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Abstract, We investigate the complex-temperature singularities of the susceptibility of the o
Ising model on a square lattice. From an analysis of low-temperature series expansions, we find
evidence that, as one approaches the point # = us = —1 (where & = ¢~*) from within the
complex extensions of the FM or AFM phases, the susceptibility has a divergent singularity of
the form x ~ Al{] + #)™% with exponent Vi = % The critical amplitude A is calculated.
Other critical exponents are found to be o] = o = 0 and f; = £, so that the scaling refation
al + 28 + ¥s = 2 is satisfied. However, using exact results for f; on the square, triangular,
and honeycomb lattices, we show that universality is violated at this singularity: g, is lattice-
dependent. Finally, from an analysis of spin-spin correlation functions, we demonstrate that the

correlation length and hence susceptibility are finite as one approaches the point w = — 1 from
within the symmetric phase. This is confirmed by an explicit study of high-temperature series
expansions.

1. Introdaction

Although exact closed-form expressions for the (zero-field) free energy and spontaneous
magnetization of the two-dimensional Ising model were calculated long ago, no such
expression has ever been found for the suscepiibility, and this remains one of the
classic unsolved problems in statistical mechanics. Any new piece of information on the
susceptibility is thus of value, especially insofar as it specifies properties which an exact
solution must satisfy. In particular, it is of interest to better understand the properties
of the susceptibility as an analytic function of complex temperature. Several years ago,
some results on complex-temperature singularities of the susceptibility for the Ising model
were reported [1]. Here we continue the study of complex-temperature singularities of the
susceptibility of the 2D Ising model.

2. Generalities and discussion of complex extensions of physical phases
We consider the Ising model on a lattice A at a temperature T and external magnetic field
H defined in standard notation by the partition function
Z=> e @.1
]
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with the Hamiltonian

=—J ZO’,‘D’j - H ZU}‘ (2.2)

i@ t
where o; = X1 are the Z, variables on each site i of the lattice, § = (kgT)~', J is the
exchange constant, {{j} denote nearest-neighbour pairs, and the magnetic moment g = 1.
Here we shall concentrate on the square (sq) lattice, but aiso make some comments for

the triangular (t) and honeycomb (hc) lattices. 'We use the standard notation K = 8J and
h=p8H,

v =tanh K (2.3)
p=e K o 1Y ' (2.4)
T l4uw ’
and
u=7z% =, (2.5)

It will also be useful to express certain quantities in terms of the elliptic moduli 4. and
k. = 1/k.. For the square lattice these are given by

1 4y

ke = — = 2.
=7 sinh(2K)? T (1 —u)? (2.6)
and
4y?
ky = ——. .
- (1 _ uz)z (2 7)
We note the symmetries
K— —K={vs —v, z= Uz, t = 1/u, ke = k) {2.8)

where k, = k. or k.. The reduced free energy per site is f = —8F = limy_oo N "' In Z
{where N dencies the number of sites on the lattice), and the zero-field susceptibility
is o = OM(H)/0H |g=0, where M(H) denotes the magnetization. Henceforth, unless
otherwise stated, we only consider the case of zero external field and drop the subscript
on xo. It is convenient to define the related quantity

i=8"x. (2.9)

For the square (sq) lattice, f(K,k = 0) was originally calculated by Onsager [2], and
the expression for the spontanecus magnetization M was first reported by Onsager and
calculated by Yang [3]. Solutions for f(X, i = () and A were subsequently given for the
triangular (t) and honeycomb or hexagonal ¢(hc) lattices; for reviews, see [4-6]. We denote
the critical coupling separating the symmetric, paramagnetic (PM) high-temperature phase
from the phase with spontaneously broken Z; symmetry and ferromagnetic (FM) long-range
order as K. and recall that for the square lattice, v, =z, = +2 — L.

Here we shall study the susceptibility as a function of complex {(inverse) temperature, X
For our purposes, it is important to discuss generalized notions of phases and thermodynamic
quantities. We define a complex extension of 2 phase as an extension, to complex X, of the
physical phase which exists on a given segment of the real K-axis. As noted, for example,
in [11, for zero external field, there is an infinite periodicity in complex K under certain
shifts along the imaginary K -axis, as a consequence of the fact that the spin—spin interaction
on each link {ij} is 0,0; = =1. In particular, there is an infinite repetition of phases as
functions of complex K this infinitely repeated set of phases is reduced to a single set by
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using the variables v, z and/or u, since these latter variables have very simple properties
under complex shifts in X:

