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Abstract. 
king model on a square lattice. From an analysis of low-temperature series expansions. we find 
evidence that, as one approaches the point U = us = - I  (where U = e-") from within the 
complex extensions of the FM or AFM phases. the susceptibility has 3. divergent singularity of 
the farm ,y - A:(l + u)-y: with exponent r: = i. The critical amplitude A: is calculated. 
Other critical exponents are found to be ci = cs = 0 and ps = $, so thY the scaling relation 
U: + 26, + y: = 2 is satisfied. However, using exact results for ps on the square, triangular, 
and honeycomb lattices, we show that universality is violated at this singularity: ps is lattice- 
dependent. Finally, from an analysis of spin-spin correlation functions, we demonstrate that the 
correlation length nnd hence susceptibility are finite GS one approaches the point I( = -1 from 
within the symmetric phase. This is m n h e d  by an explicit study of high-tempemture series 
expansions. 

We investigate the complex-temperature singularities of the susceptibility of the 

1. Introduction 

Although exact closed-form expressions for the (zero-field) free energy and spontaneous 
magnetization of the two-dimensional Ising model were calculated long ago, no such 
expression has ever been found for the susceptibility, and this remains one of the 
classic unsolved problems in statistical mechanics. Any new piece of information on the 
susceptibility is thus of value, especially insofar as it specifies properties which an exact 
solution must satisfy. In particular, it is of interest to better understand the properties 
of the susceptibility as an analytic function of complex temperature. Several years ago, 
some results on complex-temperature singularities of the susceptibility for the k ing  model 
were reported [ I ] .  Here we continue the study of complex-temperature singularities of the 
susceptibility of the 2D king model. 

2. Generalities and discussion of complex extensions of physical phases 

We consider the king model on a lattice A at a temperature T and external magnetic field 
H defined in standard notation by the partition function 
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with the Hamiltonian 

V Matveev and R Shrock 

(2.2) 

where ui = f l  are the 2 2  variables on each site i of the lattice, p = ( k e T ) - ' .  J is the 
exchange constant, (ij) denote nearest-neighbour pairs, and the magnetic moment p s 1. 
Here we shall concentrate on the square (sq) lattice, but also make some comments for 
the triangular (t) and honeycomb (hc) lattices. We use the standard notation K = ,9J and 
h = f l H ,  

U = tanh K (2.3) 

and 

u = 22 = e 4 K .  (2.5) 
It will also be useful to express certain quantities in terms of the elliptic moduli k ,  and 
k ,  s l / k < .  For the square lattice these are given by 

4u =- I 
k - .  - sinh(2K)Z (1 - u ) ~  

and 
4 U2 

(1 - u2)2 
k, = 

We note the symmetries 

K -+ -K + (U -+ -U. z + l / z ,  U -+ ]/U, k, + k,J (2.8) 
where k, = k ,  or k, .  The reduced free energy per site is f = -pF = limN,, N-' In Z 
(where N denotes the number of sites on the lattice), and the zero-field susceptibility 
is xo = a M ( H ) / a H l ~ , o ,  where M ( H )  denotes the magnetization. Henceforth, unless 
otherwise stated, we only consider the case of zero external field and drop the subscript 
on xo. It is convenient to define the related quantity 

1 p x .  (2.9) 
For the square (sq) lattice. f (K ,  h = 0) was originally calculated by Onsager [2] .  and 
the expression for the spontaneous magnetization M was first reported by Onsager and 
calculated by Yang [3]. Solutions for f(K. h = 0) and M were subsequently given for the 
triangular (t) and honeycomb or hexagonal (hc) lattices; for reviews, see 14-61, We denote 
the critical coupling separating the symmekic, paramagnetic (PM) high-temperature phase 
from the phase with spontaneously broken ZZ symmetry and ferromagnetic (FM) long-range 
order as K, and recall that for the square lattice, U, = zc = & - 1. 

Here we shall study the susceptibility as a function of complex (inverse) temperature, K 
For our purposes, it is important to discuss generalized notions of phases and thermodynamic 
quantities. We define a complex extension of a phase as an extension, to complex K, of the 
physical phase which exists on a given segment of the real K-axis. As noted, for example. 
in [ 11, for zero external field, there is an infinite periodicity in complex K under certain 
shifts along the imaginary K-axis, as a consequence of the fact that the spin-spin interaction 
on each link (ij) is a,uj = +I. In particular. there is an infinite repetition of phases as 
functions of complex K; this infinitely repeated set of phases is reduced to a single set by 
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using the variables U, z and/or U, since these latter variables have very simple properties 
under complex shifts in K: 

K + K + n i n + { u + u ,  i + z ,  u + u ,  k , + k , ]  (2.10) 

in K (2.11) 

where n is an integer and, as before, k, = k ,  or k, .  On a lattice with an even 
coordination number q,  it is easily seen that these symmetries imply that the magnetization 
and susceptibility are functions of U only. Because the shift (2.1 1 )  leaves U invariant while 
mapping U to l/u, it maps a point in the FM phase (and its complex extension) to itself but 
maps a point in the (complex extension of the) PM phase out of this phase. Consequently, 
when studying complex-temperature properties of the model, it is more convenient to start 
within the FM phase, where the various quantities of interest can be expressed as Taylor 
series in the low-temperature expansion variable U. After this study, we shall proceed to 
investigate the properties of the susceptibility in the interior and boundary of the PM phase. 
It is useful to note that a given point uo or i o  corresponds, in the complex K plane, to the 
set 

K -+ (2n + 1 ’ 1  j (U + I/u, z + -z, U + U ,  k, -+ kx) 

K = KO + nirr (2.12) 

where n E Z and 

K o = - i l n z o  2 (2.13) 

while a given point uo corresponds to the set 

K = KO + i n i n  (2.14) 

reflecting the structure of Riemann sheets of the logarithm. 
The requisite complex extensions of the physical phases can be seen by using the known 

results on the locus of points on which the free energy is non-analytic. For the square lattice, 
these are given by the circles [7] 

(2.15) 

for 0 < 0 and o < 2n. Recall that the property that this locus of points are circles in 
both the high- and low-temperature variables U and z follows because these variables are 
related by the bilinear conformal transformation (2.4) which maps circles to circles. For 
later reference, these circles are shown in figures l(u) and ( b ) ,  respectively. 

The circles in U or z constitute natural boundaries, within which the free energy is 
analytic but across which it cannot be analytically continued. They thus define the complex 
extensions of the physical phases which occur on the real U or z axes in the intervals 
-Uc < U < U, or zc < L < l/Z, (PM), U, < U < 1 or 0 < z < zc (FM), and - I  c U < -U, 
Or I/& < Z C 00 (AFhl). 

1/2 U*@) = f 1 + 2  I” e i.e. z+(w) = *I + 2 

Using the general fact that the high-temperature expansions and (for discrete spin 
models such as the king model) the low-temperature expansions both have finite radii of 
convergence, we can use standard analytic continuation arguments to establish that not just 
the free energy, but also the magnetization and susceptibility are analytic functions within 
each of the complex-extended phases. This defines these functions as analytic functions 
of the respective complex variable (K ,  U, z ,  U ,  or others obtained from these). Of course, 
these functions ark, in general, complex away from the physical line -m < K < ca. 

We shall also need a definition of singularity exponents of a function at a complex 
singular point. In the case of real K, one distinguishes, a priori, the critical exponent 
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Figure 1. Phases and associated boundaries in the complex variables (a)  U, (b)  z ,  and ( e )  U, M 
defined in (2.3)-(2.5). In the variable k< defined in (2.6). the complex FM and AFM phases are 
mapped into the interior of the unit circle. and the PM phase to the exterior of this circle. 
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which describes the singular behaviour at a critical point approached from the symmetric, 
high-temperature phase from the corresponding exponent for the approach from the broken- 
symmetry, low-temperature phase. For a singular point in the complex plane, we shall again 
distinguish the critical exponents describing the singularity as approached from different 
phases. Thus, for the susceptibility j ( C )  (where < refers to one of the complex variables 
listed before) which fails to be analytic at one or  more singular point@) (Cs), if the leading 
singularity in f ( ( )  can be represented in the power-law form 

(2.16) 
as < approaches CS from within the the phase p ,  we shall refer to Cs as a complex singular 
point and ys,p as the corresponding critical or singularity exponent for the approach to 
(. from this phase. By analogy to standard usage for physical temperature, we shall set 
y S , m  = yi and y s , p ~  = y& to refer to the critical exponents at Cs as approached from within 
the complex extensions of the FM and PM phases, respectively. We shall show that for the 
specific point us = -1, ~ $ . A F M  = Y ~ . F M .  Critical exponents for other quantities at complex- 
temperature singular points are defined in an analogous manner. The locus of points & 
where a given function is singular in the complex C plane will not, in general, be a discrete 
set, in contrast to the case for the king model on the physical, real K axis. This is illustrated 
by the locus of points (2.15) where the free energy is singular. Even for a function like the 
magnetization, which, in the complex FM phase where it is non-vanishing, is an algebraic 
function in < = k ,  or < = z of the form M = n::,(< - cb)", the discrete points Cx also 
in general involve associated branch cuts, since the exponents os are not integers. 

It should be noted that a phase may exist for complex U or z which is not the complex 
extension of any physical phase. An example of this phenomenon occurs in the present 
case; the fourth region, denoted 0 in figures l(n) and (b) constitutes such a phase. 

In contrast to the usual ferromagnetic critical point of the Ising model, which can be 
approached only within the PM phase or FM phase (and similarly, the AFM critical point of 
this model, which can be approached only from within the PM or AFM phase), a general 
complex singularity may be approached from within more than two phases. For example, 
in figure I the singularities at U = +i, or equivalently, z = h i ,  can be approached from 
within the PM, FM, or AFM complex-extended phases, or, indeed, from the region 0 which 
is not analytically connected to any physical phase. 

