ; / .k kb r

Performing integration by parts in the derivative term transforms Eqs. 31-32 to 
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;
4 ; 0
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k

k k

F b r b
E b r r dr , (33) 

where E[b] is defined in Eq.18. For the ansatz given by Eqs. 25-27, this integral may be computed 

in closed form, allowing to obtain the optimal values of parameters k by differentiation. For the 

lowest-order exponential ansatz (Eq. 25), considering b(r ;) with one free parameter in Eq. 33 

leads to a quadratic equation for  with a unique positive real root, as given in Table 2. The 

corresponding approximant will be referred to as Exp-Var (see Table 2). Note the similarity in the 

expression for , as compared to the series interpolant method result in Table 2. 

For the more complicated case of a double exponential ansatz (Eq. 26), Eq. 33 leads to a cubic 

rather than a quadratic equation for , analogously to the series interpolation method; this cubic 

is shown in Table 2, and its closed-form solution is given in Appendix 1. This cubic has a single 

real positive real root for a wide range of model parameters {, , }, and we refer to the 

corresponding approximant as DblExp-Var. However, just like in the case of DblExp-Ser, α 

becomes complex when both  and  are sufficiently small. In this parameter regime, the real part 
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of Eq. 26 still provides an accurate approximant. The performance of Exp-Var and DblExp-Var 

approximants will be investigated below, after considering our final approximation method. 

III.4 Global method: modification of the variational approach.              

Given that Eqs. 25-26  represent narrow classes of functions that cannot provide a true minimum 

of F[b], it may be useful to consider modifications of Eq. 33 that allow to achieve a lower value of 

our chosen error norm given by Eq. 28. One such modification is to replace the Jacobian factor r2 

in Eq. 33 with the first power of r, increasing the contribution of small distances in this integral, 

and thereby potentially reducing the error at short range: 

  
0

; 0
b

E b r r dr





     .  (34) 

We refer to this method of setting approximant parameter values as the Global method, or 

modified variational method. Eq. 34 can be rigorously obtained from the variational derivative 

given by Eqs. 31-32, but this time applied to perturbations   of form 

  
 









;1 b r
r

r
.  (35) 

We note that for the ansätze in Eqs. 25-26, this perturbation remains finite as r0. Numerical 

results show that this modification does lead to noticeable improvement of the resulting 

approximants close to the channel location, for some combinations of model parameters. In fact, 

for some parameter regimes this method clearly outperforms the series interpolation and the 

variational approaches with respect to the weighted L1 error measure given by Eq. 28. 

For the lowest order exponential ansatz (Eq. 25), after replacing 𝑏(𝑟; 𝛼) in Eq. 34 with Eq. 25, one 

obtains a quadratic equation for   with a single positive real root given in Table 2; we refer to the 

corresponding approximant as Exp-Global. Just as in the case of the series intepolant method 

and the variational method, applying this method to the double exponential ansatz (Eq. 26) leads 

to a cubic equation for parameter , given in Table 2. We verified that this cubic has a single real 

positive real root for a wide range of model parameters {, , }, and we refer to the corresponding 

approximant as DblExp-Global. However, like in the case of DblExp-Ser and DblExp-Var 

approximants, parameter α becomes imaginary when both  and  are sufficiently small; in that 

case, the real part of Eq. 26 will be used. 

We note that a more straightforward approach of minimizing a weighted L2 norm of 𝐸[𝑏] also leads 

to a closed-form solution in the case of a single-exponential ansatz, but the resulting approximant 

does not perform significantly better than the ones we present above, and its parameter α is given 

by solution to a more complicated 4th order polynomial equation.   

III.5 Accuracy of the variational and global approximants 

Figure 3 compares all variational and global approximants described above (Exp-Var, DblExp-

Var, Exp-Global and DblExp-Global) with Padé2 and the accurate numerical solution, using the 

same combination of model parameters as in Fig. 1. It shows that in some cases (Fig. 3B,C) the 

global approximations are more accurate than Padé2 and other series interpolants (cf. Fig. 2B,C). 
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Further, in Figs. 3B and 3C, global approximants perform better than the corresponding variational 

approximants, and the differences between global methods and numerical results are barely 

noticeable. In contrast, Fig. 3A illustrates that for ==0.1, none of the variational and global 

approximants are as accurate than Padé2, suggesting that the series interpolation methods may 

be superior for small values of   and . We conclude the variational method and the global 

method can be great improvements compared with the series interpolation method in some, but 

not all, parameter regimes. 