K—=K+nin={v—=v, 22z, u—=u, k —k} (2.10)
K—>K+(2n+1)%:>{v—>l/v, T =7, u— U, ky =k} @110
where n is an integer and, as before, &, = k. or k.. On a lattice with an even

coordination number g, it is easily seen that these symmetries imply that the magnetization
and susceptibility are functions of u only. Because the shift (2.11) leaves u invariant while
mapping v to 1/v, it maps a point in the FM phase (and its complex extension) to itself but
maps a point in the (complex extension of the) PM phase out of this phase. Consequently,
when studying complex-temperature properties of the model, it is more convenient to start
within the FM phase, where the various quantities of interest can be expressed as Taylor
series in the low-temperature expansion variable u. After this study, we shall proceed to
investigate the properties of the susceptibility in the interior and boundary of the M phase.
It is useful to note that a given point vg or zo corresponds, in the complex K plane, to the
set

K = K¢ +nin (2.12)
where n € Z and

Ko=—1Inzo (2.13)
while a given point ug corresponds to the set

K = Ko+ gnin (2.14)

reflecting the structure of Riemann sheets of the logarithm.

The requisite complex extensions of the physical phases can be seen by using the known
resuits on the locus of points on which the free energy is non-analytic. For the square lattice,
these are given by the circles [7]

v1(8) = £14-21/2¢¥ ie. ze(w) =%l 2129 (2.15)

for 0 £ 9 and w < 2m. Recall that the property that this locus of points are circles in
both the high- and low-temperature variables v and z follows because these variables are
retated by the bilinear conformal transformation (2.4) which maps circles to circles. For
later reference, these circles are shown in figures 1(z) and (&), respectively.

The circles in v or z constitute natural boundaries, within which the free energy is
analytic but across which it cannot be analytically continued. They thus define the complex
extensions of the physical phases which occur on the real v or z axes in the intervals
—ppc U< r<z<ljzo PM), i, < v lor0Kz <z (M), and —1 < v < =g
or 1/z. < 7 < o0 {AFM).

Using the general fact that the high-temperature expansions and (for discrete spin
models such as the Ising model) the low-temperature expansions both have finite radii of
convergence, we can use standard analytic continuation arguments to establish that not just
the free energy, but also the magnetization and susceptibility are analytic functions within
each of the complex-extended phases. This defines these functions as analytic functions
of the respective complex variable (K, v, z, u, or others obtained from these). Of course,
these functions aré, in general, complex away from the physical line —oc0 < K < co.

We shall also need a definition of singularity exponents of a function at a complex
singular point. In the case of real K, one distinguishes, a priori, the critical exponent
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{a) 1.5F Im{v) Q

Figure 1, Phases and associated boundaries in the complex variables () v, () z, and (¢) &, a8
defined in (2.3)-(2.5). In the variable 4. defined in (2.6), the complex FM and ArM phases are
mapped into the interior of the unit circle, and the PM phase to the exterior of this circle,
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which describes the singular behaviour at a critical peint approached from the symmetric,
high-temperature phase from the corresponding exponent for the approach from the broken-
symmetry, low-temperature phase. For a singular point in the complex plane, we shall again
distinguish the critical exponents describing the singularity as approached from different
phases, Thus, for the susceptibility ¥ () (where ¢ refers to one of the complex variables
listed before) which fails to be analytic at one or more singular point(s) {Z}, if the leading
singularity in j(¢) can be represenied in the power-law form

(& )sing, ~ (L= /5™ (2.16)
as { approaches {; from within the the phase p, we shall refer to ¢, as a complex singular
point and y,, as the corresponding critical or singularity exponent for the approach to
¢; from this phase. By analogy to standard usage for physical temperature, we shall set
Ye,rm = ¥, and ¥, pm = ¥ to refer to the critical exponents at ¢ as approached from within
the complex extensions of the FM and PM phases, respectively, We shall show that for the
specific point u, = —1, ¥s, aArm = ¥s, pm. Critical exponents for other quantities at complex-
temperature singular points are defined in an analogous manner. The locus of points
where a given function is singular in the complex ¢ plane will not, in general, be a discrete
set, in contrast to the case for the Ising model on the physical, real K axis. This is illustrated
by the locus of points (2.15) where the free energy is singular. Even for a function like the
magnetization, which, in the complex FM phase where it is non-vanishing, is an algebraic
function in { = k. or £ = z of the form M = ]'L"‘:,(z; — &%, the discrete points ¢, also
in general involve associated branch cuts, since the exponents §; are not integers.