Since for the square lattice f ( z )  has the symmetry noted above, f ( z )  = f ( - z ) ,  i t  is 
useful to display the complex-extended phases as functions of U .  Under the conformal 
transformation U = zz, the circles in figure I(b) are mapped to a single curve, which is a 
type of limaGon of Pascal, defined by 

Re(u) = 1 +23 '2cosw+2cos20 (2.17) 

f(C)Si"& - (1 - </Cd-"R 

Im(u) = 23/2sinw+ 2 s i n h  (2.18) 
traced out completely for 0 < o < 2rr. In this variable, there are three complex-extended 
phases, as shown in figure I@):  PM, FM, and AFM. The mapping from z to U reduced the 
number of complex-extended phases from the four which are present in the variable z or U 
to three; since the points in the 0 phase are related to those in the complex-extended PM 
phase by z -+ -2, these two phases are mapped to a single phase in the U plane. The points 
z = Ai, at which the PM, FM, AFM, and 0 phases are all contiguous, are mapped to the single 
point U = U& = - I  in the U plane. In the terminology of algebraic geometry, the point 
us = - I  is a singular point, specifically a multiple point of index 2. of the l imapn (2.18) 
forming the natural boundary between the complex phases, whereas all other points on this 
curve, including the PM-FM critical point uc and the PM-AFM critical point at U = I /&,  are 
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regular (ordinary) points of the curve. Here, a multiple point of index n of a curve C is a 
point through which n arcs of C pass (see, for example, For later reference, the physical 
Critical points are uc = 3 - 21/2 = 0.171 572875. ,  . separating the PM and FM phases and 
U;' = 3 + Z f i  = 5.828427 1 . . . separating the PM and AFM phases. In the complex K 
plane, these correspond to the infinite set of critical points K, = ii ln(1 + 1/2) + nin/2. 
where n E 2. Under the transformation U -+ l /u,  the complex-extended PM phase maps 
onto itself, while the complex-extended FM phase maps to the AFM phase, and vice versa. 

Finally, in terms of the elliptic moduli, the natural boundaries have the very simple 
form of the unit circle in the complex k ,  or k ,  planes: 

k ,  = I l k ,  =e'* (2.19) 

V Mmeev and R Shrock 

with 0 < 8 < 2x. These incorporate the symmetries 

U -+ l / u  j k, -+ k, (2.20) 

U -+ I/u k, -+ k, (2.21) 

where k,  denotes k,, k,, or K .  Given the inversion symmetry (2.20), it follows that the 
transformation (2.6) from U to k, maps both the complex-extended FM and Am phases 
onto the same region, which is the interior of the unit circle in the complex k ,  plane. The 
complex-extended PM phase is mapped to the exterior of this circle. Under the mapping, the 
actual 1imaGon in the U plane wraps around the unit circle in the k, plane twice. In particular, 
both the PM-FM critical point uc,sg and the PM-AFM critical point I/u, are mapped to the 
single point, k ,  = k ,  = 1. The complex-temperature singular point U &  = -1 is mapped to 
k ,  = k, = - 1 .  

Having discussed these preliminaries, we proceed to study the susceptibility. 

3. Analysis of low-temperature series 

3.1. Annlysis of series for f r  in the variable U 

The low-temperature series expansion for f for the king model on the square lattice is 

This expansion has a finite radius of convergence and,, by analytic continuation from the 
physical low-temperature interval 0 < U U , ,  applies throughout the complex extension of 
the FM phase. Since the factor 4u2 is known exactly, it  is convenient to study the reduced 
(I) function 

m 
x = 1 + cnu" . f r =  - 2-2u-2 - 

"=I 

The expansion coefficients c, were calculated to order n = 9 in 1971 by the King's College 
group [9] and were extended to order n = 21 by Baxter and Enting in 1978 [IO] (with exact 
coefficients up to n = 19 and nearly exact n = 20 and 21 terms). Very recently, the c,'s 
have been calculated to order n = 26 (i.e. f to O(u")) by Briggs et al [I I ] ,  as part of 
a general calculation of low-temperature series for q-state Potts models with q = 2-10 on 
the square lattice. We have carried out a dlog Pad6 analysis of this series to investigate the 
singular behaviour of the susceptibility in the complex U plane. (For reviews of this method, 
see [ 141.) As one approaches a complex singular point denoted by 's' on the boundary of 
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Table 1. Values of us from Padi approximats to low-tempentux sedes for j ,  staning with 
the series to 0 ( u t 2 ) .  The superscript * indicates thnt the a p p m x i m t  has one or more nearly 
coincident pole-rem p3iNs) closer to the origin than us.  Our criterion for near coincidence is 
that Iupof. - uyml < 

N K N  - Z)/NI r(Iy - IWI  W I N ]  [(N + I)/NI [(N + 2 ) / N 1  

6 -  
7 -1.09018' 
8 -1.00060 
9 -1.00762' 

IO -0.983770 
11  -0.999211 
12 -0.999976' 
13 -0,999073' 

- 1.05026 
-1.03635 
-1.02216 
-1 ,  I86 78 
-I. 13876' 
-1,00398 
-0.997 679' 
-0.996 2 IO' 

-1.07608* 
-0.990673 
- I  ,003 63' 
-0.981 169 
-0.996 264' 
-0.998086' 
-0.998044' 
- 

-0.992720 -0.990763 
-0.992677. -1.00752* 
-0.997028 -0,988543 
-0.995 418 5' 
-0.995 312' -0.998649' 
-0.997751 5' -0.998 400' 
-0.997225. - 

-0.996 322 5' 

- - 

6 -  1.975 
7 2.297' 1.879 
8 1.563 1.771 
9 1.628' 1.533 
IO 1.358 1.732. 
11  1.545 1.605 
I2 1.554' 1.523' 
13 1.543' 1.503' 

2.174' 1.474 1.455 
1.454 1.474' 1,631' 
1.583' 1.513 1.419 
1.321 1.497. 1.508' 
1.507. 1.496. 1.536' 
1.528' 1.524' 1.533' 
1.528' 1.517, - 
- - - 

the complex-extended FM phase from within this phase. 2 is assumed to have the leading 
singularity (s) 

(3.3) j ( u )  - AL(I - u / u , ) - ~ ~ ( I  +ul,,(l - u/u , )  + ...) 
where A: and y: denote, respectively, the critical amplitude and the corresponding critical 
exponent, and the dots , . , represent analytic confluent corrections. One may observe that we 
have not included non-analytic confluent corrections to the scaling form in (3.3). The reason 
is that, although such terms are generally present at critical points in statistical mechanical 
models, previous studies have indicated that they are very weak or absent for the usual 
critical point of the 2D king model [IZ, 131. The dlog Pad6 study then directly gives U, and 
yl .  As noted above, the prefactor 4uz is known and is analytic, so we actually carry out the 
dlog Pad6 study on j r .  This study yields evidence for a divergent branch point singularity 
at a particular complex-temperature point, which we denote by us. (The use of us above 
referred to generic complex-temperature point@), of which there might, U priori, be more 
than one; henceforth, we use this symbol to refer to the specific point found from the PadC 
study.) The results for us and yi from the diagonal and near-diagonal approximants are 
listed in tables 1 and 2, starting with series for 2, to 0 ( u 1 ' )  and going up to 0(uz6).  We do 
not find evidence for any other complex-temperature singularities within the range described 
by the small-u expansion. From this PadC analysis of the low-temperature series, we infer 
the values 

= -0.998 * 0.002 (3.4) 
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y,' = 1.52 f 0.06 (3.5) 
where the uncertainties are estimates. 
approaches the point 

These results suggest the conclusion that as U 

U s  = -1 (3.6) 

(3.7) y' = - 
This inference was also reached by Enting, Guttmann and Jensen; see note added in proof. 
As noted above, this point us = -1 corresponds to the two points zs = -vs = 33; in the 
complex K plane it corresponds to the infinite set of points given by 

from within the FM phase, ,f has a divergent singularity with exponent 
3 

D 2 '  

K, = -4ix + i n i n  (3.8) 
with n E Z. 

In the following we shall show that the critical exponent for the inverse correlation 
length (mass gap) describing row or column connected spin-spin correlation functions at this 
singular point is w,;, , ,~ = 1. A naive complex-temperature analogue of the usual argument 
for the scaling relation u'(2 - 17) = y', in conjunction with our inferred value of y: in (3.7), 
would lead to the further inference that the exponent describing the asymptotic decay of 
the row or column connected 2-spin correlation function at the singular point us = - I  is 

= 4 (where we append the prime to indicate that the calculation of the spin-spin 
correlation function involves a limit from the complex FM phase). However, we shall show 
that the situation near the complex-temperature singular point U = - I  is considerably more 
complicated than the case at the physical critical point with its simple scaling relations 
w'(2 - 7) = y' and u(2 - 7) = y .  Among other things, we shall show that the correlation 
length and 2 are finite when one approaches U = -1 from the complex PM phase. 

The dlog Pade study did not yield any evidence for other complex singularities, i.e. 
it did not give poles whose positions were highly stable as one varied the orders of the 
approximants. As usual, the values of the position of the singular point vary less among the 
Pad€ entries than the values of the exponent. Also, as expected, the values of yi show less 
scatter in the higher-order Pad6 entries than in the lower-order entries. It is true, however, 
that these values of y: do exhibit more scatter than the values of the usual susceptibility 
exponent y' for the PM-FM critical point uC. To make this comparison quantitative, i t  is 
sufficient to show the values of U, and y' extracted from just the diagonal Pad6 entries; 
these are given in table 3. 