 

Figure 3.  Comparison of equilibrium buffer concentration approximants obtained using the variational 

and the modified variational (global) methods: Exp-Var (dashed blue curves), DblExp-Var (dotted 

magenta curves), Exp-Global (blue curves), and DblExp-Global (magenta curves). Padé2 is also shown 

for comparison (dashed green curves). All panels show the free dimensionless buffer concentration as a 

function of distance from the Ca2+ channel, for 3 distinct choices of model parameters  and , with =1.  

Grey curves show the accurate numerical solution. In (A), the real part of DblExp-Var and DblExp-Global 

is shown. In (B) and (C), the curves for Exp-Global and DblExp-Global overlap the numerical solution. 

Figure 4 shows a more systematic comparison to reveal the accuracy of the approximants 

obtained using the variational and the global methods in more detail. As in Fig. 2, the value of   

is systematically varied from 10-2 to 102, for three different fixed values of dimensionless buffer 

diffusivity parameter . Each curve shows the average absolute error in buffer concentration 

approximation, as given by Eq. 28. The error of the series interpolant DblExp-Ser is also shown 

for comparison in all panels, while Fig. 4A also shows the accuracy of RBA2 and Padé2. For small 

values of   and  (Fig. 4A), RBA2, Padé2, and even DblExp-Ser are outperforming the global 

approximants. However, as one increases the values of   and , global approaches are starting 

to show their advantage. For most parameter regimes, approximations obtained using the 

modified variational (i.e. global) method are more accurate than the corresponding 

approximations obtained using the unmodified variational method. For example, in all panels of 

Fig. 4, Exp-Global (blue curves) is superior to Exp-Var (dashed blue curves).  
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Figure 4. Accuracy comparison of equilibrium nanodomain free buffer concentration approximations 

obtained by the variational and modified variational (global) methods: Exp-Var (dashed blue curves), 

DblExp-Var (dotted magenta curves), Exp-Global (blue curves), and DblExp-Global (magenta curves). 

For comparison, also shown is the error of DblExp-Ser (dashed magenta curves), and (A) shows the 

errors of RBA2 (dashed red curves) and Padé2 (dashed green curves). All panels show the average 

absolute deviation of free dimensionless buffer concentration (Eq. 29), on log10 scale, as a function of 

buffer strength parameter  ranging from 10-3 to 102, for 3 distinct choices of fixed model parameter : 

=0.02 (A), =2 (B), and =20 (C), with =1. Magenta circles in (A) mark values of   below which 

parameter   becomes imaginary for the corresponding DblExp method. For these smaller value of , the 

magenta curves in (A) represent the accuracy of buffer concentration given by the real part of Eq. 26. 

We note that the 2nd term in the DblExp approximants reflects the 2nd term in the long-range 

asymptotic series, which scales as q3=1/(+)3, therefore the double-exponential and the mono-

exponential ansätze become equivalent when q is sufficiently small, corresponding to large values 

of buffer strength parameter . This behavior of accuracy as  is apparent in Figs. 2 and 4. 

III.6 Accuracy in approximating Ca2+ concentration 

As noted above, Ca2+ concentration is uniquely determined from the equilibrium buffer 

concentration through the Ca conservation law, Eq. 15. Nevertheless, it is useful to look 

separately at the accuracy of the Ca2+ estimation by the methods we present. Close to the channel 

location Ca2+ concentration is dominated by the unbounded point source term, 1/r, and therefore 

we will use a logarithmic error measure when comparing Ca2+ concentration approximations (19, 

33, 34): 

                  
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.                   (36) 

This sum extends over the same logarithmically spaced points that were used for the buffer error 

measure given by Eq. 28, namely a set of 100 points spanning 5 orders of magnitude of distance.  

Figure 5 plots this Ca2+ error measure for the optimal approximations that achieve the greatest 

accuracy over the wide range of model parameters  and . Because of the difference between 

the buffer and the Ca2+ error measures (cf. Eq. 28 vs. Eq. 36), the accuracy profile of different 
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Ca2+ concentration approximants shown in Fig. 5 doesn’t match perfectly the accuracy of the 

corresponding free buffer approximants shown in Figs. 2 & 4, despite the one-to-one relationship 

between the Ca2+ concentration and free buffer. As explained above, the relative error in Ca2+ 

concentration estimation is particularly sensitive to the accuracy of the method at intermediate 

distances, rather than its accuracy in the vicinity of the channel, as is the case for the free buffer 

error measure (19, 34). Note in particular that the DblExp-Var or DblExp-Global yield the most 

accurate Ca2+ approximations for 1 (see Figs. 5B,C), contrary to the error in buffer estimation, 

which is minimized by the Exp-Global and DblExp-Global approximants (cf. Fig. 4B,C). However, 

for small values of , RBA2 and Padé2 are the best methods for estimating both Ca2+ and buffer 

concentration (Figs. 4A, 5A).  

