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Abstract Out-of-phase bursting is a functionally im-
portant behavior displayed by central pattern gener-
ators and other neural circuits. Understanding this
complex activity requires the knowledge of the in-
terplay between the intrinsic cell properties and the
properties of synaptic coupling between the cells. Here
we describe a simple method that allows us to investi-
gate the existence and stability of anti-phase bursting
solutions in a network of two spiking neurons, each
possessing a T-type calcium current and coupled by
reciprocal inhibition. We derive a one-dimensional map
which fully characterizes the genesis and regulation of
anti-phase bursting arising from the interaction of the
T-current properties with the properties of synap-
tic inhibition. This map is the burst length return
map formed as the composition of two distinct one-
dimensional maps that are each regulated by a different
set of model parameters. Although each map is con-
structed using the properties of a single isolated model
neuron, the composition of the two maps accurately
captures the behavior of the full network. We analyze
the parameter sensitivity of these maps to determine
the influence of both the intrinsic cell properties and the
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synaptic properties on the burst length, and to find the
conditions under which multistability of several burst-
ing solutions is achieved. Although the derivation of the
map relies on a number of simplifying assumptions, we
discuss how the principle features of this dimensional
reduction method could be extended to more realistic
model networks.

Keywords Half-center bursting -
T-type calcium current - Poincaré return map -
Multistability - Dimensional reduction

1 Introduction

Electrical bursting activity is a widely observed phe-
nomenon in neurons and hormone secreting cells
(Selverston and Moulins 1986; Bertram and Sherman
2000; Sohal and Huguenard 2001; Llinas and Steriade
2006). Considerable effort has been made to clas-
sify different types of bursting activity resulting in
many detailed mathematical models (Izhikevich and
Hoppensteadt 2004; Coombes and Bressloff 2005).
Bursting activity often depends on properties of the
networks in which these neurons lie. For exam-
ple, bursting in reciprocally coupled inhibitory net-
works can arise from ionic currents that produce
post-inhibitory rebound, such as the low-threshold
transient calcium current, known as the T-current
(Perkel and Mulloney 1974; Wang and Rinzel 1994;
Huguenard 1996).

Reciprocally inhibitory networks are common circuit
elements in many neuronal systems, from the mam-
malian neocortex and hippocampus to the invertebrate
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central pattern generators, and play a crucial role in
rhythmogenesis (Traub et al. 1996; Wang and Buzsaki
1996). Central pattern generators, in particular, make
use of reciprocal inhibition between pairs of neurons or
populations of neurons as a general mechanism for pro-
ducing out-of-phase oscillations (Satterlie 1985; Marder
and Calabrese 1996). Consequently, reciprocal inhibi-
tion has been the subject of many theoretical studies
that have demonstrated the existence of a multitude
of possible network behaviors arising through distinct
mechanisms (Skinner et al. 1994; Van Vreeswijk et al.
1994; Wang and Rinzel 1994). In many cases, recip-
rocally inhibitory networks demonstrate dynamically
complex outputs such as irregular oscillations or mul-
tistability of distinct modes of activity (Terman et al.
1998).

When considering networks or even pairs of recip-
rocally coupled neurons, the high dimensionality of the
ensuing set of equations is often an obstacle in analyz-
ing the dynamics of the system. Various methods such
as averaging and singular perturbation theory have
proved useful for reducing the dimensionality of larger
systems of equations in a variety of network models
(Butera 1998; Lee and Terman 1999; Medvedev 2005).
These approaches involve tracking the behavior of a
smaller number of variables in a phase space of lower
dimension than the original system. An alternative ap-
proach has been to ignore certain state variables of the
system, and instead track quantities that are experimen-
tally and mathematically measurable. The inter-spike
interval (/SI), the time between successive spikes of
a neuron, is one such quantity and Ermentrout and
Kopell (1998), for instance, use this approach to derive
a one-dimensional map based on the /SI that they
use to prove the existence and stability of synchronous
spiking solutions in a hippocampal network.

We are interested in exploring the anti-phase burst-
ing activity arising from the interplay between the low-
threshold calcium T-current and synaptic inhibition in
a reciprocally coupled network of two inhibitory neu-
rons. In such a model, we observe that several stable
bursting states may exist for the same set of para-
meters (Fig. 1). Each of these states has a different
number of spikes per burst and thus different cycle
periods. In this study, we provide an analytically and
numerically tractable method for proving the existence
and stability of these anti-phase bursts. This method
exploits time-scale separations of variables to construct
a one-dimensional Poincaré map whose fixed points
correspond to periodic anti-phase solutions. The map is
the burst length return map which tracks the length of a
burst from one cycle to another, and, as such, does not
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directly track the state variables of the governing set
of equations. Interestingly, the construction of this map
does not even require the coupled network. Instead, it
is constructed as the composition of two different maps,
each of which can be derived by studying the properties
of a single uncoupled cell. By restricting the two maps
to parameter ranges that are consistent with anti-phase
bursts, we can use these single-cell maps to characterize
the solutions of the coupled two-cell network.

A primary advantage of our approach is that we
are able to pinpoint how certain key parameters of
the model affect each of the single-cell maps which,
in turn, affect both the existence and the stability of
anti-phase solutions. In situations where this solution
is unstable, the map is used to construct higher order
periodic (or possibly chaotic) solutions. Thus, we show
that a wide range of dynamic outputs of the reciprocally
coupled network can be examined by analyzing the
one-dimensional Poincaré map.
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Fig. 1 A two-cell network of reciprocally inhibitory Morris—
Lecar neurons with a T-current exhibits multiple stable periodic
bursting solutions characterized by different number of spikes
per burst for a single parameter set
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2 Model
2.1 Single-cell dynamics

We first describe the dynamics of a single neuron. The
two cells are assumed to be identical, each modeled
as a two-variable Morris-Lecar oscillator (Morris and
Lecar 1981), which we have modified to include a low-
threshold Ca*" current (T-current: I7), described in
detail further below. The spiking of the model cell re-
sults from the interplay between the dynamics of mem-
brane potential v, and the recovery variable w, which
describes the activation of the potassium current:

Cpv' = Iapp —gLlv— Ep]- 8Ca Moo (V)
[v— Ecd — gk wlv— Ex]l—Ir

, Woo (V) — Wk

=

1

where I,,, is a constant applied current, g7, gca and
gk are conductances and E;, Ec, and Ex are reversal
potentials for the leak, fast high-threshold calcium and
potassium currents, respectively (Fig. 2). Both m, and
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Fig. 2 Single-cell dynamics: the Morris-Lecar oscillator (Eq. (1)
with I7 = 0). (a) In the absence of the T-current each uncoupled
cell produces slow tonic spiking activity. (b) The phase-plane
diagram demonstrates the periodic spiking arising from the in-
terplay between the dynamics of the membrane potential v and
the KT current activation variable w. The model parameters are
chosen to produce Type-I excitability. The dotted lines shows the
T-current inactivation threshold vy,

W are monotonically increasing sigmoidal functions
of cell potential v. The functions and parameters are
described in detail in Appendix 1.

The T-current in Eq. (1) models the low-threshold
Ca’*current with both activation and inactivation gat-
ing. Since the T-current activation is faster than its in-
activation kinetics (Huguenard and McCormick 1992),
we make the simplifying assumption that the activa-
tion variable is instantaneous and is described as a
sigmoidal function of the membrane potential a = a(v).
The inactivation variable of the T-current is given by
the dynamic variable 4. For the mathematical analysis
we make the further simplifying assumption that the
activation function and the steady-state inactivation
function are Heaviside functions of the membrane volt-
age. We discuss the implications of relaxing this as-
sumption in the Discussion section. Also, the activation
and steady-state inactivation curves are smoothed out
to sigmoidal form in the simulations, as described in
Appendix 1. The T-current is therefore described as

I = grah[v — Ec,] (2)
a= Hw—v,) (3)
;o (I —=h)/t0 v < vy

W= { —h/t; v >y )

where H(v) is the Heaviside function. The inactivation
variable & decreases to zero if the cell is depolarized
above vy, (inactivation), and increases to 1 if a cell is hy-
perpolarized below vy, (de-inactivation). We assume for
simplicity that the T-current activation and inactivation
thresholds are equal.