Table 3. Values of us, 
i, stating with the series IO O(u"). 

and y' from diagonal Pad6 approximmts to low-temperature series for 

ININ1 %.Y. Iu<.yI - U C I / U <  Y' 

[7/7] 0.171 56038 0.73 x 10-4 1.745 
[6/6] 0.171 540 17 1.9 10-4 1.740 

[8/8] 0.17146527' 6.3 x I r 4  1.791' 
[9/9] 0.17156858' 2.5 x I 0 - I  1.747' 
[IO/lO] 0.17157013 1.6 10-5 1.748 

[12/12] 0.17157423* 7.9 x IO-h 1.751' 
Exact 0.171572875 ... 0 1.750 

[I 1/11] 0.171SR32 3.2 x IOFh 1.749 
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Table 4. Values of U (  from Pad6 approximwts to E(' )  = ( I  - 6u + u2)' / ' i , .  staling with the 
scrics for r(u) to ordcr O ( U ' ~ ) .  

N 

6 
7 
8 
9 

10 
I 1  
12 
13 

- 
- 
- I  .09002* 
-1.010665 
- 1.01 188' 
-0.988462 
-1,001 56 
-1.001 685. 
-0.999656' 

- 1.05279 
-1.04502 
-1.02141 
- 1.343 02 
- 1.264 78' 
- 1.003 54 
-0.997 653 
-0.994374. 

-1.07822' 
-0.999217 
- 1.003 84' 
-0.985 198 
-0.996 803 
-0.998084 
-0.998 042' 
- 

-0.991 486 
-0.989684' 
-0.996939 
-0.995 437 
-0,995048' 
-0.997731 
-0.996954' 
- 

[(N + 2)/N1 

-1.001 045 
-1.00833' 
-0.989857 
-0.996976 
-0.998644' 
-0.998407' 
- 
- 

Table 5. Values of y: from Pad6 approximants to g ( ~ )  = ( I  - 6u t u')'/'ir, starting with the 
series for E ( U )  to order 0 ( u J 2 ) .  

N [(N - 2)/Nl [(N - ])/NI 

6 -  1.998 
7 2.278' 1.950 
8 1.664 1.769 
9 1.674' 1.356 

10 1.418 1.490' 
I I  1.575 1.600 
12 1.576' IS23 
13 1.551' 1.481' 

1.540 
1.585* 
1.372 
1.513 
1.528 
1.528' 
- 

I O "  [)/NI 

1.464 
1.449' 
1.512 
1.497 
1.493- 
1.524 
1.514* 
- 

[(N + ZUNI 
1.561 
1.640- 
1.434 
1.516 
1.536' 
1.533' 
- 

3.2. Analysis of series for g(u) 

Clearly, a property of Pad6 approximants which is crucial for our study is their sensitivity 
to singularities which are not the closest to the origin of the Taylor series expansion. In 
order to explore the possibility of obtaining a more sensitive probe of the complex singular 
point, we have also carried out a similar study of a series with the physical singularity 
removed. In order to keep the coefficients rational, we actually multiply j by the factor 
[(U - .,)(U - I / U ~ ) ] ~ / ~  = (1  - 6u + u2)7/4 and thus study 

(3.9) 
This is an old technique (see, for example, [5]). Note that the spurious finite branch-point 
singularity introduced at the PM-AFM critical point has no effect on our analysis, since the 
small-lui series for j and g only apply in the FM region, which is not contiguous with the 
region of the PM-AFM critical point in the U plane. The results of our Pad6 analysis of the 
series for g ( u )  are given in tables 4 and 5. 

As one can see from these tables, the resultant values for us and y: are in very good 
agreement with those from our analysis of the series for j r .  One improvement that occurs 
is a slight reduction of the number of entries with nearly coincident pole-zero pairs, which 
should increase the accuracy of the results somewhat. 

3.3. Analysis of series for j in the variable k ,  

Finally, it is useful to transform the series for the susceptibility from the usual low- 
temperature variable U to the elliptic modulus k ,  and to study the resultant series. An 

z 714 - 
S ( U )  E ( I  - 6 u f u  ) x,(u) .  
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Table 6. Vdues of (k,),,,, and y: from diagond Pad6 approximutts to low-temperature series 
for ir stvting with the series to ~ ( k p ) .  CP denotes a complex p ~ r  of poles close 10 - I .  The 
superscript indicates that the approximan1 has one 01 more n w l y  coincident p 0 1 e - z ~ ~  pm(s) 
closer to the origin thm (k& = -1. As before, our criterion for near-coincidence is that 
l(k<fpotc - &)-I < 10- . 4 

ININ1 (k&%r l (Lls ,s=r+ II v: 
[6/61 -0.998766 1.2 x IO-' 1.513 
17/71 -0.999940 0.60 x 1.552 
[8/81 -1.000012 1.2 x 1.555 
[9/91 -0.999734 2.7 x IO-' 1,543 
[10/10] -0.999819' 1.8 x 1.546. 
[11/111 -0.999873 1 . 3 ~  1.549 
112/121 CP - - 

important motivation for this is that j is given formally by a sum over all connected 
correlation functions, and these correlation functions, which can be' computed exactly in 
terms of certain Toeplitz determinants [16,17]. have explicit forms which are polynomials 
in the complete elliptic integrals K(k,) and E(k,) [lS], where k, = k, in the FM and AFM 
phases and k, = k ,  in the PM phase. The variables k, and k ,  are thus natural ones for low- 
and high-temperature series expansions of j ,  respectively. We therefore have transformed 
the known small-lul series to one in k,, which takes the form 

(3.10) 

The series in parentheses defines a reduced function j r  = 4kY2j as before. Since as a 
function of U, k ,  has the expansion near U = u s  = -1, 

(3.11) 

with no linear term, it follows that in the variable k , ,  the singular form of 2 corresponding 
to (3.3), as k, approaches the point k, = -1 from within the FM or AFM phase (i.e. from 
within the interior of the unit circle in the complex k, plane) is 

~ ( k , ) - B [ ( 1 + k , ) - Y ~ ! 2 ( 1 + b ~ ( l + k , ) + . . . )  (3.12) 

where 8: is the critical amplitude for this expression of the singularity in terms of the 
variable k,. We have performed a dlog Pad6 analysis of the series in k, for j r ,  i.e. an 
analysis of the function dln jrJdk,. Our results for the diagonal entries are given in table 6, 
The results from the series in k ,  agree very well with those which we obtained from the 
other series. The analysis of the series in  k, also gives results for the regular PM-FM critical 
point at k ,  = 1 and the associated exponent y' of comparable accuracy to that of the series 
in U. We have also carried out an analysis of the series for 2, in the variable U using 
differential approximants (for further details on this method, see section 7 below). This 
yields results close to those in table 6. 

One important new piece of information can be obtained from out analysis of the series 
for j in the variable k, near the singular point k, = (k& = us = -1: this is an answer 
to the question of whether the critical exponent is the same when one approaches this point 
from within the interior of the complex-extended FM phase and from within the complex- 
extended AFM phase. Recall from figure I(c) that in the U plane these approaches are distinct, 
since the complex FM and AFM phases lie on opposite sides of u s .  Since the complex FM 

k, = - 1  + :(U + 1)' + O((u -!- 
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phase is the one which contains the origin in the U plane, our analysis of the small-lul series 
could only determine the singular behaviour as U approached us from within the complex 
FM phase. However, since the complex FM and AFM phases are mapped onto each other in 
the k, plane, our analysis of the series in this variable shows that the exponent y: is the 
same for the approach to us = (k& = - 1  from within both the FM and AFM phases (as 
has been implicit in our notation). 

Since the low-temperature series for j is not usually given in terms of the variable k,, 
we note that it has an interesting feature. The first few terms are 

13 13 139 139 685 2739 
j r  = 1 + k, + -k: + -kf: + -k4 + -k5 + -k6, + -k: 

23 23 26 < 26 < 28 29 

(3.13) 

Near the point us = (k<)s = - 1 ,  the terms up to order O(k:) of the series exactly cancel 
amongst each other in a successive pairwise fashion, so that the first non-zero terms in the 
series for j r  start at order O(k6,) (i.e. for j at O(k:)). To say it differently, these first six 
terms can be expressed as (1  + k , ) ( l  + (13/Z3)k? + (139/Z6)k:). One can interpret this as 
being a hint of a structure which persists to all orders in the exact susceptibility; with this 
motivation, one can add and subtract terms in higher orders so as to put j r  in the form 

j = (1  + k,)fi - 2-I2k7, fi. (3.14) 

Computing the functions f (k<)j, j = 1,2 and defining the convenient variable 

E 2-4k: (3.15) 

we find 

fi = I + 26y + 556~‘ + 10 960y3 + 2 0 6 4 1 2 ~ ~  + 3 775 4 8 0 ~ ’  + 67 668 304y6 
+ I  194824896~’ +20856575980ys + 360778731 928y9 
+6 195017443856y10 + 105730294 168640~” 
+ I  795 278082 108 3 6 8 ~ ”  + O(y”) (3.16) 

and 

f2 = I + 33y + 7709  + U 650y3 + 296 0 0 6 ~ ~  + 5 363 335y5 + 94 504 wy6 
+I 633461 856y7 + 27 844 153 9 6 4 ~ ’  + 469735 545 Z8y9  + o(y Io ) .  