  

Figure 5.  Accuracy comparison of equilibrium nanodomain Ca2+ concentration estimation by select 

optimal approximations (methods with smallest error): RBA2 (red dashed curves), Padé2 (dashed green 

curves), Exp-Padé (dot-dashed black curves), Exp-Global (blue curves), DblExp-Global (magenta 

curves), and DblExp-Var (dotted magenta curves). All  panels show average absolute deviation of free 

dimensionless Ca2+ concentration (Eq. 36), on base-10 logarithmic scale, as a function of buffering 

strength parameter  ranging from 10-2 to 102, for 3 distinct choices of diffusivity parameter : =0.02 (A), 

=2 (B), and =20 (C), with =1. Curves for Exp-Padé (dashed black curves) terminate at =1. 

III.7 Summary of results and approximant choice algorithm 

Figure 6 summarizes all results presented in Figs. 1-5, marking the best approximants and their 

errors for a wide range of buffer mobility  and buffering strength   varying over 5 orders of 

magnitude. It shows that the methods we presented significantly improve the accuracy of 

approximation for a wide range of model parameters, and especially those corresponding to larger 

values of  and . In fact, these methods outperform all previously developed approximants with 

the exception of RBA2 and Padé2 (19, 34), which are still superior in wide regions of parameter 

space corresponding to small  and small-to-moderate . 
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Figure 6.  Comparison of parameter regions where a given approximant outperforms the rest in estimating 

(A1) free buffer and (B1) Ca2+ concentration in the (, ) parameter plane, according to the error measures 

given by Eqs. 28 and 36. In all panels, =1. Colors indicate parameter region of best performance for 

each approximant: Padé2 (green), RBA2 (red), Exp-Padé (gray), DblExp-Var (pink), DblExp-Global 

(magenta), Exp-Global (blue). Black circles corresponds to parameter values in Figs. 1,3, and dashed 

lines corresponds to the parameter sweeps shown in Figs. 2,4-5. Thin light semi-circular curves indicate 

the boundaries inside of which the exponent parameters  in the DblExp-Var and DblExp-Global methods 

becomes imaginary ( is always real outside of the region marked by these curves, for  > 1 and  > 1.8). 

Lower panels show the smallest error in estimating buffer (A2) and Ca2+ (B2) concentrations achieved 

using the optimal approximants shown in top panels. The grayscales in A2 and B2 indicate the log10 of 

error values given by Eqs. 28 and 36, respectively. Darker gray-level corresponds to better accuracy. 

Figure 6A1,B1 can be used to design a simple algorithm for the selection of the optimal method. 

We find that such algorithm can be further simplified by using just three methods, Padé2, RBA2 

and DblExp-Global, with only a small sacrifice in accuracy. Below is the full sequence of steps 

allowing to achieve good accuracy in the entire parameter range that we explored, combined with 

the steps needed to obtain final results in physical units: 

1) Compute all non-dimensional parameters (Eqs. 10,12,13). 

2) Find the non-dimensional buffer concentration b using one of three methods: 
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a) If   < 0.1 and  < 0.03, then use RBA2 (Table 1) 

b) Otherwise, use DblExp-Global, if its parameter  is real (Eqs. 26, 37-39) 

c) Otherwise, use Padé2 (Table 1, Eqs. 43,44) 

3) Compute non-dimensional Ca2+ concentration c using the conservation law, Eq. 15. 

4) Convert concentrations to physical units: [Ca2+] = c K, [B] = b B. 

In the last step, K denotes buffer’s affinity, and B is the free buffer concentration far from the 

channel (Eq. 8). Figure 7 shows that the accuracy of the approximants chosen according to this 

simplified algorithm remains within 1% even for this simplified approach, for a very wide range of 

 and  values, and two different values of , namely =1 and =10. Note that the overall accuracy 

is increased at higher values of 𝜂 = c∞ + 1/𝛿B
∗ , which corresponds to higher background 

Ca2+ concentration and/or reduced mobility of the Ca2+-bound buffer state. Results in Fig. 6A1,B1 

reveal that a somewhat better performance could be achieved if the buffer and Ca2+ concentration 

approximations are chosen independently for a given set of parameter values, but this would lead 

to only a minor improvement. Apart from algorithm simplicity, choosing the same method for 

Ca2+ and buffer concentration estimates guarantees that the conservation law, Eq. 15, is satisfied.  