Our choice of model parameters corresponds to
Type-I excitability (in the absence of synaptic coupling
and the T-current): each cell spikes at a low baseline
frequency, as shown in Fig. 2(a). The phase portrait of
each cell in the absence of the T-current is illustrated
in Fig. 2(b). The nullclines for Eq. (1) are obtained by
setting the right-hand side equal to zero. When I7 =0
the v-nullcline is cubic shaped, while the w-nullcline is
sigmoidal (see Fig. 2(b).) Note that the T-current inac-
tivation threshold vy, is chosen to be below the minimal
value of v of the spiking trajectory of an uncoupled
cell (Fig. 2). Therefore, the T-current is completely
inactivated during tonic spiking (4 = 0), and plays no
role in the dynamics of the uncoupled cell.

The main effect of /7 is to produce a rebound burst
of spikes in response to hyperpolarization, as shown
in Fig. 3. If a hyperpolarizing current pulse lowers the
cell potential below v, (horizontal bar in Fig. 3(a)),
then a gradual de-inactivation of the T-current occurs,
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Fig. 3 Post-inhibitory rebound induced by the T-current. (a)
Time course of cell potential (top panel), I7 inactivation h
(middle panel), and It activation a (bottom panel), in response
to a hyperpolarizing pulse (horizontal bar) applied during ¢ €
[50, 80] ms. Hyperpolarization pushes v below /7 inactivation
threshold, v, (dotted line), allowing I to de-inactivate (h grows).
When hyperpolarization is removed, I7 is activated (bottom
panel). The decrease in spike frequency during the rebound
burst is caused by the decay of 4 (inactivation). (b) Effect of a
hyperpolarizing pulse in the v-w phase plane. The positions on
the v-nullcline labeled as 1, 2, 3 and 4 correspond to the accord-
ingly labeled time points in (a). The hyperpolarizing pulse lowers
the v-nullcline (2), creating a stable hyperpolarized equilibrium
(circle). Note that the equilibrium lies to the left of vy, allowing I
to de-inactivate (h grows). When hyperpolarization is relieved,
the v-nullcline shifts up (3), leading to a burst of action potentials
(spike frequency is proportional to the elevation of the left knee
of the v-nullcline). During the burst /7 gradually inactivates, and
the nullcline goes back to its unperturbed location (1, 4). The
trajectory of the rebound burst sweeps the gray area

i.e. h increases. When such external hyperpolarization
is removed, the cell will depolarize above v, causing
the activation of the T-current (a grows), which results
in a burst of action potentials. In phase space, the
activation of the T-current lifts the v-nullcline above
its resting position, increasing the spike frequency due
to larger distance of the periodic trajectory from the
lower branch of the w-nullcline (Fig. 3(b)). During the
rebound burst, the T-current gradually inactivates (h
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decreases) with time constant of inactivation equal to
7 (see Eq. (4)). This inactivation manifests itself in the
decrease of spike frequency during the burst. In phase
space, inactivation corresponds to the gradual lowering
of the v-nullcline (Fig. 3(b)), from the elevated position
(labeled 3) to the rest position (labeled 1, 4).

2.2 Effect of synaptic inhibition

The network we consider includes two neurons de-
scribed by Egs. (1-4), reciprocally coupled by synap-
tic inhibition. The model for the synaptic current is
adapted from Bose et al. (2001), and is given by (i, j =

1,2,i # )
Isyn = _gsyn Si [Uj — Eiunl

S = (I —s))/tg vi > vy
—5i/Tsyn Vi < Vg

®)

where vy is the spike threshold that intersects the
middle branch of the v-nullcline and s; is the gating
variable describing the synaptic input from neuron i to
neuron j. The synaptic growth (onset) time constant is
short compared to the spike width, thus allowing s; to
reach its maximal value with each action potential. We
consider the case of intermediate to slow synaptic decay
time, with t,,, exceeding the spike width (7, > 7).
This results in the following full set of model equations
(L j=12i#]):

Cn U;' = Iapp - IL(U/') - ICa(Uj)

—Igj, w)) — I7(vj, aj, hy) — Lyu(si, vj)

Woo (V) — Wi

wﬁ:(p
/ tw(vj)
;A =hp/te vi< vy
hj o {—h//‘L’hi Uj > Uy (6)

J = (I—=s)/16 vj> vy
—Si/Toyn  Vj < Vg

a,-: H(Uj— vh)

The influence of inhibitory synaptic input to a cell is
opposite to that of the T-current. In the v — w phase
plane, the effect of inhibition from cell i to jis to lower
the cubic shaped v-nullcline, which causes a decrease
in the frequency of spiking. If inhibition is sufficiently
weak (small gj,,), both cells will continue spiking, and
their spiking trajectories are only slightly perturbed
by the coupling. In this case the inhibitory input is
not enough to hyperpolarize the partner cell below
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vy, and therefore the T-current remains inactive and
plays no role in cell dynamics. For stronger synaptic
coupling strength g,,,, however, a spike in one cell may
be sufficient to hyperpolarize the other cell below its
T-current de-inactivation threshold. In this case, the
T-current will play a role in the network dynamics and,
in particular, will make anti-phase bursting possible.

A quantity of central interest to us is the inter-spike
interval (/S7). The ISI measures the time between
successive spikes of the same neuron. We will use
IS1ionic to denote the inter-spike interval of the tonic
spiking uncoupled cell. We choose parameters so that
this value is relatively large, as compared to the shorter
ISIs generated by the bursting mechanism described
below.

3 Results
3.1 Half-center (anti-phase) bursting
The Ir-induced post-inhibitory rebound burst mech-

anism can work synergistically or cooperatively with
the synaptic inhibition to entrain the network into a
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Fig. 4 Periodic anti-phase bursting of the coupled system of
equations. (a) Time traces of the membrane potentials (top
panel), I7 inactivation, h; (middle panel), and the synaptic
strength variables of the two cells, s; (bottom panel). (b) Phase
plane dynamics of the network activity. The v-nullcline of the
bursting cell gradually moves down as & decreases (inactivation).

periodic anti-phase bursting state (Fig. 4; see Perkel
and Mulloney 1974, Huguenard 1996, and Destexhe
and Sejnowski 2003, for related work). This periodic
bursting is a half-center oscillation where the two cells
are active out of phase with one another (see Fig. 4(a)).
The half-center oscillation requires a sufficiently strong
synaptic coupling gs,,, so that a burst of one cell (say,
cell 1) provides enough synaptic current to hyperpolar-
ize the postsynaptic cell (cell 2) below vy, causing its
T-current to gradually de-inactivate (h, grows). At the
same time, the T-current of cell 1 gradually inactivates
(h, decreases), and its ISIs grow larger, approaching
the uncoupled cell’s intrinsic spiking period, ISp;c-
This increase in /57 eventually allows the inactive cell
2 to escape from inhibition. This happens when the
inter-spike interval increases beyond a certain criti-
cal value, 157 (discussed in detail below). Once the
suppressed cell escapes from inhibition, its potential
increases beyond vy. Since £, is now non-zero, the Ir
current rapidly activates, producing a burst of spikes,
terminating the burst of cell 1, and hyperpolarizing it
below v;,. The process then repeats.