(3.17) 

We have performed a Pad6 analysis of the functions dinf, /dy.  We find strong evidence 
of a singularity in f i  of the form f1 - [I - k:1-7/4 as k: increases toward 1 from below. 
Combining this with the (1 - k,) prefactor. it follows that the singularity in j arising from 
the f l  term can be written as 

(I+k,)fi  -II-k,l-’/411+k<l-3/4 (3.18) 

as k: approaches 1 from below. For example, the 16/61 Pad€ approximant gives 16y = k: = 
0.999844 as the position of the singularity, and 1.745 as the exponent. The results from 
the study of fi are also consistent with this conclusion for the singularity in f . Recalling 
that I1 + kJ3I4 = constant x [ I  + u[-~/’ as k ,  +. -I or equivalently, as U + -1 ,  one 
sees that the singular form (3.18) agrees very nicely with our determination of the complex- 
temperature singularity by analyses of the small-lul series for j r ( u ) ,  g(u) ,  and j,(k,) given 
above. 
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3.4. Critical amplitude at U, 

In order to calculate the critical amplitude A: in the susceptibility as one approaches U = - 1 
from within the FM phase, we compute the series for (jr)l/Y;. Since the exact function 
(i,)l/Yi has a simple pole at us. one performs the Pad6 analysis on the series itself instead 
of its logarithmic derivative. The residue at this pole is -uS(A;,J''g, where A:,, denotes the 
critical amplitude for j r .  Using our inferred value ys = f to calculate the series and the value 
us = -1 to extract Ai,s, we finally multiply by the prefactor to obtain A: = 4u:A& = 4A&. 
(Alternatively, one could extract (A&)'/Yi from the residue by dividing by the measured 
pole position, us,ba from the given Pad6 rather than the inferred exact position, and could 
use the prefactor 4u:,,, to get A:; the differences between the two methods are quite small 
and vanish asymptotically; these differences are incorporated in the final uncertainty which 
is quoted for the critical amplitude.) Our results from the diagonal Pad6 entries are listed 
in table 7. From this analysis, we calculate 

(3.19) 

V Mameev and R Shrock 

\ 

A i  = 0.186 i 0.001 

where the quoted uncertainty is an estimate. 

Table 7. Values of 
a complex pair of poles near to U, = - 1 ,  

[ N / W  U I  R. = - U ~ ( A ; , ~ ) ~ I ~  

[6/6] -0.993282 0.128915 
[7/7] -0.9942585 0.129496 

[9/9] -0,994088 0.1293865 
[lO/lO] -0.995080 0.130 178 
[ l l j l l ]  -0.993497 0.129294 

from Pd.4 approximats to smII-JuI series for ( i , ) ' /Y  CP indicates 

[s/q -0.994204 a."i 

[12/12] CP CP 

This value may be compared with the low-temperature critical amplitude in this model 
at the usual PM-FM critical point, uc, defined by j ( u )  - Akll - u / u , I - ~ / ~  as U --f uc from 
below. A: was determined first by analysis of low-temperature series expansions [5] and 
subsequently to higher accuracy by analytic methods [13]t to be A; = 0.068 865538.. , , 
Using our determination of A:, i t  follows that A:/AA = 2.701 i 0.015. We note that 
this is consistent, to within the numerical accuracy, with the analytic relation Ak/A: = 
( - l n ~ , ) ' / ~ = Z  .6966995.... 

4. Singular behaviour of other quantities at us = - 1 

4.1. Specific heat 

In this section we extract the singular behaviour of the exactly known thermodynamic 
quantities at the complex-temperature singular point us = -1.  We begin with the specific 
h a t .  It is convenient to consider K-*C, which (in units with ks s 1) is given by [Z] 

t Reference [I31 actually gives the crilicd amplitude 
converted lhis to A; here. 

defined by j(7) - AL,T\I - Tc/Tl-'I4; we have 
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where the elliptic modulus is 

and its complementary modulus is K’ = (1 - K ’ ) ’ / ’ .  We use the standard convention 
that the branch cut for the complete elliptic integrals runs from m s K~ = I to m = cc 
along the positive real axis in the complex m-plane. From equation (4.2), it follows that 
as U approaches -1 with Im(u) small and positive, K -+ icc (and if Im(u) is small and 
negative, then K + - im,  taking the usual convention for the branch cut for the square 
root), and thus K’ + 03. From inspection of (4.l), it is clear that as U -+ -I, C diverges, 
with the leading divergence arising from the last term, -+ (K” /K ’ )K(K)  + $ K ’ K ( K ) .  
Using the identity (see for example [20]) K ‘ K ( K )  = K(iK/K‘) and the fact that as h + I, 
K ( A )  --f ln(16/(I -Az)), we can express the most singular term as + ln(41~1) as U + - I .  
Next, using the fact that near U = -1, I / K  = -:(I +U)’ + O((1 + u ) ~ ) ,  we find, finally, 
that the leading divergence in C as U -+ - 1 is 

(4.3) 

Taking the value of K, on the first Reimann sheet in (3.8), i.e. K, = -in/4, this becomes 
1 - -5 l ~ ( ( l + u ) )  (4.4) 

Since the elliptic integrals and also the factor K’ only depend on K’, the leading singularity 
is of the same type whether U approaches us = -1 with Im(u) positive. negative, or zero, 
and also whether the approach occurs from within the complex Fhl, AFM, or PM phases. 
The logarithmic divergence in C at us is evidently of the same type as the divergence at 
the physical PM-FM and PM-AFM critical points. Note, however, that at these latter points, 
K + I (K’ -+ 0) so that the K ’ K ( K )  term (which gives the leading divergence at U = -1) 
vanishes, and the divergence arises instead from the first term in the square brackets of 
(4.1), ~ K ( K ) .  Another obvious difference is that, while the specific heat is required to be 
positive at physical temperatures, i t  is, in general, complex at complex-temperature points, 
and the critical amplitude at us is real but negative. The critical exponents corresponding 
to this logarithmic divergence in C at us are 

a, =a; = 0 .  (4.5) 
As one crosses the complex-temperature phase boundaries at points other than U = uCr 

U = l/uc, and U = -1, the specific heat C has singularities associated with the fact that the 
image point in the K* plane crosses the image of these boundaries, namely, the line segment 
extending from K~ = 1 to K~ = 00, which is the natural branch cut of the complete elliptic 
integrals K ( K )  and E ( K )  in (4.1.1). 

From the thermodynamic relation CH - CM = X - ’ T ( ( a M / a T ) ” ) * ,  and the fact that 
the term on the right-hand side is finite as U + - I  from within the complex-temperature 
FM phase, one may infer that the specific heat at constant magnetization, CM, has the same 
logarithmic singularity as the specific heat (at constant field) C ( N  = 0) in this limit. 

4.2. Magnetization 

Next, we make use of the exactly known expressions for the spontaneous magnetization 
M to analyse the behaviour as a function of complex temperature. In particular. we shall 
extract the critical exponent p, at the complex-temperature singular point U = us = -1. 
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For the square lattice, for real temperature, M vanishes for K < Kc.% (where for clarity 
we restore here the subscript indicating the lattice type) and, for Kc.% < K < 00 is given 
by 131 M = Msq = (1 - k: ) ' / * ,  or, in terms of U. 

(4.6) 

What is normally discussed is the vanishing of M at the usual PM-FM critical point, 
U, = 3 - 2&, with exponent ,9 = i. However, as we discussed in section 2, the 
function describing the magnetization for positive temperature can be analytically continued 
throughout the complex extension of the FM phase, up to the boundaries of this phase, 
which for the square lattice are specified by the limacon (2.18). Carrying out this analytic 
continuation, one sees two important results. 
(i) The only point, other than the physical PM-FM critical point, where M vanishes 

(1 + u)]l4(l - 6u t u') ' /~ 
(1 - U)'/' Msq = 

continuously is at  U = us = -1. Defining an associated critical exponent as 

(4.7) 
as u approaches us from within the complex-extended FM phase, we find the value 

a., = a .  (4.8) 
(ii) At all other points (i.e. all points except uc and u s )  along the boundary of the complex 

extension of the FM phase, EA vanishes discontinuously. 
Result (ii) follows because if one starts in the physical PM phase, a similar analytic 

continuation argument shows that M vanishes identically all throughout the complex 
extension of this phase. Inspection of (4.6) shows that the (real and imaginary parts of the) 
analytic continuation of M are non-zero as one approaches the boundary of the complex- 
extended FM phase from within that phase at points other than U = uc and U = -1.  
Therefore, M must vanish discontinuously as one crosses this boundary from the complex 
FM to the complex PM phase, as claimed. 

For the complex-extended AFM phase. we use the well known symmetry which holds 
on loose-packed lattices: under the transformations K -+ - K and ui 4 q i q ,  where vi = 1 
(-1) for cq on the even (odd) sublattice, the Hamiltonian is invariant, while the uniform 
magnetization M and the staggered magnetization M,, interchange their roles. The above 
transformation takes k ,  + k,.  z -+ I / z ,  U -+ {/U. n t e  expression (4.6) is invm'ant and 
thus describes the staggered magnetization in the physical AFM phase as well as the uniform 
magnetization in the physical FM phase. As before, one generalizes this to a definition of 
the staggered magnetization in the complex-extended AFM phase by analytic continuation 
from the physical region --03 < K < -K, throughout the complex AFM phase, as indicated 
in figure 1. One sees that analogues of the two results which we obtained for M can also 
be derived for Mst; 
(i) Mst vanishes continuously at two oints on the border of the complex-extended AFM 

phase, namely, U = l/u, = 3+2 P 2, the usual PM-AFM critical point, and U = us = - I ,  
the complex-temperature singular point where M also vanishes. 

(ii) At all other points on the border of the complex-extended AFM phase, Ms, vanishes 
discontinuously as one crosses this border into the PM phase. Note that, as is clear from 
figure I .  the only point where the complex FM and AFM phases are contiguous is the 
single point U = us = -1 ,  or equivalently, the two points z = i i  = -U. 

In passing, we note that for both the uniform and staggered magnetizations, the apparent 
divergence at U = I plays no role since this point is outside the two respective regions 
(complex FM and AFM phases) where the expression (4.6) for these quantities applies. 