It shouid be noted that a phase may exist for complex v or z which is not the complex
extension of any physical phase. An example of this phenomenon occurs in the present
case; the fourth region, denoted O in figures 1(a) and (/) constitutes such a phase.

In contrast to the usual ferromagnetic critical point of the Ising model, which can be
approached only within the PM phase or M phase (and similarly, the AFM critical point of
this model, which can be approached only from within the PM or AFM phase), a general
complex singularity may be approached from within more than two phases. For example,
in figure 1 the singularities at v = =i, or equivalently, 7 = i, can be approached from
within the PM, FM, or AFM complex-extended phases, or, indeed, from the region O which
is not analytically connected to any physical phase.

Since for the square lattice x(z) has the symmetry noted above, x{z} = x(-z), it is
useful to display the complex-extended phases as functions of . Under the conformal
transformation u = z2, the circles in figure 1(b) are mapped to a single curve, which is a
type of limagon of Pascal, defined by

Re(u) = | + 2> cosew + 2 cos 2w (2.17
Im(x) = 2% sinw + 2sin 20 2.18)

traced out completely for 0 € w < 2x. In this variable, there are three complex-extended
phases, as shown in figure 1(¢); PM, FM, and AFM. The mapping from z to u# reduced the
number of complex-extended phases from the four which are present in the variable z or v
to three; since the points in the O phase are related to those in the complex-extended PM
phase by z = —z, these two phases are mapped to a single phase in the # plane. The points
z = =i, at which the PM, FM, AFM, and O phases are all contiguous, are mapped to the single
point ¥ = u, = —1 in the » plane. In the terminology of algebraic geometry, the point
us = —1 is a singular point, specifically a multiple point of index 2, of the limagon (2.18)
forming the natural boundary between the complex phases, whereas all other points on this
curve, including the PM—FM critical point u; and the PM—APM critical point at u = 1/x,, are
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regular (ordinary) points of the curve. Here, a multiple point of index n of a curve C is a
point through which n ares of C pass (see, for example, [8]). For later reference, the physical
critical points are u, = 3 = 24/2 = 0.171572875. .. separating the P and FM phases and
ul =3+ 242 = 5.8284271... separating the PM and AFM phases. In the complex K
plane, these correspond to the infinite set of critical points K, = :I:% In(1 + «/2) + nizr/2,
where n € Z. Under the transformation # — 1/u, the complex-extended PM phase maps
ont itself, while the complex-extended FM phase maps to the AFM phase, and vice versa.

Finally, in terms of the elliptic moduli, the natural boundaries have the very simple
form of the unit circle in the complex k. or k.. planes:

ke =1/k, =¢" (2.19)
with O £ @ < 2%. These incorporate the symmetries

u— lju = ky =k (2.20)

v— 1fv = ky =k (2.21)

where k, denotes k., k., or k. Given the inversion symmetry (2.20), it follows that the
transformation (2.6) from u to 4. maps both the complex-extended FM and AFM phases
onto the same region, which is the interior of the unit circle in the complex k. plane. The
complex-extended PM phase is mapped to the exterior of this circle. Under the mapping, the
actual limagon in the u plane wraps around the unit circle in the £ plane twice. In particular,
both the PM~FM critical point usq and the PM—AFM critical point 1/u, are mapped to the
single point, k. = k. = 1. The complex-temperature singular point 2, = —1 is mapped to
«=kn = —1.
Having discussed these preliminaries, we proceed to study the susceptibility.

3. Analysis of low-temperature series

3.1. Analysis of series for ¥, in the variable u

The low-temperature series expansion for # for the Ising model on the square lattice is

[++]
%= 4u2(1 + Zc,,u“) . (3.1
n=1

This expansion has a finite radius of convergence and, by analytic continuation from the
physical low-temperature interval 0 € # < i, applies throughout the complex extension of
the FM phase. Since the factor 4u? is known exactly, it is convenient to study the reduced
(r) function

o0
F=2tF =14 ) o, (3.2)
n=1

The expansion coefficients ¢, were calculated to order n = 9 in 1971 by the King’s College
group [ and were extended to order n = 21 by Baxter and Enting in 1978 [10] {with exact
coefficients up to # = 19 and nearly exact n = 20 and 21 terms). Very recently, the ¢,’s
have been calculated to order n = 26 (i.e. ¥ to O®)) by Briggs et ai [11], as part of
a peneral calculation of low-temperature series for g-state Potts models with ¢ = 2-10 on
the square lattice. We have carried out a diog Padé analysis of this series to investigate the
singular behaviour of the susceptibility in the complex u plane. (For reviews of this method,
see [14].) As one approaches a complex singular point denoted by ‘s’ on the boundary of
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Table 1. Values of ug from Padé approximants to low-temperature series for ¥, starting with
the series to O(u'?). The superscript = indicates that the approximant has ane ar more nearly
coincident pole-zero pair(s) closer to the origin than u;. Our criterion for near coincidence is
that |#pale — Hzer| < 1075,