The escape mechanism underlying the burst termi-
nation can be understood by considering the phase-
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The inhibitory synaptic input from the bursting cell lowers the
v-nullcline of the postsynaptic cell, trapping the cell at an equilib-
rium (filled circle). Double arrows indicate the oscillatory move-
ment of the v-nullcline and the equilibrium point with each spike
of the bursting cell. The open circle on the v = vy, line marks the
escape point of the suppressed cell (/7 activation threshold)
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plane dynamics shown in Fig. 4(b). The v-nullcline
of the bursting cell (thin black curve) is elevated,
but gradually descends as I inactivates (h; decreases,
black curve in middle panel of Fig. 4(a)), resulting in
a gradual increase of the inter-spike interval for this
cell (black curve v; in top panel of Fig. 4(a)). The
inhibitory synaptic input from the bursting cell keeps
the v-nullcline of the suppressed cell in a low position
(thick black curve in (b)). Because of our assumption
that 7y, > 7,,(v), the trajectory of the suppressed cell
lies in a neighborhood of the intersection of the v and
w-nullclines (filled circle in (b)). However, this inter-
section point moves left and right (double horizontal
arrow in (b)) as the v-nullcline of the suppressed cell
moves up and down with each spike of the bursting
cell (double vertical arrow). The nullcline moves down
quickly which each spike, and moves up somewhat
slowly following the dynamics of the synaptic variable,
s1(t), shown in the bottom panel of Fig. 4(a) (black
curve). Accordingly, the membrane potential v, of the
suppressed cell oscillates up and down (top panel in
(a)), following this nullcline movement. As the IS/
of the bursting cell increases, s;(f) decays to smaller
and smaller values during the inter-spike interval, and
the potential of suppressed cell moves closer to the
T-current activation threshold (dotted vertical line,
open circle in (b)). When the /57 is large enough to
allow v, to reach vy, the nullcline of the suppressed cell
shifts up abruptly, due to the activation of its T-current,
and the cell escapes from inhibition. The resulting burst
of the previously suppressed cell terminates the burst
of the active cell. The process then repeats with the two
cells switching their roles.

The condition for escape of cell 2 can be described
analytically by finding when it reaches the T-current
activation threshold vj. This occurs for a specific value
of s, denoted s, that satisfies:

Itot(vh» IZ)’ E) = 0
W = Woo (V1)

where [ = Iapp —IL(v)—Ic,(v)—Ix(v, w)— Isyn(vs s).
Geometrically, this condition can be interpreted as the
value of s at which the v- and w-nullclines intersect on
the line v = vy, (Fig. 4(b)). Solving for § and using the
fact that we(vy) ~ 0, we find

Lopp — gLlvn — EL] — gcaMoo (V) vn — Ecdl
gsyn [vi, — Einnl

s =

™)

This value 5 is closely related to the /S/. Namely, there
exists a value IS_Isuch that if s(0) = 1, then s(/S]) = 5.
Using Eq. (5), 151 satisfies:

ISI = —Tgyn InS ®)
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Thus, 757 corresponds to the amount of time it takes
a cell starting on the “s = 1” v-nullcline to reach the
activation threshold v,. Note that IST is completely
independent of the T-current properties since the sup-
pressed cell feels no influence of 17 (a = 0 for v < vy).

We now quantify the definition of bursting given
earlier. We say that a cell is in the bursting regime if
it exhibits a series of spikes for which the ISI < IS1.
Thus the term IS7 allows us to use aspects of the
nullcline geometry of the Morris—Lecar model to define
the length of the burst.

3.2 The one-dimensional Poincaré map

The set of equations describing the dynamics of the two-
cell network (Eq. (6)) forms a system of eight first order
differential equations and two algebraic equations (for
a, and a,). Despite the high-dimensional phase space,
it is possible to construct a one-dimensional Poincaré
map which can predict the existence and stability of
anti-phase burst states depicted in Fig. 1. The Poincaré
map is the return map for the lengths of successive bursts
and also determines the number of spikes per burst.
It is constructed as the composition of two different
single-cell maps. The first map, denoted L = F(h*), de-
termines the burst length of a cell as a function of #*,
the level of T-current de-inactivation (%) at the begin-
ning of the burst. The second map, denoted #* = G(L)
determines the amount of T-current de-inactivation as
a function of the inter-burst length. We then define the
return map P(L) by the relationship:

P(L) = F(G(L))

We will show that a fixed point of this map corresponds
to an anti-phase bursting solution for the coupled net-
work given by Eq. (6). Both of the maps F(h*) and
G(L) are constructed using information obtained from
the dynamics of a single cell, coupled with restrictions
imposed by the geometry of our model and by the con-
dition of existence of a periodic half-center oscillation.

3.2.1 Dependence of burst length on the h* value:
L = F(h")

To reconstruct the relationship L = F(h*) between
the burst length and A4*, the level of T-current de-
inactivation at the beginning of the burst, we study a
single uncoupled cell. Suppose that at ¢+ =0 the cell
begins a burst with 4(0) = A*. We will find the duration
of each inter-spike interval 151, for a given value of i*,
and then sum them up to obtain the burst length. Note
that the length of each 151, is uniquely determined by
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Fig. 5 Dependence of burst length on #, the level of T-current
de-inactivation. (a) The relationship 7'(h) between ISI and h
in a single cell. Filled circles mark the values of 4 and the
corresponding /S/s for a burst characterized by the initial con-
dition 4(0) = A* = 0.12, and shown in panel (b). (b) Membrane
potential (fop panel) and T-current inactivation level & (bottom
panel) for a numerically-generated burst with /(0) = 0.12 shown
for illustrative purposes. Filled circles label the value of & at the
beginning of each of the 10 inter-spike intervals (cf. (a)). (c)
Dependence of each inter-spike interval on A*, the value of & at

the value of A(r) right before the corresponding inter-
val, h,. This relationship is the same for all /S1,’s, and
is given by a monotone decreasing function /S1 = T'(h)
as shown in Fig. 5(a). This curve may be thought of as a
special version of the f-1 curve of the cell, capturing the
dependence of spiking period /SI = 1/f on the level
of depolarization provided by the T-current, which is
proportional to A. The value ISI; = T'(h*) yields the
length of the first inter-spike interval. The value of 4 at
the beginning of the second interval, 4, is determined

—_
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© o
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o
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—
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\

L =F(h*) (ms)

ol L - -
0 0.1 0.2 0.3 0.4

*

h

the start of the burst. Each curve was generated using the 7'(h)
curve in panel (a) and Egs. (9-10). Note that /S7; is the curve
T (h) shown in panel (a). The horizontal dotted line denotes ISI.
The highlighted section of each curve indicates the last 1S/ at
a given value of h*. The vertical dotted line corresponds to the
burst in panel (b). (d) The dependence of burst length on A*
is obtained by adding all /57, in panel (c) at each value of A*,
plus ISI. In (c¢), numeric labels indicate the index of last ISI in
the burst, while in (d), the integers indicate the number of spikes
per burst

by the inactivation kinetics of 4 (see Eq. (4)): h, =
h*exp{—1ISI,/t)}. Since h, is smaller than h; = h*,
the second inter-spike interval, IS1, = T (h,), is greater
than the first. Subsequent /S/s are obtained similarly.
Thus:

ISI, = T(h,)
hy = hy_y exp{—ISL,_/tn}
hl = h* (9)
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The pairs (h,, [S1,) are labeled along the curve T'(h) in
Fig. 5(a), for the particular case #* = 0.12, correspond-
ing to the numerical simulation shown in Fig. 5(b).

It is useful to represent the duration of each 151,
within a burst as a function of / at the very beginning of
the burst, #*. As Eq. (9) illustrates, the dependence of
each of the 157, intervals on /#* is governed by the same
T (h*) curve that determines /S17,. Therefore forn > 1,

ISL,(h*) = T(h,) = T(h*exp{ — [ISIy(h*) + ISL(h")
+oo + ISL, (h)]/hi}) (10)

The IS1,(h*) curves are plotted in Fig. 5(c). The
section of each curve highlighted in bold shows the last
inter-spike interval of the burst for a given value of A*
(in Fig. 5(b), the last 151, is 151)0). The vertical dotted
line corresponds to the burst shown in panel (b). Note
that each curve in the panel is obtained by stretching
the curve T'(h) in panel (a) to the right, as described by
Eq. (10).