I M I  -constant x 11 - u/u,(A 
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4.3. The behaviour of the inverse correlation length as U -+ - I ,  

4.3.1. Approach from within complex (A)FM phase. For the king model on the square 
lattice, in the physical low-temperature phase with real K in the interval K, c K < 03, 

the asymptotic decay of the row (or equivalently, column) connected correlation functions 
is given by [I91 

(a(O,Op(o,n))mnn - n-’ e - l n l J ~ ~ ~ ~ *  (4.9) 
where the inverse correlation length (mass gap) is 

(4.10) 

We now analytically continue this result into the complex extension of the FM phase and 
inquire where the mass gap vanishes. We find that for points within, and on the border of, 
the complex-extended FM phase, the mass gap vanishes for the following set: 

~ ; d , ~ ~  = o for z = Iz,, *iI (4.11) 

i.e. the usual PM-FM critical point zc = & - 1 and at the two points zs = f i  (us = -1). 
The additional apparent zero at the PM-AFM critical point z = -I/& is not relevant for 
the complex m phase because this point lies outside this phase and thus outside the region 
which can be reached by analytic continuation of the original formula (4.9); however, it 
will be relevant for the inverse correlation length defined within the complex-extended AFM 
phase (see below). We note the somewhat subtle point that the correct analytic continuation 
of the physical, real-K theory to complex K requires that one use e&,,, = In((u/z)’) 
as given in (4.10) and not = 2In(u/z); although these are identical expressions for 
physical K ,  the latter form would miss the zero in 

We now extract the critical exponent(s) for this inverse correlation length (mass gap) at 
z = f i  as these poifits are approached from within the complex-extended FM phase. These 
exponents (which will turn out to be equal) are defined by 

c;d,mw - constant x I Z  i j y ; ~ . ~ ~ ~  for z + ki (4.12) 

at u = - 1 .  

from within the FM phase. Expanding e&ow about these points gives 

E;,,row = 0 + 2(ki - l ) ( z  i)  + O((Z if? (4.13) 

from which it follows that 

= v‘ -,.row = ‘ ’ (4.14) 

This motivates the use of a single exponent to describe the singularity at the single point 
U, = - I  corresponding to z = Ai, as approached from within the complex-extended FM 
phase: 

!J;.row = 1 ’ (4.15) 

By the standard argument noted above which shows that on a loose-packed lattice such 

(4.16) 

it follows that the same inverse correlation length (4.10) describes the asymptotic decay of 
the connected 2-spin correlation functions along a row or column in the AFM phase, i.e. 
formally, c;&,, = e;jM,row, although the same expression is used in different phases. Now 

vanishes at the physical PM-AFM critical point z = - I / & ,  i.e. a = I / & ,  and at 

as the square lattice 

Vi ~j (aiaj) (- K )eonn = (oiaj) ( K  )corm 
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the complex-temperature singular points z = f i .  It follows that the expansion (4.13) also 
controls the critical exponent as one approaches the points U = - I  from the AFM phase 
(i.e. from the left in figure l(b)). 

is evidently the same as the value v' = I for the physical PM-FM 
critical point, as approached from within the FM phase. However, one encounters several 
new features at the complex-temperature singular point, which we now discuss. 

One may also extract a correlation length critical exponent from the asymptotic decay 
of the diagonal (d) correlation function, 

(4.17) 

V Maahreev and R Shrock 

The value of 

(q0.0) %.n) h"" ~ n-2 e-r/fFM.u 

where the distance r = 2'/'1nl. In the physical Fhl phase, 

ti,.d = -2-'/' In(k$) (4, IS) 

(4.19) 

As with the row (column) spin-spin correlation functions, we may analytically continue 
(4.17)-(4.19) to apply throughout the complex extension of the FM phase, Although the 
detailed form of t;;,d is different from that of they both have the same complex 
zeros within the range of this analytic continuation, i.e. the complex FM phase and its 
boundary. It may be recalled that near the physical PM-FM critical poiit, 

(4.20) 

so that the exponent which describes the vanishing of the inverse correlation length 
characterizing the diagonal correlation function is the same as that for the row or column 
correlation functions. However, the situation is different at U = - I :  using the expansion 
near U = - 1 (see also (3.11)) 

(4.21) 

k: = I + 2(4 + 3 f i ) ( u  - u.) + O((u - uC)')  

k$ = I - i ( 1  +U)' + O((1 + u ) ~ )  

i t  follows that near U = -1, 

e-' FM.d -2-312 - (1 + u)2 + O((1 + 4 3 )  . (4.22) 

Hence, the correlation length exponent describing the vanishing of the inverse correlation 
length for diagonal correlation functions. at U = us = -1, as approached from within the 
complex FM phase, is 

U:.diag 2 (4.23) 

i.e. twice the value of the mass gap exponent extracted from the row/column correlation 
functions. This situation is unprecedented for critical exponents at physical critical points. 

4.3.2. Approach from complex PM phase. From an analysis of the asymptotic decays of 
both the row/column and diagonal correlation functions in the complex extension of the 
symmetric, PM phase, we find that the correlation length does not diverge as one approaches 
the points U = ki corresponding to the point U = - I  from within this phase. This finding 
is very important, since it  implies that rhe susceptibility is finite at U = -1 when this point 
is approached from within the complex PM phase. 

In the physical PM phase, the row (or column) correlation function has the asymptotic 
decay [I91 

( U ~ ~ , ~ ) U ~ ~ , ~ ~ )  - Inl-'" e - l n ' ~ ~ ~ * ~ ~  (4.24) 
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where 

As before, we may analytically continue this throughout the complex-extended PM phase. 
The mass gap c;.,,,,w vanishes only at the physical PM-FM critical point U, = y/z - 1. (The 
apparent zero at -]/U. =-(A+ 1) is not relevant because this point lies outside the 
complex-extended PM phase where the above analytic continuation is valid.) In particular, 
as one approaches the points U = f i  from within the complex PM phase, tPM.ma --f In(-I), 
so that ( ~ ~ ~ , ~ p ( ~ , ~ ) )  - (-l)"lnl-'/' as In1 + W. 

We find the same result for the diagonal correlation function, which, in this complex 
PM phase, has the asymptotic decay 

(~(o.o)u~~, . ) )  - lnl-'/' e-r/cpM.d (4.26) 

where r = 2'/'1nl and 
= -z-'/' In(k,) (4.27) 

(4.28) 

Now near U = h i ,  

k ,  = -1 -(U 7 i) '+O((u 7 9'). (4.29) 

Hence, although $&, vanishes at the physical critical point U,, it is finite at the points 
U = Ai, where = 2-'/'ln(-l), so that ( q o , o p ~ , , , ) )  - lnl-'/'(-l)" at these points, 
just as was true of the row and column correlation functions. One thus encounters precisely 
the type of situation that we discussed before in [I], where Re(6-l) = 0 but Im(t- ') is 
non-zero. Note that the sum ~ ~ ( - l ) - " n - ' ~ *  (where no is an unimportant lower cut-off) 
is finite. Of course, although the correlation length is finite at U = h i ,  as approached 
from within the PM phase, it is singular at these points since it is unequal to the value 
obtained as the points are approached from a different direction in the complex U, z, or 
U planes. The asymptotic decay of the general 2-spin correlation function ( U ( O , O ) O ( ~ , ~ ) )  

has been calculated (using Toeplitz determinant methods) [ 191; carrying out an analytic 
continuation of this result from the physical PM phase into its complex extension, we again 
find that the correlation length is finite at U = Ai. Since a divergence in 2 on the border 
of the (complex extension of the) PM phase can only arise from a divergence in the sum 
over 2-spin correlation functions contributing to 1, the above results constitute an analytic 
demonstration that the susceptibility is finite at the points U = i i ,  as approached from within 
the complex PM phase. This is in sharp conbast to the approach from within the complex 
FM or AFM phases, where we have shown that 2 is divergent. This type of phenomenon 
is, again, to our knowledge, unprecedented in the study of singularities in thermodynamic 
functions at physical critical points. 

4.3.3. A theorem on 2. From our results in the previous two subsections, using the same 
reasoning as in [I] ,  we can infer the following theorem. 

Theorem. The susceptibility 2 has a t  most finite non-analyticities on the natural boundary 
curve (circles in U or z, l imqon in U )  separating the complex-extended PM. FM, and AFM 
phases, apart from the divergent singularities as one approaches the point uc = 3 - 2& 
from within either the complex PM or FM phase and the point U, = - I  from within the 
complex FM or AFM phase. 
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5. Scaling relations and other critical exponents at ZL, = -1 

V Matveev and R Shrock 

5.1. a; + 2 8  + y: = 2 

Using our result (3.7) for yQ, together with the exponents a: and Bs extracted from the 
known exact expressions for C and M in (4.5) and (4.8). we find that the complex analogue 
of the scaling relation (from the low-temperature side) a' + 2s + y' = 2 is satisfied 

where the subscript 3' indicates that this refers to the point us = - I  and the primes 
indicate that the approach to this point is from the complex-extended broken-symmetry 
phases, FM or AFM. To be precise, this relation is satisfied to within the numerical accuracy 
of  our determination of y: in (3.5) and is satisfied exactly if one uses our inference in (3.7) 
of the exact value of y:. However. our results in the previous section, in particular, the 
demonstration that 2 is finite at U = ?ci (U = - I )  as approached from within the complex 
PM phase, and hence that ys c 0, already shows that 

(5.2) 

i.e. the scaling relation for the approach from within the PM phase, is not valid at up. We 
do not know of any extension of the arguments for usual exponent relations to complex 
temperature, so it should not be considered a surprise that such relations do not hold at a 
complex-temperature singularity. 