 

Figure 7. Simplified algorithm for choosing an optimal approximant, for two values of parameter : =1 

(A1-A3), and =10 (B1-B3). (A1, B1): method choice as a function of parameters  and , according to 

the algorithm described in the text. Colors indicate the parameter region for each approximant: Padé2 

(green), RBA2 (red), and DblExp-Global (magenta). Black circles in (A1-A3) corresponds to parameter 

values in Figs. 1,3, and dashed lines corresponds to the parameter sweeps shown in Figs. 2,4,5. Thin 

light semi-circular curves indicate the boundaries inside of which the exponent parameters  of the 

DblExp-Global approximant becomes imaginary. (A2, B2) and (B3, A3) show the smallest error in 

estimating buffer and Ca2+ concentrations, respectively, achieved using the approximants chosen as 

indicated in A1 and B1. The grayscales in A2 and B2 indicate the log10 of error values in Eqs. 28 and 36, 
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respectively. The same grayscale is used for =1 and =10, for ease of comparison. Darker gray-level 

corresponds to higher accuracy. 

Finally, we note that another accurate buffer approximant can be obtained by applying the 

conservation law (Eq. 15) to the 2nd order EBA approximation for Ca2+ concentration derived in 

terms of exponential integrals in (20). This approximation has excellent performance relative to 

other methods when  > 30, in a certain range of  values. However, its accuracy advantage is 

significantly reduced when  > 1, and depends very steeply on the value of .  

IV. Discussion 

We have presented a significant extension of prior modeling work on equilibrium single-channel 

Ca2+ nanodomains, based on two distinct approaches applied to several types of parametric 

approximants, which to our knowledge have not been considered previously. In particular, we 

extended the series interpolation methods recently used to construct rational function (Padé) 

approximants (34), generalizing it to more accurate and natural parametric forms given by Eqs. 

25-27, which bear resemblance to the EBA and LIN approximants obtained previously using 

different methods. Furthermore, we applied two versions of the variational approach to 

approximants of the same functional form, resulting in significant improvement of approximation 

accuracy for a wide range of parameters. As summarized in Figs. 6-7, a combination of previously 

developed and newly presented approximants can achieve an excellent estimation for the free 

buffer and Ca2+ concentration near an open channel, for several orders of magnitude of 

dimensionless parameters , , and . Further, we showed that a subset of just three methods, 

Padé2, RBA2 and DblExp-Global, allow to achieve an accuracy of 1% or better in the entire 

parameter range that we explored. As Figs. 6 and 7 show, the parameter region posing the 

greatest challenge corresponds to <<1,  >>1. However, Figs. 1B, 2A, 3B, 4A & 5A illustrate that 

reasonable accuracy is achieved even in this parameter regime.  

We note that the accuracy profiles shown in the Figs. 2, 4-7 depend on our choice of the error 

measures, given by Eqs. 28, 36. For instance, without spacing mesh points logarithmically in 

these error measures, the accuracy ranking of different methods may change. However, this error 

measure choice provides a very demanding and restrictive comparison, covering a very wide 

range of distances, and weighting the error more at short distance from the channel (19, 33, 34). 

Therefore, we believe that the chosen error measures are appropriate and yield the best 

comparison method given the wide range of parameters we consider. Further, we checked that 

the conclusions are not substantially changed if the L
  norm is chosen instead.   

The drawback of the methods we present is that the expression for approximant parameters can 

be quite complex, especially for the ansätze with more than one exponential term. The level of 

complexity of different methods is not the same: the simplest ones are the mono-exponential 

approximants (Exp-Ser, Exp-Var, Exp-Global), followed by double-exponential methods that 

require finding a root of a cubic equation (DblExp-Ser, DblExp-Var, DblExp-Global), and finally, 

two methods, Exp-Padé and Padé2, require solving a fourth-order polynomial system. However, 

all approximants were determined as closed-form expressions that only take several lines of 

computer code (see Appendices 1-3).  
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Several other functional forms not shown in Table 2 were also considered, but are not presented 

here since they either did not result in better accuracy compared to other approximants, or provide 

only a minor improvement in limited regions of parameter space while complicating the 

expressions for parameters. This is true for example for the double-exponential approximation 

given by Eq. 25 but with two different exponent parameters, 𝛼1 and 𝛼2. However, it is possible 

that we missed other accurate approximants. It is possible that such improved ansätze could be 

found, for instance by taking into account the singularities of the analytic extension of the buffer 

concentration to the unphysical complex-distance plane. We note that only RBA captures the 

branch cut of this analytic extension, which jumps from the physical value b=1 at x=0+ (r=+) to 

the unphysical value b =  /  at x=0
 (=) (see Fig. 6 in (34)). Further, as noted above, 2nd-

order RBA derived in (19) agrees with the long-range asymptotic expansion of the true solution 

given by Eq. 22 up to terms of order x5 (19, 34). Therefore, our initial efforts to construct an 

improved ansatz were based on modifying the RBA approximant. However, so far we failed to 

find a successful modification of RBA that improves its performance. 