To determine the burst length for any particular
value of 4* we first sum all 157, values that lie below the
critical value 757 (horizontal dotted line in Fig. 5(c)).
Recall that the critical value 757 is determined by Eq.
(8) and is used to indicate the termination of a burst. To
complete the definition of F(h*), we use the fact that, in
half-center oscillations, exactly one cell is active at any
time. Thus, ST needs to be added to the sum of the
1S1s to calculate the time from the last spike of one cell
to the first spike of the other (see Fig. 5(b)). Therefore,

L=F*)=Y_ISIj(h*)+ISI, ISI;<ISI, j=1.n (11)
j=1

The function F(h*), shown in Fig. 5(d), has two
important features. First, it is piecewise continuous,
and second, it is decreasing on the subintervals where
it is continuous. The latter observation is easy to un-
derstand since the original IS/ vs. h* curve is itself
monotone decreasing. The function F(h*) is discontin-
uous because as /#* is increased, new spikes are added
to the burst at certain values of #* denoted A,,,. In fact,
he,; are the values of h at which the 1S7; curves intersect
the IS7 line. As h* increases through each value A,
the inter-spike interval 1S1; satisfies 1S1; < 1S1, result-
ing in the addition of another spike. For example, in
Fig. 5(c), the vertical line at #* = 0.12 shows that the
associated burst has 11 spikes and 10 I/S7s. Thus the
length of the burst in this case is given by

10
L=>Y ISI;+1SI.
j=1
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If we were to increase A* to the value 0.15, then the
vertical line #* = 0.15 would intersect the curve 1S51;; at
a value smaller than I1S1. Therefore a new spike would
be added to the burst since ISI;; < ISI. The new burst
length would be

11
L=Y ISI;+1SI
j=1

(12)

The size of the jump discontinuity in the burst length
at each h,,, equals the length of the added inter-spike
interval, 1S1;(h;) = ISI1.

Since the monotonic decay of the continuous
stretches of F(h*) reflects the monotonic increase in
spike frequency with increasing 4*, the rate of this
decay is proportional to the value of conductance gr,
which multiplies /4 in the expression for the I (Eq. (2)).
In fact, the effect of the variation of the gr parameter
can be obtained by re-scaling the #* axis in Fig. 5(c,d)
(see Fig. 7(a) and discussion below). The value of
the inactivation time constant t;; affects the slope and
the magnitude of F(h*) in a similar manner. Increas-
ing 7;; slows down the T-current inactivation, decreas-
ing the difference between successive ISIs shown in
Fig. 5(a-b), and thereby increasing the number of
ISIs that fit below the IS burst termination limit
for any given value of A*. This corresponds to the
leftward “squeeze” of the /SI,(h*) curves in Fig. 5(c)
toward the 151, (h*) curve, thereby increasing the mag-
nitude of F(h*) by increasing the number of spikes
per burst.

In contrast, as discussed above, 1S7 is only sensitive
to the fast spike kinetics and the synaptic coupling
parameters, and does not depend on the characteristics
of the T-current. However, an increase in 1S would
have a similar effect to an increase in 7;,. Namely, it
would increase the number of spikes per burst, and
also increase the slope of the continuous stretches of
F(h*). In turn, an increase in gs,, or the membrane time
constant would also influence F(h*) through the effect
of these parameters on IS1.

Note that our method for constructing the F(h*)
easily generalizes to any model of single-cell dynam-
ics, as long as each neuron has a well-defined f— 1
curve, and all intrinsic currents except the T-current are
fast compared to the time scales of synaptic inhibition
and the T-current inactivation and de-inactivation. The
specifics of the single-cell model would only affect the
T(h) curve in Fig. 5(a,c), while the value of 7SI can
always be determined numerically even if the analytical
approximation given by Egs. (7, 8) does not apply.
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Fig. 6 The function #* = G(L) obtained from Eq. (15) (a) and
the fixed points of the Poincaré return map (b). (a) The de-
pendence of A*, the I7 inactivation level at burst initiation, on
the length of the preceding inter-burst interval, L, with 7, =
200 ms and tj; = 20 ms. The gray box corresponds to the axis
limits in panel (b). (b) The stable periodic bursting solutions
are obtained as the intersections of the piece-wise continuous

3.2.2 Dependence of h* on the burst length:
h* = G(L)

The second part of Poincaré map, the dependence i* =
G(L) (see Fig. 6(a)) is easier to construct. It measures
how the T-current of an uncoupled cell de-inactivates
when the cell is silent. It follows straightforwardly from
the first-order kinetics of the T-current de-inactivation
given by Eq. (4):

dh  1—h
dr Tlo

when v < vy,

Solving this equation with 4(0) = A, yields:

h(t,hy) =1 — (1 — hy)e "/, (13)

The value A, is the minimum value of / obtained at
the end of the burst (see Fig. 4). However, in the
coupled network, there is no a priori way to know the
value of h,. Nonetheless, this value will be bounded
from above by A, defined as the value of A* at the
intersection of 1S, and 151, and bounded from below
by i_zexp(—I_SI/ 7). For definiteness, let h, = h. Evalu-
ating Eq. (13) att = L, we obtain:

h* =G(L)=h(L,h)y=1—(1—h)yexp(—L/7,) (14)
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L = F(h*) map see Fig. 5(d), and the inverse of the map shown
in panel (a), L = G~ (h*) (dashed curve). The intersection points
of the two curves correspond to the two stable periodic solutions,
with 19 and 20 spikes per burst, respectively. Note that panel (b)

implicitly describes the Poincaré return map, which is given by
P(L) = F(G(L))

_ We note that for a periodic solution, we can replace
h with its equilibrium value, h = h* exp(— L/tp;). This
yields an equilibrium condition for Eq. (14):

1 —exp(—L/7,) (15)
I —exp(—=L/to — L/thi)

The map hA* = G(L) is plotted in Fig. 6(a) using
Eq. (15). Note that this map is only a function of the
inactivation and de-inactivation time constants of the
T-current, t; and 15,, with a much greater sensitivity
to 7, than to 7 (assuming 7;; << 7,). Thus, the two
maps h* = G(L) and L = F(h*) are controlled by two
distinct sets of model parameters. As will be shown be-
low, this fact greatly simplifies the understanding of the
parameter control of the network’s bursting dynamics.

h*=G(L) =

3.2.3 Fixed points of the Poincaré map:
P = F(G(L))

Periodic solutions of Eq. (6) correspond to the fixed
points of the Poincaré map L.; = P(L¢g) = F(G(Leg)).
Introducing an equilibrium value of A*, hgq = G(Ley),
this equilibrium condition can also be written as L., =
F (h;q) = Gil(h;q). Therefore, geometrically the peri-
odic solutions correspond to the intersections of the
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graph of L = F(h*), given in Fig. 5(d), and the inverse
of the map G(L) given by Eq. (15) and shown in
Fig. 6(a). In Fig. 6(b) we superimpose these two maps
and show their intersection points. Interestingly, the
two curves share more than one intersection point,
demonstrating that multiple bursting solutions can exist
for the same parameter values. Indeed, below we ver-
ify numerically the existence of such multiple bursting
solutions.

Apart from providing the information about the pe-
riodic network activity, the Poincaré map simplifies the
parameter sensitivity analysis of the model, illustrating
the control of the burst duration by various model
parameters. This is achieved by examining the influence
of model parameters on the two individual parts of the
Poincaré map, the curves F(h*) and G(L). Consider for
example the effect of a variation of gr, the maximal /7
conductance. As discussed above, G(L) (Eq. (15)) is
dependent on tz; and 1, but is not sensitive to gr. The
dependence on gr of F(h*) is straightforward: namely,
an increase in gr “squeezes” the L = F(h*) curve to
the left (h* axis scales down with gr), as shown in
Fig. 7(a). As a result, as gr is increased, the Poincaré
map intersections shown in Fig. 6(b) would lie along
the segments of F(h*) with larger number of spikes
per burst.