5.2. Hyperscaling relations 

Since we have shown above that the inverse correlation length is finite at the points U = &i 
when approached from within the complex PM phase, the corresponding exponent us < 0. 
Hence, the hyperscaling relation du = 2 - a does not hold at these points. as approached 
from within the complex PM phase. Concerning the hyperscaling relation for the approach 
to us = -1  from within the complex FM or AFM phases, namely, dv' = 2 - 01'. if one used 
the correlation length exponent = 1 extracted from the row or column correlation 
functions, then this relation would be satisfied. However, the situation is more complicated, 
since, in particular, I ~ ~ , ~ ~ ~  = 2 # 

as + 2L3s + Ys # 2 

6. Violation of universality at 21, = -1 

Evidently, complex-temperature singularities clearly have different properties from physical, 
real-temperature critical points. Among other things, quantities which are real for physical 
T in general become complex for complex T. Furthermore, various positivity relations, 
such as the property that the specific heat C z 0 is not true even when C is real. One 
should therefore be cautious concerning the question of whether a given property associated 
with a physical critical point will apply at a complex-temperature singular point. Indeed, 
we shall now demonstrate a violation of universality at the complex-temperature singular 
point us.  

We recall the meaning of universality as applied to statistical mechanical models not 
involving frustration or competing interactions: the universality class, as specified by the 
critical exponents, depends on (i) the symmetry group C of the Hamiltonian and the related 
space of the order parameter; (ii) the dimensionality of the lattice, but (iii) not on the details 
of the Hamiltonian, such as additional spin-spin couplings (provided that these are invariant 
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under G and do not introduce frustration or competing interactions), and (iv) not on the 
lattice type (again. provided that this does not cause frustration). 

We shall now demonstrate, using exact results, that property (iv) is violated at the point 
us = - 1. In order to do this, we use the expressions for the spontaneous magnetization on 
the triangular and honeycomb lattices. These can be written in the same general form (4.6) 
for the square lattice, but with elliptic moduli which are different functions of z: 

(6.1 ) M = (1 - ( k , , A ) z ) 1 / 8  

where instead of the relation (2.6) for k<.sq, one has 

and 

These apply to the physical FM phases for each lattice, i.e. where 0 < k ,  c 1. The explicit 
forms in terms of the usual low-temperature variable U for the triangular and honeycomb 
lattices are thus [21] 

and 1221 

(6.4) 

which apply within the respective FM phases on these lattices and vanish elsewhere. (Recall 
that since the honeycomb lattice has an odd coordination number, q = 3, M and j are 
not invariant under z + -z as they are for lattices of even 4.) We first note a similar 
feature of the spontaneous magnetization on all three lattices: M vanishes continuously at 
the same generic set of points, namely the respective PM-FM critical p i n t s  on each lattice, 
and the point U = -1, or equivalently the two points z = h i .  As is well known, the critical 
exponent B = 4 is the same at the respective physical PM-FM critical points. However, this 
is not true at U = -1: for the square lattice, the criticd exponent was extracted above as 
,9s,sq = $, but for the other lattices 

+%.t = Bs.hc = # 8 , s q  . (6.6) 
Given the fact that M has the same form (6.1) in terms of the (different) elliptic moduli 
k+ for the three lattices, and given that U, = -1 maps to k < , A  = -1 for each of these 
lattices, it follows that M - II + k < , ~ l P  as k c . A  approaches - I  from with the FM phase for 
each case, with the same value p = $. However, this is not the same as the usual meaning 
of universality, since the k < , A  differ as functions of z for each of the three lattices. 

Since early studies of low-temperature series expansions, it has been known that 
different lattice types have different numbers of complex-temperature singular points (see, 
for example, [ E ]  and references therein). However, to our knowledge, the obvious 
violation of universality noted above has not been explicitly discussed in the literature. 
Indeed, in an early study of complex-temperature (and complex-activity) properties of the 
3D Ising model 1231, from analyses of low-temperature series expansions on the simple 
cubic (sc), body-centred cubic (bcc), and face-centred cubic (fcc) lattices, i t  was found that 
the numerical evidence was consistent with the equality of critical exponents on these three 
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lattices. me critical exponents at the complex-temperature singular point U N -0.285 in 
the king model on the simple cubic lattice were recently determined to higher precision 
in [24]. It would be useful to calculate longer low-temperature series for C, M and on 
the bcc and fcc lattices to compare with the higher-accuracy critical exponents obtained in 
1241 for the sc lattice. However, our exact results on already show that universality does 
not, in general, hold at complex-temperature critical points. 

Some possible insight into this violation may be gained by remembering that even at 
physical critical points, universality does not, in general, hold when there is frustration. One 
of the earliest examples is the (isotropic) antiferromagnetic king model on the triangular 
lattice, for which there is no PM-AFM phase transition at finite K. Accordingly, when 
examining a given singular point to see if one could expect universality to hold, one of 
the first things which one would necessarily check would be the presence or absence of 
frustration, which, in turn, would involve checking whether various spin configurations only 
partially minimize the internal energy. But this initial check cannot be performed in the 
usual way at a complex-temperature singular point, since at such a point the Hamiltonian 
and internal energy are not, in general, real numbers. 

7. Analysis of high-temperature series expansion for the susceptibility 

In section 4, as a consequence of our study of the complex-temperature behaviour of 
correlation lengths, we showed analytically that the susceptibility is finite at the points 
U = f i  (i.e. U = -1) as approached from within the complex extension of the PM phase. 
In this section we shall carry out a study of high-temperature series expansions for the 
susceptibility. The results confirm our analytic demonstration and give further information 
about j at these points. To our knowledge, this is the first time that a comparison has been 
made of the behaviour at a complex-temperature singularity as approached from both the 
complex-extended FM (AFM) and PM phases. For technical reasons, the study of the high- 
temperature series in the vicinity of v = +i turns out to be considerably more dificult than 
was the case with the low-temperature series in the vicinity of the equivalent single point 
U = -1. We begin with a simple dlog Pad& study, which is adequate to confirm the absence 
of a divergent singularity; we then proceed to a study with differential approximants. 

Recall that the high-temperature series expansion for the susceptibility is given by 

V MuhJeev and R Shmck 

in terms of the usual high-temperature expansion variable. We have also transformed the 
series to one in the elliptic modulus variable (k,)’/’ ,  

via the relation 
(k>) ’ /2  = 2 4 1  - U’) 

Note the symmetry 

U’ - I / u  =? (k>)’P+ ( k , ) l / 2 .  (7.4) 
The motivation for using the variable @,)I/’ is the same as was discussed in reference to 
the low-temperature series, namely that the exact expressions for the spin-spin correlation 
functions which actually contribute to the susceptibility are polynomials in the complete 
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elliptic integrals of modulus k ,  in the PM phase (multiplied by algebraic functions of 
(k , ) ’ / ’ )  [ 1 6 1 8 ] .  Under the mapping from U to (k , ) ’ /* ,  the boundaries between the phases 
transform as follows: the circle U = - 1 +2’/’ el8 is mapped to the right-hand unit  semicircle 
in the (k , ) ’ /*  plane, i.e. (k,)’/’ = el4 with -n/Z < @ < n/2. Given the symmetry (7.4), 
this is a two-fold covering; in particular, the image of the the PM-FM critical point uc and the 
point - l / u c  is the single point (k , ) ’ / ’  = I .  Similarly, the circle U = 1 +2’/*eie is mapped 
by a two-fold covering to the left-hand unit semicircle, (k,)’/’ = e’@ with 9 .  > @ > a/2. 
The points -U, (the PM-AFM critical point) and l/uc, are taken to the point (k,)’!’ = -1. 
Finally, the points U = +i which lie on the intersections of the two circles are mapped to 
(k , ) ’ /*  = f i ,  respectively. 

For the square lattice, the a. have been calculated to the very high order us4 by 
Nickel [26] .  We have performed a dlog Pad6 analysis on this series and have found evidence 
against a divergence in f as U approaches i i  from within the PM phase. Since f is real 
for real U, it follows that if the Pad6 approximant for d In(,f)/du has a pole at U = uo with 
residue Ro at some complex point UO, then it also has a pole at U = U: with residue R,X. 
Writing the singular part of j as (1 - u/uo)-m near U = uo and recalling that RO = -yo, it 
follows that at the two complex-conjugate poles, the real parts of the exponents are equal, 
while the imaginary parts (if non-zero) are reversed in sign. Thus, without loss of generality, 
it suffices to consider only the singularity at U = i. 

We find that the Pad6 approximants to d In(,f)/du yield a reasonably stable pole near 
to U = i ,  with Re(y,,j) < 0. However, even for rather high-order [ N / N ]  Pad6 entries with 
15 < N < 23, the pole position is not as close to the singular point as one would require for 
accurate results; typically, lui.rer - i /  N 0.08, much larger than the usual level of O(IO-’) 
(or better) which one would expect for reasonable accuracy. 

We have therefore studied the equivalent series (7.2) in the elliptic modulus variable, 
(k,)? In terms of the latter variable, the leading form of the singularities at (k,)’)’ = rti 
is given by 

j E j n s  - chi11 rti(k,)’/*l-y*”’ (7.5) 

since the Taylor series expansion of (k,)’/* 
starts with the quadratic term: 

i as a function of U ,  near the points U = rti, 

(k,)”’ = & i f  i i(u 7 i)’ + O ( ( U  + i)3). (7.6) 

Of course, the Pad6 approximants exhibit the well known pole at (k , ) ’ l z  = 1 due to the usual 
PM-FM critical singularity and the sequence of poles and zeroes starting near to (k,)’/’ = - 1 
and continuing outward along the negative real axis attributed to the finite (1 + x )  In I1 + X I  
PM-AFM singularity, where x = (k,) ’ ) ’ .  For reference, the high-order dlog Fade entries for 
the pole position near the physical PM-FM critical point get this accurate to order O(IO-’). 
They also yield extremely precise determinations of the exponent. y ;  indeed, among the 
[ N / N ]  entries with N around 20, the values of y only differ from 1.75 by amounts of 
order 10-4-10-5. As regards complex-temperature singularities, the approximants exhibit 
two poles which converge to (k>) ’ /*  = +i. These, together with the values of Re(n), are 
shown in table 8. The values of Re(E) are stable and are negative, indicating that j has 
finite singularities at U = f i  as these points are approached from within the complex PM 
phase. (The values of h ( y j )  will be discussed below.) This confirms the conclusion of our 
analytic study in section 4, namely that j is finite at U = 3zi as approached from within 
the complex PM phase. (That it is singular is obvious since it has different values when 
approached from different directions in the complex U, z, or U plane.) 
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Tables. Values of (k,);" md Re(y,) fmm diagonal dlog Pad6 approximarts to high-tempencure 
serics for i stnrting with the series to o((L:')'s) = o(d5). 