More importantly, the presented approaches can be extended to the study of complex buffers with 

more realistic Ca2+ binding properties. Most of prior modeling efforts, including this study, focused 

on a simple buffer with one-to-one Ca2+ binding, but most biological buffers possess several 

binding sites with distinct Ca2+ binding characteristics, such as calretinin and calmodulin (40-42). 

To date, only RBA has been extended to such buffers, and only to 1st order (33). However, our 

preliminary exploration reveals that the series interpolation approach can be extended to such 

buffers, using a combination of rational and exponential functions, which is a subject of our current 

work. Another direction of potential improvement is relaxing some of the key simplifying 

assumptions of the model, allowing for simple volumetric Ca2+ extrusion and extension to Ca2+ 

channel pore of a finite width (16), and exploring the generalization of these methods to the case 

of two or more channels. 
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APPENDIX 1: Exponent parameter for double exponential approximations. 

For each of the three approximation methods summarized in Table 2, the parameter  of the 

double-exponential ansatz satisfies a cubic equation of form: 

 
2 3 2 0q P Q R S       .  (37) 

The three roots of this cubic can be succintly represented in the folowing form: 
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  (38) 

The constants 𝑝𝑘  (𝑘 = 1,2,3) in the expression for the intermediate quantity Gk denote branches 

of (1)1/3 : 

        2 31 1 3 / 2, 1 3 / 2, 1i p i pp .  (39) 

In this notation, the real positive root of Eq. 37 corresponds to the value 𝛼1 when implemented 

verbatim in MATLAB (Mathworks, Inc). For each of the three double-exponential approximants, 

the imaginary part of the root becomes non-zero for small values of  and  corresponding to the 

inner region marked by thin curves in Fig. 6A1,B1.  
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APPENDIX 2: parameters of the Exp-Padé approximation 

For the Exp-Pade ansatz (Eq. 27), matching the relationship between the first three terms in the 

Taylor series of the solution (Eq. 20) leads to the following algebraic system for the ansatz 

parameters α and β: 

 

 
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 
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

13

2 2 3

2

  1 1 ,

1 2
2 6 0.

2

q q

q
q q

q

  (40) 

 This leads to a fourth-order polynomial equation for , with the following explicit solution: 

  
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2 6
2

H Q VH H U ,  (41) 

where constants U, V, H, Q  are determined by model parameters {, q,  } according to 
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  (42) 

We note that the other three roots do not yield real positive values of α and β. In the parameter 

regime 1-q < 10-2  and  < 10-2, these expressions suffer from numerical loss of significance due 

to subtraction of values close in magnitude, in several of the intermeidate variables. The loss of 

accuracy can be corrected  by an algebraic manipulation of the terms, by using higher-precision 

computation, or by applying a couple Newton’s iteration steps to the computed root value. 
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APPENDIX 3: parameters of the Padé2 approximation 

The Padé2 rational function ansatz listed in Table 1 is obtained by matching the long- and short-

distance series expansions and leads to a 4th order polynomial system (34), which has the 

following exact solution for the coefficients A1,2 and B1,2: 
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where constants Q, G, H, R, K, J and V are determined by model parameters {, q, } and p=q 

according to 
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The other three roots do not yield positive real values of coefficients A1,2 and B1,2 satisfying the 

constraints required for the correct physical behavior of the solution (34). 
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APPENDIX 4: Existence and uniqueness of solution 

Here we outline a rigorous mathematical study of Eq. 14 to establish the basic qualitative 

characteristics of its biophysically relevant solutions. The solutions of this equation must be 

understood in the distributional sense in 3  (43), in view of the fact that the right-hand side of Eq. 

14 blows up at the origin and, therefore, the derivatives of b(r) are undefined classically at r=0. 

We will take advantage of the variational formulation, Eqs. 29-32, to establish basic existence, 

uniqueness, regularity and symmetry properties of the solutions of the above equation in the 

physically relevant class of functions b : 3 , namely functions that approach the limit at 

infinity sufficiently fast and obey the bounds in Eq. 16. To make the statement in Eqs. 29-32 more 

precise, we need to ensure that F[b] is well defined and differentiable for a given b. A natural class 

of functions ensuring these conditions is the homogeneous Sobolev space  
o

1,2 3W , i.e., the 

space of locally integrable functions with square integrable first weak derivatives (for the basic 

notations and the definitions of the function spaces used below see (43, 44)). This makes the first 

term in the integrand in Eq. 29 well-defined. Nonetheless, we still need to make sure that the rest 

of the integrand does not give rise to a divergent integral due to a possible slow decay of b(r)  1 

as r  +∞. To control the latter issue, we invoke Eq. 16.  