(a)

— F(h*) 22
105 1o 21 .21
G () LR
100} 18
o5l 17
L 16
9} -
85}
80\
75 ‘ ‘ ‘ ‘ ‘ '
02 025 03 035 04 045 05
h

Fig. 7 Control of burst properties by parameters gr and 7,.
(a) An increase in the value of g7 from 1.0 to 1.08 mS/cm? is
equivalent to a horizontal contraction of the F(h*) map, but does
not affect the G(L) map. Filled circles indicate the stable periodic
solutions for the parameter values corresponding to Fig. 6; open
circles label the stable periodic solutions after the value of g7 is
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In contrast, varying 7, affects only G(L) and not
F(h*) (Fig. 7(b)). The change in G(L) occurs because
an increase in 7, effectively moves the G curve up
(the L axis scales up with 75,). Thus, by changing
different model parameters, different components of
the Poincaré map are affected, leading to multiple de-
grees of control of the existence of periodic bursting
solutions.

3.2.4 Stability of periodic bursting solutions

The stability of the periodic bursting solutions can be
determined by checking the slopes of the graphs L =
F(h*) and L = G~!(h*) at a point of intersection. A
burst solution will be stable if |dP/dL|., < 1. This
derivative satisfies

dPpP
dL

_dF
L, di

dG

e 16

Leg

The derivative dG/dL is easy to calculate from
Eq. (14):

dG _ (1= h)exp(—=L/7,)
dL

Tlo

(b)
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increased from 1.0 to 1.08 mS/cm?. Note that the bursting state
with 19 spikes per burst disappears and is replaced by a solution
with 21 spikes per burst. (b) An increase in the value of t, from
200 to 220 ms causes a vertical stretch of the G(L) map, but has
no effect on the F(h*) map. Note that the bursting solution with
20 spikes is replaced with a solution with 18 spikes per burst
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which clearly shows dependence on the parameter 7.
It is also indirectly affected by other parameters such
as tyy, since this synaptic time constant affects IST and
hence k. The derivative dF/dh* is harder to explicitly
quantify. Note, however, that since each inter-spike
interval in the burst is inversely proportional to A,
each spike contributes to the slope of the F(h*) curve.
Therefore, the relationship between L and #* becomes
progressively more steep at higher values of ;. Like-
wise, the derivative dF/dh* grows with increasing gr
since this parameter increases the number of spikes per
burst as well.

It is straightforward to numerically calculate the
value of dF/dh* at a point of intersection. This is what
we did, for example, in Fig. 6(b) to conclude the sta-
bility of the obtained solutions. We further tested how
well the Poincaré map, based on single cell dynamics,
correctly determines the dynamics of the coupled net-
work by numerically solving the latter. Figure 8 shows
the numerically reconstructed phase diagram of the
model network, indicating the stable periodic activity
states as a function of the I; conductance, gr (see
Appendix 2 for details of the numerical crawl algorithm
used to construct the phase diagram). Note the overlap
between the regions of stability of the various bursting
solutions, in agreement with the multistability exhibited
by the Poincaré map in Fig. 6(b). The phase diagram
also validates the dependence of burst length on the
value of gr inferred above by analyzing the Poincaré

Burst length

Fig. 8 Comparison of the bifurcation diagrams for the bursting
states as a function of T-current conductance, obtained from
the Poincaré map (black) and by the numerical crawl algorithm
(gray). The dashed lines and circles mark the values g7 = 1.0 and
2t = 1.08 mS/cm? and the corresponding stationary states shown
in Fig. 7(a)

return map (Fig. 7). Namely, it shows that an increase
in g7 increases the number of spikes per burst. Note
that a more dramatic increase in gy would also reduce
the number of co-stable bursting solutions (cf. Fig. 11).

The analysis above suggests that the parameters ty;,
70, &7 and 1, affect both the existence and the sta-
bility of periodic solutions. For example, the parameter
variations shown in Fig. 7 changed the number of spikes
per burst but preserved the stability of the equilibrium
points, as determined from Eq. (16). However, a more
drastic increase in gy or a decrease in 7, can change
the slopes of the corresponding parts of the Poincaré
map to the extent that the equilibrium points become
unstable.

The loss of stability can be also achieved by in-
creasing the value of z,,, as is shown in Fig. 9(a).
According to Eq. (8), increasing Ty, increases IS1.
With our choice of parameters, the value 757 intersects
the curve 7T'(h) along a very steep portion of this curve
(Fig. 5). Thus an increase in 1S can change the burst
length quite significantly, but not change the corre-
sponding 4 value much. Thus the slope of the function
F(h*) is quite sensitive to changes in 7S7. Figure 9(b,c)
demonstrates this fact and shows the dynamics of
the network for 7y, = 10 ms for which no stable peri-
odic solution exists.

3.2.5 Relaxing some assumptions leads to greater
multistability

The analysis presented above relies on a number of
assumptions. Notably, we assumed that synaptic decay
is faster than spiking dynamics, which allowed us to
formulate the escape condition in terms of the critical
value of ISI (Eq. (8)). Further, we assumed that v,
lies just below the spiking threshold of each cell. This
ensures that the bursting cell falls below the T-current
(de-)inactivation threshold immediately after its burst
is terminated by the escaping cell, leading to exact anti-
phase solutions demonstrated in Figs. 2-7.

Figure 10 shows that the above constraints may be
relaxed without loss of the qualitative features of the
Poincaré map. In this figure the value of v, has been
lowered from —47.5 to —52 mV, and the synaptic decay
time is 1 ms. The time trace in panel (a) shows that
there is a significant lag (labeled ¢) between the escape
time of one cell and the time that the inhibition pushes
the other cell below the T-current threshold. The main
result of this lag is a shift in the value of 4 at the transi-
tion to the silent state, i.e. when v drops below vy,. Thus
we can no longer utilize Egs. (14) or (15) to calculate
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Fig. 9 Dynamics of the network near unstable equilibria. (a)
Bifurcation diagram as a function of the synaptic decay time
constant 7y, obtained from the single-cell map L = F(h*). Black
curves label the stable periodic solutions, while the gray curves
label the unstable solutions. Note that the stability of periodic
bursting is lost near sy, = 4.8 ms. The dashed lines mark the
value 75y, =4 ms corresponding to Figs. 4-8 and the value

the map h* = G(L). Instead, we numerically calculate
the map using a feed-forward network and the steady-
state approximation. Namely, we consider a network
in which cell 1 inhibits cell 2 with cell 1 starting in the
bursting regime with 4 = A* and cell 2 in the silent state
with h = h*exp(—L/t;;) = hy. For different values of
L for cell 1, we calculate the time ¢ (h*) before v, falls
below vy,. This is done using simulations of the feed-
forward network. We then use this information and
the steady-state approximation to numerically and it-
eratively solve for the function #* = G(L). The inverse
of the function #* = G(L) is plotted in Fig. 10(b). Note
that this map has a number of discontinuities that arise
at values of L below which an extra spike is required
to inhibit the suppressed cell below v, (see Appendix 3
for more details). Interestingly, in this case, the discon-
tinuity increases the number of stable periodic solutions
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Tsyn = 10 ms corresponding to panel (b). (b) The dynamics of
the network for z;,, = 10 ms, shown as a cobweb and obtained
by parsing the numerically integrated solution to the network
equations, shown in panel (¢). Note the irregular pattern of the
peak value of T-current de-inactivation (A4*) apparent in the
time trace shown in (c), corresponding to the (possibly) chaotic
dynamics of the discrete Poincaré map shown in (b)

that exist. As is shown, as many as six stable periodic
bursting solutions exist, corresponding to the six points
of intersection of the two maps, for the same values
of parameters. Several of these solutions are shown
in Fig. 1. Figure 11 shows the numerically-generated
phase diagram obtained by using the crawler method
(see Appendix 2) on the coupled network for the new
parameter values. Note that multistability is achieved
for a range of gr values, which provides evidence that
the Poincaré map formalism (this time partially based
on a feed-forward map as opposed to a single-cell map)
is valid. A qualitatively different case of multistability
of periodic bursting states has been previously ana-
lyzed in the context of a single-cell bursting model of
Canavier et al. (1991, 1994) by Butera (1998), using an
approach which is very similar to the one adopted in
this work (see below).
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Fig. 10 Poincaré map for the case of faster synaptic decay (tgy, =
1 ms) and lower T-current activation/inactivation threshold (v, =
—52 mV). (a) shows the potential and T-current inactivation of
the two cells for the nine spikes per burst solution (shown also
in Fig. 1). Note that the T-current dynamics of the two cells are
not completely anti-phase, due to the lag between cell escape
time and the time of suppression of the other cell below v, (¢,
double arrow). (b) The Poincaré map. Note that the G(L) map is
discontinuous; each discontinuity corresponds to the value of L
below which an extra spike is required to inhibit the suppressed
cell below vy, (see Appendix 3). Dashed line corresponds to the
G(L) curve obtained under assumption of half-center bursting.
Four of the six stable periodic bursting solutions are shown in