1/1 . W I N 1  (k$2 l(Wi -11 R W  
17/71 0.972846it 0.032631 4.2 x -0,4297 
[8/8] 1.00343i+0.034469 3.5 x -0.5749 
[9/9] 1.00632i t 0.015344 1.7 x 10" -0.7720 
[10/10] 1.00729i t 0.003 183 0.8 x -0.83235 
[11/11] 0.997106it0,001684 3.3xIO-' -0.6024 
[12/12] 0.959979i t O.wO388 3.9 x IO" -0.6432 
[13/13] 0.9997151 t 0.000650' 7.1 x -0.6404' 
[14/14] 1.00053i t 0.006735 6.8 x IO-' -0.7166 
[lS/Is] l.WO26i+0.006752' 6.8 x 10.) -0.7101' 
[16/16] 0.9983621+ 0.003564 3.9 x -0.6380 
[17/17] 0.998506i + O.CO3520' 3.8 x -0.6409' 
[lS/lS] 0.999870i t 0.003oW 3.0 x IO') -0.6727 
[19/19] 0.998932it 0.002885 3.1 x -0.6442 
[20/2o] 0.9990331 t 0.002739' 2.9 x -0.6449* 
[21/21J 0.9990211+ 0.W2416 2.6 x IO-) -0.6391 
[22/22] 0,9994721 t 0.002638 2.7 x IO-) -0.6567 
[23/23] 0.9494871 + 0.002646 2.7 x lo-' -0.6573 
[24/?4] 0.999 162 + 0.00'2051 2.2 x IO-) -0.6374 

To check the sensitivity of the dlog Pad6 analysis to possible divergent singularities, we 
have studied the test function 

2(x)sst = ACJI - x ) - ~ / ~  - A A F M , ~ ( ~  +x) ln ( I  + x ) +  +x2)-"'*+ E (7.7) 

where x = (k , ) ' / ' .  This function incorporates the known PM-FM and PM-AFM singularities, 
a hypothetical divergent singularity at (k,)'n = U = &i with exponent corresponding 
to (1 + U')-", and an additional background term E .  We have used the known critical 
amplitudes A,, = Z7/*A,,, = 1.4153665.. . , where A,, is defined by f r i n g  - AC,"(l - 
u / u , ) - ~ / ~  for U /" uE and is given by AC," = 0.77173406 ... LIZ, 271; and AAm,= = 
~'/'A,,AFM = 0.28, where A.,AFM is defined by fsing - -A",AFM(I + u/u,)  In 11 + u/u,l for 
-U f -U, and is given by A".AFM z 0.20 [27]. We have varied As,x and E over a range 
of values and yb over the range $ c ys < f ,  and have found that if these quantities have 
values such that the dlog Pad6 approximants locate the singularities at U = (k,)'/' = &i 
with an accuracy comparable to that which we observe in table 8, then the approximants 
also yield reasonably accurate values for ys. In particular, if we make the values of A,,,, 
ys and/or E so small that the Pad6 fails to yield an accurate value for ys, then it also fails 
to locate the singularities at (k , ) ' / *  = &i in the test function with the accuracy that it does 
successfully locate them for the actual 1. Hence, the dlog Pad6 would not miss divergent 
singularities at U = (k,) ' / '  = i i  if they were really present in 2 .  

However, the dlog Pad6 method is not, in general, satisfactory for a finite singularity, 
and hence, given that Re(y,) c 0, one cannot, a priori, trust the actual values of which it 
yields. The appropriate technique to investigate such finite singularities in the presence of 
background terms is provided by differential approximants (DA) [ l5,28-32]. To be precise. 
if a function of a generic variable 5 is of the product form f ( C )  = #=,(I - c / { j ) - J ' j ,  then 
the dlog Pad6 method is, in principle, adequate to obtain the positions and exponents for the 
singularities even if some p j  c 0. If f has an additive background term near a singularity, 
i.e. if fsins ... A ( l  - </<' ) -PI  + E ( { )  with E ( < )  analytic near { j ,  then, if a given pj  > 0. 
the first Darboux theorem 1141 shows that for sufficiently high orders, this will dominate 
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over E ( < )  so that the dlog Pad6 method can still be satisfactory, but if the given pi < 0, 
then one should use differential approximants. 

We recall that in the differential approximant method the function f = 2 being 
approximated satisfies a linear ordinary differential equation (ODE) of Kth order, 
& . L f x K )  = C:=oQj (<)Di fK(<)  = W). where Q j K )  = CZoQ,,e<‘ and R U )  = 

d/d<, while in 
another [30,31]. D <d/d<. We adopt the choice for D used in [32,15]; these authors have 
found that both choices give comparable results. The solution to this ODE, with the initial 
condition f ( 0 )  = 1, is the resultant approximant, labelled as [L,lMo; . . . ; MK], The general 
solution of the ODE has the form &(<) - Aj(<)I< -<jI-p’  + B ( < )  for < -+ <,. The singular 
points Cj are determined as the zeros of e x ( < )  and are regular singular points of the ODE, 
and the exponents are given by -p, = K - 1 - Q ~ - ~ ( < j ) / ( l ; Q k ( < j ) ) .  Further details on 
the method can be found in [15,3&32]. For an extrapolation procedure to be discussed 
below, we shall use a number of poles at different positions close to the singularity; for this 
reason, we use unbiased differential approximants. Studying the susceptibility series in the 
variable U, we find that the differential approximants do not yield singularities sufficiently 
close to i i  to be accurate, just as was true of the dlog Pad6 method (which is a special 
case of DA). As before, we have obtained considerably better results with the series in the 
elliptic modulus variable (k,)’I’ .  We have calculated the K = 1 differential approximants 
[LIMO;  MI] for 4 < L < 24 and 10 < MO < 20 with M I  = MO, MO =k I subject to the 
constraint L + MO + M I  + 2 < 49 (terms up to O(@) = O((k:/2)49) were used). Many of 
the poles may reflect finite singularities along the arcs of the circles bounding the complex 
PM phase, as discussed previously [l]. To consider a pole to represent the singularity at 
(k,)’12 = i, we require that its distance from this point satisfy l(k,)’/’ - il c 1 x IO-’. 
Secondly, we shall show the poles which lie within the circle lk,l = 1 which forms the 
boundary of the complex PM phase; these exhibit less scatter than a set including poles 
outside this circle and allow us to make at least a crude inference for the value of yi 

(consistent with the theorem of [ I ]  which guarantees that Re(yi) < 0). In table 9 we 
display the K = 1 differential approximants with L even which satisfy these conditions. 
(The approximants with odd L are not listed to save space; they yield conclusions in 
agreement with those obtained from the approximants with even L.) Evidently, there is 
a large scatter of values of E. Also, the distances from the singularity are usually larger 
than the c ~ ( l O - ~ )  level which one would normally consider necessary for accurate results. 
However, we can still draw useful information From this table. First, all of the values of 
yi satisfying the two conditions above have the property that Re(yi) < 0. Second, the 
approximants in table 9 which yield poles closest to (k , ) ’12 = i, namely [$; 181, [ g ;  121, 
[ E ;  121, and [%; 111, do give roughly consistent values of Re(n). If we plot the values of 
Re(yi) as a function of the distance l(k,)1/2 - ij and extrapolate to zero distance from the 
singularity, we obtain Re(y,) -0.65. This is consistent with the values obtained for this 
quantity From the dlog Pad6 study. 

We can make further progress by noticing an important correlation: the sign of Im(yi) 
is opposite to the sign of the deviation Re(&)!/’) from zero. Indeed, when we plot the 
values of Im(yi) as a function of Re((k,)i), they can be roughly fit to a line going through 
zero when Re((k,);”) = 0. But the singularity which we are studying is at @,)‘I2 = i, 
so we are led to the tentative conclusion that for this singularity, Im(yi) = 0. It follows 
also that for the conjugate singularity at (k,)”’ = -i, Im(y-i) = 0. whence yi = y-i = ys. 
As regards the values of Im(y,) from the dlog Pad6 study, one can see that all of the high- 
order diagonal approximants are characterized by the same (positive) sign for Re((k,)’l2, 

Rere [15,30-32]. In one implementation of the method [30,31], D 
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Table 9. Values of (k,):” and n from K = 1 differential npproximtc to high-lcmpemturc 
series for 1. See the text for a definition of the [ L J M u .  M J  ilpproximant. 