For simplicity of notation, let  ' ,V b r  and  ' ' ,V b r  denote the 1st and the 2nd partial 

derivatives with respect to b. Taylor expanding around bRBA(r) and taking into account that 

 ' , 0RBAV b r , we have  

             
21

, , ' ' ,
2

RBA RBAV b V b V b b br r r r r r   (45) 

for some  b r  lying between b(r) and bRBA(r). We note that bRBA(r) satisfies the bounds in Eq. 

16, obeys bRBA(r)  |r| as |r|0, and agrees up to order O(|r|3) with Eq. 22 as |r|+. Since b  

also satisfies the bounds in Eq. 16 and because 

  
1

' ' , 2
| |

V b b     r
r

,  (46) 

we obtain from Eq. 46 and the definition of   (Eq. 13) that 

   *' ' , 1/ 0BV b c 


   r .  (47) 

In particular, F is non-negative in the considered class. Also, by inspection  
o

1,2 3

RBAb W . 

Therefore, it holds that 

      RBAF b   ,             (48) 
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indicating that F is finite on a non-empty subset of  
o

1,2 3W  satisfying the bounds in Eq. 16.  

We now proceed with establishing existence of solutions of Eq. 14 which are minimizers of F 

among all  
o

1,2 3b W  satisfying Eq. 16. To this aim, we first redefine F to relax the constraints 

in Eq. 16, by introducing  
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Notice that    F b F b  for all b satisfying Eq. 16. Also, by inspection      1,1,V Cr  for all 

r≠0, and  

       
 ' , 0, ' , 0V b V br r r r .  (51) 

In particular,    , ,RBAV b V br r  for all b  and  3r .  

Next we use the direct method of calculus of variations (45) to establish existence of minimizers 

of  F b . In view of Eq. 48, we have  inf F b   . Existence of minimizers then follows from 

coercivity and lower semicontinuity of  F b  with respect to the weak convergence in  
o

1,2 3W  

and strong convergence in  1 3

locL  (45). Indeed, if  
o

1,2 3

nb W  is a minimizing sequence, 

then for any R > 0 we have 
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because by construction        , , max 0,RBAV b V b c b Cr r  for some c, C > 0 and any 

 
o

1,2 3 .b W  From Eq. 52 we obtain 
 

  2 3

2
limsup ,n n L

b  and after extraction of a 

subsequence we have nb ⇀ b  in  2 3 3;L  and    nb br r  for almost every  3,r  for 

some  
o

1,2 3b W . Then by lower semincontinuity of the norm and Fatou’s lemma applied to 

  ,nV b r r  we get that    
lim infn nF b F b , and so b is a minimizer of F . Furthermore, 
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since F is Fréchet differentiable with respect to compactly supported perturbations, we also have 

   0,D F b  i.e.,  

    


    
      

 
 3

3 3' , 0,
2

cb V b d r Cr .  (53) 

Having established existence of a minimizer of F , we now show that it satisfies Eq. 16 a posteriori. 

To show that b  b+ we define    min , max ,1 / ;b b b c 
 

 r  by Eq. 51 we have [ ] [ ]F b F b , 

and this inequality is strict unless b b  almost everywhere in 3.  Similarly, to establish b  b, 

we define    
  

o
1,2 3min 0,w b b W , and note that w = 0 in  1/ 0B  or whenever b  b in 

 1 / 0 .cB   Defining       max ,b b b


r r r , we have 

       
 1/

3

0
' ,

2
cB

F b F b b b w V b w d r



 

 
        

 
 r r .  (54) 

Using Eqs. 51 and 53, and the fact that 


 2 0b in  1 / 0cB distributionally, integrating by parts 

we obtain  

     
 1/

3

0

1
' , 0

2
cB

F b F b V b w d r



      r r . (55) 

This inequality is strict unless b = b almost everywhere in 3.  Thus, the minimizer b satisfies Eq. 

16 and, hence, is also a minimizer of F[b] in  
o

1,2 3W , subject to the constraint in Eq. 16. 

We now establish uniqueness, regularity and radial symmetry of the minimizer b. By Eq. 53, b 

satisfies Eq. 32 and is unique in this class due to strict convexity of F ensured by Eq. 47.  Namely, 

if b is a minimizer and   1,2 3
o

w W  is such that b + w still satisfies Eq. 16, with the help of Eqs. 

53 and 45 we can write 

            
  3

2 2 31
| | '' ,

2
F b w F b w V b w d rr r ,  (56) 

for some  b r  between b(r) and b(r)+w(r). So, by Eqs. 56 and 47, we have F[b+w] > F[b] for every 

w(r)0, and, therefore, b(r)+w(r) is not as minimizer unless w(r)=0 almost everywhere in 
3.  