Fig. 1(b)

4 Discussion
4.1 Summary

There have been countless biophysical models of neu-
rons and networks in the past two decades that have
successfully reproduced outputs of their biological
counterparts and made numerous useful predictions
(Hines et al. 2004). In almost every case the models
themselves produce quite complex outputs which, due
to the large number of parameters and variables in-

volved, are quite difficult to analyze. In the current
study, we take one such model, a two-cell anti-phase
half center oscillator producing bursting activity, and
analyze it by focusing on outputs of interest and re-
ducing the original system of differential equations to
a one-dimensional map. We then show that the analy-
sis of the one-dimensional map provides information
about both existence and stability of solutions to the
original high-dimensional system.

We studied a network of two identical neurons
coupled with reciprocally inhibitory synapses. Each
neuron was constructed as a Morris—-Lecar model to
produce the spiking activity together with a low-
threshold calcium (T-type) current. The synapses are
action-potential mediated with fast rise and interme-
diate decay time constants. We described an analytic
method that produces a Poincaré return map formed as
the composition of two one-dimensional maps (F and
G) of an interval. Each of these maps is constructed by
using the properties of a single isolated neuron: the map
G yields the level of inactivation/de-inactivation (4*) of
the T-current at the transition to bursting as a function
of the time interval during which the cell is inactive; the
map F produces the burst duration L as a function of
h*. These two maps depend on different sets of model
parameters.

4.2 Significance

There is a large body of literature on reciprocally cou-
pled inhibitory networks. These networks arise natu-
rally in central pattern generating circuits that control
rhythmic motor activity (Perkel and Mulloney 1974;
Marder and Calabrese 1996; Grillner et al. 2005). In
such networks, anti-phase bursting outputs of neurons
is ubiquitous and results in the out-of-phase activity of
opposing groups of muscles such as flexors and exten-
sors. Inhibitory networks have also been studied in the
context of synchronization, especially in the presence of
slowly decaying synapses (Wang and Rinzel 1992; Van
Vreeswijk et al. 1994; Terman et al. 1998). Our analysis
only deals with anti-phase solutions and specifically
omits the analysis of synchrony.

Post-inhibitory rebound in networks with T-currents
has also been studied quite extensively (Wang and
Rinzel 1994; Huguenard 1996; Destexhe and Sejnowski
2003). While our study fits in this context, our primary
reason for including the T-current in our model was not
to achieve post-inhibitory rebound—the model cells
spike in the absence of input and thus do not need the
rebound to fire—but rather to work cooperatively with
the synapse to control the burst duration. The presence
of the T-current enables the model to produce bursting
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Fig. 11 Numerically reconstructed bifurcation diagram as a func-
tion of T-current conductance, g7, for the case of fast synaptic
decay and low vy. Dotted line corresponds to the value of g7 in
Fig. (10)

activity with a large range of burst periods depending
on the T-current parameters. In fact, the presence of
the T-current is essential for multistability of solutions
with different burst durations. However, our analysis
would still apply if the bursting was due to the slowly-
activating potassium current rather than the T-current.

The primary advantage of our method is that it pro-
vides a simple tool for the identification of parameters
that control the existence and stability of the bursting
solutions. For example, the map #* = G(L) was shown
to depend only on the T-current inactivation and de-
inactivation time constants, while the map L = F(h*)
depended both on the T-current properties and the
properties of the synapse. This analysis also enabled
us to show how parameters of the synapse and of the
T-current interact to determine the burst length and
the number of spikes per burst. A second advantage of
our method is that it reveals the circumstances under
which single-cell or feed-forward maps—constructed
by tracking a network quantity through a feed-forward
subnetwork—can be used to characterize the dynamics
of the coupled (feedback) network. For example, both
the symmetric anti-phase bursting solutions and the
more complex chaotic anti-phase bursting (see Fig. 9)
are found as fixed points and chaotic trajectories of the
one-dimensional map, respectively. Note that the maps
constructed in our study are of lower dimension, and
thus easier to analyze, than standard Poincaré return
maps that track the state variables. Yet, we demon-
strated that the one-dimensional map yields excellent
qualitative and quantitative agreement with solutions
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of the full network obtained by numerically solving
the full set of equations (Figs. 8, 9(b); cf. Figs. 10(b)
and 11).

Reduction to lower-dimensional maps to prove ex-
istence and stability of solutions has been used in
a wide variety of contexts (Butera 1998; Lofaro and
Kopell 1999; Lee and Terman 1999; Medvedev 2005;
Terman 1994). Most of these studies involve tracking
state-variables in a lower-dimensional phase space. For
example, Terman et. al. have used geometric singular
perturbation theory to derive low dimensional maps
to find oscillatory solutions in a variety of networks
(Rubin and Terman 2000; Terman 1994; Terman et al.
1998). Butera (1998) used a Poincaré return map to
analyze the multistability of bursting solutions and
chaotic bursting displayed by the aplysia bursting neu-
ron model of Canavier et al. (1991, 1994). In each of
these studies, a map, defined on a lower dimensional
slow manifold, tracks a subset of the state variables of
the full system. Medvedev has shown how to construct
one-dimensional maps using singular perturbation the-
ory and averaging to understand the complicated dy-
namics of a bursting neuron model of Chay (Chay and
Rinzel 1985; Medvedev 2005). This method involves
deriving a return map for the single slow variable of
the model and understanding its bifurcation structure.
A notable exception to tracking state variables can be
found in the work of Ermentrout and Kopell (1998)
in which the inter-spike interval (ISI) is tracked to
construct a one-dimensional map associated with a hip-
pocampal network. This map is formed as a combina-
tion of two feed-forward maps, similar in spirit to the
two single-cell maps in our study. The map constructed
by Ermentrout and Kopell tracks spikes of different
cells in a four-cell network and shows that synchro-
nization can be closely tied to the existence of a spike
doublet from a specific cell in the network.

Our approach bears close resemblance to the above-
mentioned work of Butera (1998), who obtained the re-
turn map capturing the multistable bursting of a model
cell as a composition of two separate components rep-
resenting the spiking and the silent states of the burst-
ing cell, respectively, In both studies, the component
related to the active phase is a piece-wise continuous
map, with each branch corresponding to a continuum
of states with an identical number of action potentials.
Finally, as in our case, one of the crucial parameters of
their model exerted its influence on only one of the two
components of the map, allowing a simple description
of the burst length control by this parameter.

One significant consequence of the analysis pre-
sented in this work is the demonstration of multiple
fixed points corresponding to bursting solutions with
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different numbers of spikes per burst. As shown in
Figs. 6-11, the stability of multiple such fixed points
can give rise to multistability of bursting activity (see
Fig. 1). To our knowledge, this is the first modeling
study that examines the possibility of emergence of
such network multistability from the interplay between
the synaptic interaction and the intrinsic cell dynamics.
As discussed above, the existence of multiple stable
bursting solutions has been previously considered in the
context of intrinsic cell bursting (Canavier et al. 1991,
1994; Butera 1998); however, it has not been carefully
examined experimentally. On the other hand, there are
known examples of bistability (Lechner et al. 1996;
Manor and Nadim 2001). It is intriguing to speculate
whether multiple stable periodic states could coexist
in biological networks, enabling the system to quickly
switch between distinct activity states. However, the
basin of attraction of the distinct bursting solutions may
be too narrow for these states to be reliably sustained.
In biological systems, multistability of bursting activity
is much more likely to manifest itself as cycle to cycle
variability in the number of spikes per burst due to
noise and other extrinsic influences on the network.
Such variability is in fact observed in many half-center
oscillatory networks (Bartos et al. 1999; Masino and
Calabrese 2002).