[4/18: 191 
14/18; 201 
18/18: 161 
18/18 171 
[8/18: 181 
110/16: IS] 
112/10: 101 
[14/10: io] 
[14/12; 141 
[IS/lO: IO] 
[18/12 121 
[20/10; i l l  
[20/lO: 121 
[20/12; IO] 
[20/12; 111 
[20/12: 121 
[22/10: I l l  
[22/IO; 121 
I24/10; 91 
[24/10: IO] 
[24/10: II] 
[24/10: 121 

0.993 373i + 0.004 293 
0.991 3491 + 0.002545 
0.9908741 + 0.003398 
0.9885501 - 0.006664 
0.9908391 + 0.004293 
0.999 1221 - 0.001 421 
0.99879051 -0.005881 
0.990038i + 0.007285 
0.9905661 - 0.001 845 
0,9902701 + 0.002944 
0.9985971 + 0.01 I27 
0.994749i - 0.001 108 
0.995 176i - 0.002265 
0.9980421 t 0.008232 
0.9955931 - 0.003949 
0.9989911 - 0.000353 
0,9977871 - 0.002213 
0.998212i - 0.001 353 
0.993917i - 0.006415 
0.9972661 - 0.001 653 
0.9979021 +O.W04882 
0.997 1331 - 0.008 122 

0.79 x 
0.90 x 
0.97 x 
1.3 x 
1.0 x 10-2 
1.7 x 10-3 
0.60 x IO-2 
1.2 x 10-2 
0.96 x IO-’ 
I .o x 10-2 
1.1 x 10-2 
0.54 x 
0.53 x IO-’ 
0.85 x 10-2 
0.59 x IO-? 
1.1 x 10-3 
3.1 x 10-3 
2.2 x 10-3 
0.88 x 10-2 
3.2 x 10-3 
2.2 x 10-3 
0.86 x IO” 

-1.420- 1.0791 
-1.820 - 0.87961 
-1.950 - 0.32931 
-1.944t 1.7411 
-2.164 - 0.37261 
-0.8568 + 0.45121 
- 1.243 + 0.48541 
-2.294- 1.1811 
-1.611 t 0.3934i 
-1.907- 0.3510i 
-0.7024- 1.4171 
-1.267 t 0.38761 
-1.214 t 0.55851 
-0.1837 - 1,4331 
-1.105 + 0,91831 
-0.6833 + 0.32781 
-0.8149 + 0.63171 
-0.7283 + 0.52231 
-1.850+0.95IOi 
-0.9898 + 0.41621 
-0.5841 - 0.05971 
- i . l Z +  1.8031 

i.e. the pole positions are slightly to the right of (k>)’/’ = i. This correlates with the 
observed feature that these Pad6 approximants have the stable non-zero negative values 
Im(n) E -0.25. Indeed, when we examine other poles in the dlog Pad€ approximants 
reasonably close to the point (k,)’]’ = i, we observe the same correlation that Im(x) has 
a sign opposite to that of Re((k,)ll’). This suggests that if we had a reasonably large 
set of such nearby poles, then we could carry out an extrapolation similar to the one that 
we performed with the differential approximants. There are not enough close poles with 
Re((k>)’/*) c 0 to do this accurately, but one can say that such an extrapolation is crudely 
consistent with Im(v,) = 0. 

Summarizing. then, the results of our analysis with differential approximants, like those 
of the simple dlog Pad6 study, confirm our analytic demonstration that f is finite (although, 
of course, singular) at the points U = (k,)’/’  = +i (i.e. U = -1) when approached from 
within the complex PM phase. Furthermore, if we restrict to the four poles closest to 
U = (k,)’/’ = i, the DAs yield values for Re(n) which are roughly mutually consistent. 
Note that for these four poles, the distance from the singularity, 2-3 x is comparable to 
that for the poles produced by the high-order dlog Pad6 approximants in table 8. Moreover, 
when we extrapolate the values of Re(y,) to apply precisely at the location of the singularity, 
we obtain a value consistent with that from the dlog Pad6 approximants. Using a similar 
extrapolation procedure with the differential approximants. we infer that h ( x )  = 0. 

We recall that, in principle. 1 may have singularities elsewhere on the arcs forming the 
natural boundary of the complex PM phase, as discussed in [I]. It was proved there that if 
such singularities exist, they must be finite. Indeed, from a simple dlog Pad6 study, it was 
observed in that paper that the poles lay close to these arcs. The differential approximants 
presumably give some information about these possible finite singularities along the arcs, 
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We shall leave the more detailed investigation of the behaviour on these arcs to future work. 
However, from our present results, we may make some interesting observations. To the 
extent that the poles in the differential approximants away from (k,)’/’  = fi lie near to 
the arcs bounding the complex PM region, they might reflect finite singularities in j along 
these arcs. The results of our study then suggest that the associated exponents would have 
non-zero imaginary parts, at points along the arcs in U or circle in (k,) ’ / ’  apart from the 
points (k,)”’ = i.1 (U = &uC) and (k>)’Iz  = i i  (U = rti). In assessing this possibility, 
it is, of course, incumbent upon one to first check whether there are any rigorous theorems 
forbidding this. We have not been able to derive any such theorem. Of course, the usual 
rigorous theorems governing the behaviour of thermodynamic quantities and, in particular, 
their critical exponents, assume physical values of the temperature. Two properties which 
must be satisfied are that j must be real and positive for physical temperature. These two 
properties do not exclude the existence of a complex exponent at a complex-temperature 
singularity in j .  To demonstrate this, we consider a generic form for the singular part of 
i( with such singularities: 

X s i n s ( < )  = Aj(1  -</Cob)-” + At(1 - </<{)^)-”’: (7.8) 
where C denotes a generic variable (U. (k,)’” z ,  etc), Im(m) # 0, and the form (7.8) 
applies, say, for 11‘1 < I < o ~ .  Evidently, this has the property that 

]?sins(<*) = j s ing(O*  (7.9) 

which implies that if c is real, then j({) is also realt. We have also checked that one can 
write down examples of j s i n p  of the form in (7.8) which yield not just real but positive j 
for physical temperature. If j has a singularity at the point < = (0 of the leading form in 
(7.8) where the real and imaginary parts of yo are given by 

(7.10) YO = YR + iyi ~ 

then for < = {0(1 + E  e“). as 6 --f 0, 

j N I~l-”[cos(yi In(l4)) - isin(yi In(I6l))l. (7.11) 

Given our theorem above that X must be finite on the arcs away from U = U, and U = &i 
(approached from within the FM or AFM phases), it follows that must be negative away 
from these points. The effect of the non-zero is to produce an infinitely rapid oscillation in 
2 as < + CO with I< ]  < l<ol. Although the points on the arcs are not isolated singularities, 
but instead, points on the natural boundaries between the complex-extended PM, FM and 
AFM phases, this behaviour is quite analogous to the infinitely rapid oscillations at isolated 
essential singularities such as in the functions < sin(l/<) or < cos( I / < )  at < = 0. Given 
our result that j diverges at U = - I  as one approaches this point from the complex FM 
or AFM phases, but has a finite singularity as one approaches the point from the complex 
PM phase, one may observe that this behaviour is somewhat reminiscent of the function 
exp(l/ t) .  which has an (isolated) essential singularity at < = 0 and diverges (vanishes) 
when this point is approached from the positive (negative) real axis. 

A physical argument for the divergence in the susceptibility at a second-order phase 
transition, such as the PM-FM critical point, is to note that the magnetization vanishes 
continuously as  one^ approaches this point from within the FM phase, so that, in the limit, 
an arbitrarily small external field H has an arbitrarily large relative effect on the resultant 

t Actually, real < may still correspond to complex temperature, for example. as (2. I O )  shows. K = r +nin wilh I 
real camponds  to real U and hence red f .  The symmetries (2.10) and (2.1 I) imoly that for the indicated infinite 
sets of complex VB~UCS of K ,  quantities such as 1 are slill red. 
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magnetization M ( H ) .  This argument also agrees with the divergence in the susceptibility 
that we found at the complex-temperature point U = - I ,  as approached from within 
the complex-exfended FM phase, since this is the only other point at which M vanishes 
continuously, starting from within the complex FM phase. For the physical PM-FM critical 
point the same argument motivates the divergence in 2 as one approaches this point from 
within the PM phase. However, our analytic demonstration (and confirmation via high- 
temperature series analysis) that ? has a finite singularity when one approaches U = - I  
from within the complex PM phase shows that, for complex-temperature singularities, this 
reasoning for physical temperatures is not applicable in a naive manner. 

V Matveev and R Shmck 

8. Conclusions 

In summary, we have carried out a study of the complex-temperature singularities of the 
susceptibility of the 2D Ising model on a square lattice. From an analysis of low-temperature 
series expansions, we have found evidence that, as one approaches the point U = us = - I  
from within the complex extensions of the physical ferromagnetic or antiferromagnetic 
phases, 2 has a divergent singularity. Our results are consistent with the conclusion that 
the critical exponent for this singularity is yi = 9 .  We have also calculated the critical 
amplitude. However, from an analysis of the asymptotic decays of spin-spin correlation 
functions, we have shown that the correlation length is finite, and hence the susceptibility 
is finite (although both are singular) at the points U = f i  corresponding to U = -1 when 
approached from within the complex-extended symmetric, paramagnetic phase. This is 
confirmed by a study of high-temperature series expansions. 

Our results are of interest because they elucidate the behaviour of the susceptibility as 
an analytic function. The goal of calculating the susceptibility of the 2D king  model (or 
even making a conjecture for this function which agrees with available series expansions) 
has remained elusive for half a century since Onsager’s calculation of the free energy. Our 
results should be useful for this quest because they provide new properties which must be 
satisfied by such a conjecture or calculation. 

One can think of a number of further related studies to perform. In one direction, using 
low- and high-temperature expansions, we have carried out analyses with dlog Pad6 and 
differential approximants to investigate complex-temperature singularities of j io the k ing  
model on the triangular and honeycomb lattices. Our results will be reported in a sequel 
paper. One could also examine other models like the d = 2, q = 3 Potts model. Yet 
another topic is how ideas of conformal field theory, which have greatly illuminated the 
critical behaviour at the physical critical points of various 2~ models, can be applied to this 
complex-temperature singularity. Clearly, there is much work for the future. 
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