Then, by uniqueness of minimizer, we have b(r)=b(|r|) (with a slight abuse of notation), i.e. b 

is radially symmetric, as minimization may be carried out in the class of radial functions to obtain 

a radial solution of Eq. 32. Finally, elliptic regularity theory (44) yields that for any 1  p < 3,we 

have     2, 3 3

loc \ 0pb W C  , and hence by Sobolev embedding (43) we have   0, 3b C 
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for any  0, 1 .   In particular, b(r) is continuous at r=0 and solves Eq. 18 for each r > 0. 

Integrating this equation once near the origin yields 

 
 

 2

0
, 0

2

bdb C
O r r

dr r




    , (57) 

for some .C   In view of square intrgrability of b , we must have C=0, and so b is in fact 

Lipschitz-continuous at the origin, which justifies Eq. 20. Lastly, boundedness of F[b], Eq. 47, 

Lipschitz continuity of b and decay of bRBA1 at infinity yield b(r)1 as r∞. 

  

 

REFERENCES 

 

 
1. Konieczny, V., M.V. Keebler, and C.W. Taylor. 2012. Spatial organization of intracellular 

Ca2+ signals. Semin Cell Dev. Biol. 23: 172–180. 

2. Oheim, M., F. Kirchhoff, and W. Stühmer. 2006. Calcium microdomains in regulated 
exocytosis. Cell Calcium. 40: 423–439. 

3. Augustine, G.J., F. Santamaria, and K. Tanaka. 2003. Local calcium signaling in neurons. 
Neuron. 40: 331–346. 

4. Stanley, E.F. 2016. The Nanophysiology of Fast Transmitter Release. Trends Neurosci. 
39: 183–197. 

5. Berridge, M.J., P. Lipp, and M.D. Bootman. 2000. The versatility and universality of 
calcium signalling. Nat. Rev. Mol. Cell Biol. 1: 11–21. 

6. Neher, E. 2000. Calcium buffers in flash-light. Biophys. J. 79: 2783–2784. 

7. Matthews, E.A., and D. Dietrich. 2015. Buffer mobility and the regulation of neuronal 
calcium domains. Front. Cell. Neurosci. 9: 48. 

8. Thurley, K., A. Skupin, R. Thul, and M. Falcke. 2012. Fundamental properties of Ca2+ 
signals. Biochim. Biophys. Acta. 1820: 1185–1194. 

9. Dupont, G., M. Falcke, V. Kirk, and J. Sneyd. 2016. Models of Calcium Signalling. Cham: 
Springer International Publishing. 

10. Roberts, W.M. 1993. Spatial calcium buffering in saccular hair cells. Nature. 363: 74–76. 

11. Simon, S.M., and R.R. Llinas. 1985. Compartmentalization of the submembrane calcium 
activity during calcium influx and its significance in transmitter release. Biophys. J. 48: 
485–498. 



29 

 

12. Fogelson, A.L., and R.S. Zucker. 1985. Presynaptic calcium diffusion from various arrays 
of single channels. Implications for transmitter release and synaptic facilitation. Biophys. 
J. 48: 1003–1017. 

13. Chad, J.E., and R. Eckert. 1984. Calcium domains associated with individual channels 
can account for anomalous voltage relations of CA-dependent responses. Biophys. J. 45: 
993–999. 

14. Neher, E. 1998. Usefulness and limitations of linear approximations to the understanding 
of Ca++ signals. Cell Calcium. 24: 345–357. 

15. Aharon, S., H. Parnas, and I. Parnas. 1994. The magnitude and significance of Ca2+ 
domains for release of neurotransmitter. Bull. Math. Biol. 56: 1095–1119. 

16. Bentele, K., and M. Falcke. 2007. Quasi-steady approximation for ion channel currents. 
Biophys. J. 93: 2597–2608. 

17. Rudiger, S., J.W. Shuai, W. Huisinga, C. Nagaiah, G. Warnecke, I. Parker, and M. 
Falcke. 2007. Hybrid stochastic and deterministic simulations of calcium blips. Biophys J. 
93: 1847–1857. 

18. Smith, G.D. 1996. Analytical steady-state solution to the rapid buffering approximation 
near an open Ca2+ channel. Biophys. J. 71: 3064–3072. 

19. Smith, G.D., L.X. Dai, R.M. Miura, and A. Sherman. 2001. Asymptotic analysis of 
buffered calcium diffusion near a point source. Siam J. Appl. Math. 61: 1816–1838. 

20. Wagner, J., and J. Keizer. 1994. Effects of rapid buffers on Ca2+ diffusion and Ca2+ 
oscillations. Biophys. J. 67: 447–456. 