4.3 Relaxing the simplifying assumptions

In order to implement our map-based approach, we
made a few simplifying assumptions. First, we assumed
that the synaptic and recovery variables evolved slowly
in the silent state compared to the voltage variable.
This allowed us to slave the v variable to the dynamics
of the w and s variables thus enabling us to deter-
mine the value 5 (see Eq. (7)). This multiple-time-
scale assumption is critical for using our single-cell map
approach, but is less important if we wish to derive
the map by analyzing the feed-forward network. For
example, when we relaxed the time-scale separation by
changing 7y, from 4 ms to 1 ms, thus allowing s to
evolve more quickly in the silent state, we were still able
to use a feed-forward map to determine i* = G(L) (see
Fig. 10 and Appendix 3), which enabled us to accurately
predict the behavior of the full model.

In our analysis we assumed that the T-current ac-
tivation threshold (v,) and inactivation threshold (v,)
are equal. If we consider the case v, > v, then the T-
current would begin to inactivate while the neuron is
still in the silent state. If the inactivation rate is too
fast, the effect of the T-current may be lost before it
is activated. However, even if the inactivation rate is

not too fast, constructing a single-cell map for h* =
G(L) would not be possible since we would need to
know how the silent cell responds to individual synaptic
events. However, a feed-forward approach to construct
the map similar to the fast z,, case would still be
possible, provided that v lies below v, in the silent state.
In this case § would be computed from Eq. (7) using the
value of v, instead of v;,. Further, we used a Heaviside
function to demarcate the inactivation and activation
thresholds. These functions are smoothed out when
performing numerical simulations. They could also be
smoothed out in the analysis and would mostly affect
how we calculate the map #* = G(L). We would no
longer be able to explicitly calculate /, but would in-
stead have to estimate it.

In this paper, the post-synaptic cell escapes from
inhibition when it reaches the T-current activation
threshold. With a change of parameters, it is possible
for this cell to instead be released from inhibition. For
example, suppose each cell has a stable rest state at a
potential larger than the T-current activation threshold
vy, and that the synaptic decay constant is large relative
to the intrinsic time constant t,. The difference in
scales of the time constants would imply that the post-
synaptic cell could not reach v, while the pre-synaptic
cell is still active. Once the pre-synaptic cell stopped fir-
ing, its synaptic input would decay sufficiently to allow
the post-synaptic cell to fire. In this scenario, the firing
patterns of each cell would have a much wider spread
of IS51s. In order to calculate L = F(h*) in this case, we
have to keep track of the time required for the nullcline
of the bursting cell to cross the lower branch of the w-
nullcline (i.e. time to the saddle-node bifurcation). In
addition, we would then have to calculate the extra time
that the post-synaptic neuron needs to reach vy,.

Another simplifying assumption of our model was
that individual synaptic inputs are sufficient to force
the inhibited cell below v;,. In many cases, however,
summation of multiple IPSPs is necessary to produce
effective inhibition of the postsynaptic neuron. We ex-
amined one such example in Fig. 10 by lowering v, and
using faster synaptic decay. The result was the appear-
ance of discontinuities in the map G. A full analysis of
this case requires keeping track of synaptic summation
to find the time interval between the first spike in the
burst and the time that the opposite inhibited neuron
falls below v;,. Such an analysis, as mentioned earlier,
would require construction of G as a feed-forward
map so that the effect inter-spike intervals have on
the summation of IPSPs can be taken into account.
Although we did not address this issue in detail, the
map G constructed for Fig. 10 shows the feasibility of
constructing the one-dimensional map in this case.
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A similar technique can be used to keep track of
any influence of short-term synaptic dynamics such as
facilitation and depression on the shape of the map G.
Thus, the effect of short-term synaptic dynamics can be
accounted for by the one-dimensional maps so long as
these effects are short lived on the time scale of a burst
and do not accumulate from burst to burst. Note that
the presence of synaptic facilitation would possibly act
synergistically with the T-current in producing bursting
oscillations by increasing the duration and effectiveness
of inhibition and therefore allowing for additional de-
inactivation of the T-current. However, the analysis of
this synergistic interaction requires only modifications
in the map G because the map F is not strongly influ-
enced by modifications of synaptic dynamics.

Note finally that we have only considered the case
of identical cells. However, the method readily gener-
alizes to the heterogeneous case, in which case the map
can be written as P(L) = F»(G>(F,(G{(L)))), where
the subscript indicates the cell number corresponding
to each of the single-cell maps. The analysis of the
dynamics of a heterogeneous network is beyond the
scope of the current work and will be explored in future
studies.

4.4 Analysis of more complicated dynamics
and complex systems

The one-dimensional map based approach can be ap-
plied to understand some of the more complicated
dynamics of the two-cell network. For example, simple
cobwebbing using the map (Fig. 9) revealed the exis-
tence of chaotic solutions which were then numerically
obtained. The existence of higher order periodics can
also be explored in this way. In a network consisting
of a larger number of cells, the formulation of a one-
dimensional map may be considerably more difficult.
However, if the /51 remains a quantity of interest, then
presumably the map can be built as the composition
of several (more than two) single-cell maps, each of
which measures a quantity of specific interest over some
portion of the trajectory.

4.5 Conclusions

We have described a simple analytical tool, a one-
dimensional map constructed from single-cell prop-
erties, for the analysis of the output of a relatively
complex network model. This one-dimensional map
accurately predicted the existence and stability of so-
lutions to the network model as well as the presence
of chaotic solutions and the simultaneous stability of
multiple solutions. The one-dimensional map was built

@ Springer

by focusing on a subset of solutions of interest, i.e.
anti-phase bursts, and using some basic simplifying
assumptions. We emphasize that the usefulness of the
one-dimensional map is primarily as an aid to under-
standing the behavior of the full model network. As
such, the map is not meant as a substitute for the full
model in producing and predicting outputs of the bio-
logical network of interest. Rather, a thorough under-
standing of biological neural networks would require
a combination of numerical simulations using detailed
biophysical models and the mathematical analysis of
these high-dimensional models using reduction tech-
niques such as the one described in this study.
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Appendix
1 Model equations and parameters

The Morris-Lecar parameters in Eq. (6) are adapted
from Keener and Sneyd (1998):

Lpp = 14pAlem?, C, =2uFlem?, ¢ =2/3, Ex =
—84, Ec, =120, E; = —60, gc, =4, gx =8, g = 2.
Here the voltage units are mV, and conductance units
are mS/cm?.

The functions m, ws and 1, (v) are given by

1 + tanh[(v + 12)/18]

Mo (V) = > )
1 4 tanh[(v + 8)/6]
Weo (V) = > ,
Tw(v) = : (17)

cosh[(v + 8)/12]

The discontinuous dynamics of 4;(r) and s;(f) in
Egs. (3), (4) and (6) are smoothed out in the numerical
simulation using:

aj=o0(vj— )

. h
L —oj—w) =

h/] = o(vh — v]‘)
Tlo Thi

1—Sj S/'
—o(vg —vj)
Y Tsyn

si=0(v;— vg)
where o (v) is the sigmoidal function given by

o(v) = %[1 + tanh(4v)]
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The T-current inactivation time is set to 7, = 20
ms, while the synaptic growth time is 7, = 0.2 ms. The
synaptic reversal potential is set to Ej;,, = —80 mV.

Except for the figure panels exploring the parameter
sensitivity of the network dynamics, the remaining pa-
rameter values in Figs. 2-9 are: vy, = —47.5 mV, 1, =
200 ms, gy, = 0.6 mS/cm?, g7 = 1 mS/em?, vy = —35
mV, and t;y, = 4 ms.

In Fig. 1, 10 and 11, these parameters are changed
to: vy = —52mV, 1, = 100ms, gy, = 1.1 mS/em?, g7 =
1.4 mS/cm?, vy = =3 mV, and 7y, = | ms.

The values of t;; and 7, given above are close to the
values measured by Huguenard and McCormick (1992)
of about 30 ms and 300 ms, respectively.

MATLAB code implementing the model can be
found at http://web.njit.edu/~matveev/Burst.

Note that in principle the precise value of vy is not
critical to the model dynamics, provided that v, is less
than the maximal potential of the spiking limit cycle.
However, a more hyperpolarized level of vy used in
Figs. 2-9 allows for a more reliable inhibition by the cell
initiating the burst, ensuring that the potential of the
cell terminating the burst quickly drops below v;,. On
the other hand, the use of a higher spiking threshold
enhances the situation whereby a single burst spike
is insufficient to suppress the potential of the partner
cell below vy, a situation which holds in the case of
multistability of solutions (Figs. 1, 10 and 11). However,
the same effect could be achieved by varying gy, alone.

Finally, in the computation of the single-cell map
L = F(h*), we ignored a minor contribution to the
burst length of the duration between cell escape time
and the peak of first spike. This correction is easy to in-
clude, and is incorporated in all numerical calculations
involving this map. Denoting the time to first spike as
At(h*), the sums in Egs. (10-12) should be extended
to include At(h*), and in Eq. (9), h; should be set to
h* expl—At(h*) /4.

2 Numerical reconstruction of burst
bifurcation diagram

The phase diagrams shown in Fig. 8 (gray curve) and in
11 are reconstructed numerically, by “crawling” along
the relevant parameter direction. The algorithm is im-
plemented in MATLAB, and involves two main parts:
(1) the periodic state detector, and (2) the parameter
“crawler”/continuer.

1. The detector of periodic solutions is implemented
in the most straightforward way. Namely, model
equations are continuously integrated while check-
ing for a pattern in the sequence of burst intervals.

A burst interval is defined as the time period be-
tween two consecutive spikes of one cell containing
at least one spike of the second cell. If a sequence
of such intervals is found to repeat itself a sufficient
number of times with a given degree of accuracy,
the corresponding state is assumed periodic, and
the number of spikes, the duration of the state
and its state vector are returned. For a symmetric
anti-phase periodic bursting solution, the burst
interval sequence would normally represent the
lengths of consecutive bursts of the two cells, such
as in { 35.4, 35.4, 354, ...}. However, in some cases
the synchronization of the last and first spikes in
the burst may occur, which may lead to a periodic
sequence of length 4, such as { 25.2, 2.1, 1.4, 25.2,
2.1, 1.4,25.2,2.1, 1.4 }. The latter sequence corre-
sponds to the situation where the last spike of one
cell occurs after the first spike of the partner cell.
In this example 1.4 represents the first intra-burst
inter-spike interval (containing one last spike of
the partner cell), and 2.1 is the duration of the last
inter-spike interval of the partner cell (containing
one first spike of cell 1). However, this complication
does not arise in the simulations shown in this work.
Empirically, tracking the lengths of burst intervals
defined above is more robust than tracking the
sequence of the inter-spike intervals. Also, it au-
tomatically takes into account the identity of the
spikes as coming from a particular cell.

Once a periodic solution is detected, a variation of
a standard predictor-corrector step is performed.
Namely, the relevant parameter is increased by a
certain increment (or decreased, depending on the
direction of the crawl), and the periodic detection
is repeated, using the periodic state from the pre-
ceding parameter point as the initial condition. If
the new periodic solution has the same number
of spikes (burst sequence signature) as for a pre-
vious parameter value, a bigger parameter step is
undertaken (parameter increment is stretched). If
the new periodic state is different from the old one,
the parameter increment is decreased, and the new
state sequence is put into a queue along with the
corresponding parameter value and the full state
vector. The process continues until the parameter
step drops below a certain minimal value, which
will occur close to the boundary (bifurcation point)
of the parameter interval supporting the corre-
sponding periodic state.

Once one boundary of the relevant parameter in-
terval is detected, the crawl is re-started from the
initial parameter point, but in the opposite direc-
tion (i.e. the parameter is decreased). When the
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second parameter bound/bifurcation is detected,
the parameter basin of the stable state has been de-
termined. The process is then repeated for the next
periodic state in the parameter queue. Recall that
the queue is composed of activity states that the
algorithm encounters when the parameter value is
increased beyond the bifurcation point. Therefore,
the algorithm “hops” from one state to another one
which lies close to the first one in the parameter
space.

Note that the completeness of the reconstructed phase
diagram is by no means guaranteed. For instance, if the
parameter support of one state lies completely within
the parameter state of the other cell, that state may
never be detected, unless it lies close to the bifurcation
point of some third stable periodic state.

3 Case of discontinuous #* = g(L) map

Here we describe the reconstruction of the discon-
tinuous A* = g(L) map shown in Fig. 10(b). The dis-
continuity is directly related to the amount of time
needed for the cell potential to drop below the vy,
threshold after burst termination. This time duration is
labeled ¢ and marked by a double arrow in Fig. 10(a).
If the T-current threshold vy, is close to the spiking
threshold of the cell, as is the case for the simulations
in Figs. 2-9, the potential of each cell will reach vy,
almost instantaneously on burst termination, and ¢ is
approximately zero (¢ is ignored in Egs. (13-15)). If
however vy, is significantly lower than the potential of
the cell upon burst termination, it may take several
inhibitory synaptic inputs to lower the potential below
Vy.

¢ depends on the level of T-current inactivation of
both cells, ¢ = ¢(h*, hy), where h; is the T-current
inactivation of the bursting cell at the end of the
burst (see Fig. 10(a)). The larger 4, the higher is the
V-nullcline of the cell on termination of its burst, and
the longer it takes for the potential of the cell to drop
below the v, threshold. ¢ is also a function of A*, since
h* determines the initial burst spiking frequency, and
hence, it determines how quickly the inhibitory synaptic
input can lower the potential of the suppressed cell
below vy,.

Thus, the
described by

de-inactivation of the T-current is

h* =1+ (h, — 1) exp [_M}

Tlo

where A, (the minimal value of 4(¢)) and /4, are deter-
mined using the steady-state approximation, i.e. under
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the assumption of periodicity in burst characteristics 4*,
¢ and L. Examination of Fig. 10(a) leads to:

L+ ¢(h*, hL)i|

Thi

h, = h* exp [—

hp = h*exp [—%] Thus, ¢ is a function of both A*
and L:
(W', hr) = ¢(h*, h* expl—L/i]) = @(W*, L)

Therefore, we have

L+oh, L
=1+ (h* exp |:—¥:| - 1>
Thi

|: L— o, L)]
exp|———

Tio
Solving for A* yields
1 — exp [_ L—CI>(h*,L)]
n = i = H(h*, L)
| — exp [_ L+®h*, L) Lf\:D(h',h,‘)]
Thi Tlo
(18)

In the above equation, the function ®(h*, L) is de-
fined numerically. Namely, the potential of one cell
(bursting cell) is set above the spiking threshold, while
the potential of the partner cell (the suppressed cell)
is set below the excitation threshold, and their A val-
ues are set respectively to #* and hy = h* exp[— L/ tp;]-
Given these initial conditions, the feedforward network
equations are then integrated until the potential of the
suppressed cell reaches vj,. The corresponding passage
time determines the value ¢ (h*, hp).

Since the right-hand side of Eq. (18) depends on A*
through ®(h* L), this equation defines the /*=G(L)
map implicitly. It is solved iteratively for each value
of L:

hy,=HMh, L), n=12,..

where the initial condition A} is obtained under the
approximation A, = 0, ¢ = 0:

hi =1—exp [—L/rlo]

The iterative solution approaches the thin curve shown
in Fig. 10(a). The discontinuity in this curve is the result
of the discontinuity of the function ¢ (h*, hy): as h*
decreases or Ay increases past some critical value, it
will take one more inhibitory input to suppress the cell
below vy, resulting in a jump increase in ¢ by one inter-
spike interval.
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