21. Bertram, R., G.D. Smith, and A. Sherman. 1999. Modeling study of the effects of 
overlapping Ca2+ microdomains on neurotransmitter release. Biophys. J. 76: 735–750. 

22. Bauer, P.J. 2001. The local Ca concentration profile in the vicinity of a Ca channel. Cell. 
Biochem. Biophys. 35: 49–61. 

23. Naraghi, M. 1997. T-jump study of calcium binding kinetics of calcium chelators. Cell 
Calcium. 22: 255–268. 

24. Naraghi, M., and E. Neher. 1997. Linearized buffered Ca2+ diffusion in microdomains 
and its implications for calculation of [Ca2+] at the mouth of a calcium channel. J. 
Neurosci. 17: 6961–6973. 

25. Pape, P. C., D.S. Jong, and W.K. Chandler. 1995. Calcium release and its voltage 
dependence in frog cut muscle fibers equilibrated with 20 mM EGTA. J. Gen. Physiol. 
106: 259–336. 

26. Stern, M.D. 1992. Buffering of calcium in the vicinity of a channel pore. Cell Calcium. 13: 
183–192. 



30 

 

27. Smith, G.D., J. Wagner, and J. Keizer. 1996. Validity of the rapid buffering approximation 
near a point source of calcium ions. Biophys. J. 70: 2527–2539. 

28. Neher, E. 1986. Concentration profiles of intracellular calcium in the presence of a 
diffusible chelator. In: Calcium Electrogenesis and Neuronal Functioning, Exp. Brain Res. 
14, Springer-Verlag, Berlin. 

29. Coggins, M., and D. Zenisek. 2009. Evidence that exocytosis is driven by calcium entry 
through multiple calcium channels in goldfish retinal bipolar cells. J Neurophysiol. 101: 
2601–2619. 

30. Nguyen, V., R. Mathias, and G.D. Smith. 2005. A stochastic automata network descriptor 
for Markov chain models of instantaneously coupled intracellular Ca2+ channels. Bull 
Math Biol. 67: 393–432. 

31. Montefusco, F., and M.G. Pedersen. 2018. Explicit Theoretical Analysis of How the Rate 
of Exocytosis Depends on Local Control by Ca2+ Channels. Comput. Math. Methods 
Med. Hindawi 2018: 5721097–12. 

32. Trommershäuser, J., R. Schneggenburger, A. Zippelius, and E. Neher. 2003. 
Heterogeneous Presynaptic Release Probabilities: Functional Relevance for Short-Term 
Plasticity. Biophys. J. 84: 1563–1579. 

33. Matveev, V. 2018. Extension of Rapid Buffering Approximation to Ca2+ Buffers with Two 
Binding Sites. Biophys. J. 114: 1204–1215. 

34. Matveev, V. 2016. Pade Approximation of a Stationary Single-Channel Ca2+ 
Nanodomain. Biophys. J. 111: 2062–2074. 

35. Falcke, M. 2003. On the role of stochastic channel behavior in intracellular Ca2+ 
dynamics. Biophys. J. 84: 42–56. 

36. Falcke, M. 2003. Buffers and oscillations in intracellular Ca2+ dynamics. Biophys. J. 84: 
28–41. 

37. Muatjetjeja, B, and C.M. Khalique. 2011. Exact solutions of the generalized Lane–Emden 
equations of the first and second kind. Pramana J. Phys. 77: 545–554. 

38. Ablowitz, M.J., and A.S. Fokas. 2003. Complex Variables, Cambridge University Press. 

39. Gillespie, D. 2020. Simulating diffusion from a cluster of point sources using propagation 
integrals. Eur Biophys J. 14: 1–9. 

40. Faas, G.C., B. Schwaller, J.L. Vergara, and I. Mody. 2007. Resolving the fast kinetics of 
cooperative binding: Ca2+ buffering by calretinin. PLoS Biol. 5: e311. 

41. Chin, D., and A.R. Means. 2000. Calmodulin: a prototypical calcium sensor. Trends Cell 
Biol. 10: 322–328. 

42. Schwaller, B. 2014. Calretinin: from a “simple” Ca(2+) buffer to a multifunctional protein 
implicated in many biological processes. Front. Neuroanat. 8: 3. 



31 

 

43.  Evans, L. C. 1998. Partial Differential Equations, Graduate Studies in Mathematics, 

Vol.19. American Mathematical Society, Providence, RI. 

44.  Gilbarg, D., and N. S. Trudinger. 1983. Elliptic Partial Differential Equations of Second 

Order, Springer-Verlag, Berlin. 

45.  Struwe, M. 2000. Variational methods: applications to nonlinear partial differential 

equations and Hamiltonian systems. Springer, Berlin. 

 

 