N [N-2)N] [N -IYN] IN/N] [N+ 1D/N] N+ 2)/N]
6 — —~1.05026 ~1.076 08" =0.992720 —0.990763
7 -109018* —1.63635 —0.950673 —-0.992677* —1.007 52"
8 —1.00060 —1.022 i6 —1.00363* —0.597028 —0.988 543
9 -1.00762* ~1.18678 —0.981 1569 =0.5954185" -0.9%3225"
0 —-0.983770 —1.13876* —0.995264*  ~0.995312* -0.998 645*
11 -0.99921i —1.00398 -0.998086* =0.9977515* —0.998400*

12 —0.999976* —0.99767% 09598044 —0.997225* —
13 —0.99%073* 09962100 — — —

Table 2. Values of y, from Padé approximants to low-temperature serigs for ;. starting with
the series to Q(u'?). -

N [N -2yN] [N - D/N] IN/N]T [V + 1)/N] [N+ 3)/N]

6 — 1.975 2,174 1474 1.455
7 2297 1.879 1,454 1.474* 1.631*
§ 1.563 L7 1.583* 1513 1.419
9 1.628* 1.533 1.321 1497 1,508*
10 L1358 1.732* 1507 1.496* 1.536*
11 1545 1.605 1.528*  [L.524* 1.533*
12 L.s54 1.523* 1.528*  L517* —

13 L1543 1.503* — . -

the complex-extended FM phase from within this phase, % is assumed to have the leading
singularity (s)

F) ~ AL — ufuy (1 + ay (1 = ufug) + -+ (3.3)

where A; and 3/ denote, respectively, the critical amplitude and the corresponding critical
exponent, and the dots . .. represent analytic confluent corrections. One may observe that we
have not included non-analytic confluent corrections to the scaling form in (3.3). The reason
is that, although such terms are generally present at critical points in statistical mechanical
models, previous studies have indicated that they are very weak or absent for the usual
critical point of the 2D Ising model [12, 13]. The dlog Padé study then directly gives u, and
4. As noted above, the prefactor 4u? is known and is analytic, so we actually carry out the
dlog Padé study on j.. This study yields evidence for a divergent branch point singularity
at a particular complex-temperature point, which we denote by u;. (The use of u, above
referred to generic complex-temperature point(s), of which there might, & priori, be more
than one; henceforth, we use this symbol to refer to the specific point found from the Padé
study.) The results for u; and y, from the diagonal and near-diagonal approximants are
listed in tables 1 and 2, starting with series for , to O(x'?) and going up to O(u*%). We do
not find evidence for any other complex-temperature singularities within the range described
by the small-u expansion. From this Padé analysis of the low-temperature series, we infer
the values

u, = —0.998 £ 0.002 (3.4)
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v = 1.52+0.06 (3.3)

where the uncertainties are estimates. These results suggest the conclusion that as «
approaches the point

g = —1 (3.6)
from within the FM phase, ¥ has a divergent singularity with exponent

vi=13- G.7)
This inference was also reached by Enting, Guttmann and Jensen; see note added in proof.
As noted above, this point u; = —1 corresponds to the two points z; = —v; = i; in the
complex K plane it corresponds to the infinite set of points given by

Ky = —iim + nin (3.8)

with n € Z.

In the following we shall show that the critical exponent for the inverse correlation
length (mass gap) describing row or column connected spin—spin correlation functions at this
singular point is v; ., = 1. A naive complex-temperature analogue of the usual argument
for the scaling relation V(2 — 1) = ¥, in conjunction with our inferred value of ¥, in (3.7),
would lead to the further inference that the exponent describing the asymptotic decay of
the row or column connected 2-spin correlation function at the singular point u, = —1 is
Wrow = % (where we append the prime to indicate that the calculation of the spin-spin
correlation function involves a limit from the complex FM phase). However, we shall show
that the situation near the complex-temperature singular point « = —1 is considerably more
complicated than the case at the physical critical point with its simple scaling relations
V(2 —n) =y and v(2 — ) = y. Among other things, we shall show that the correlation
length and ¥ are finite when one approaches u = —1 from the complex PM phase,

The dlog Padé study did not yield any evidence for other complex singularities, i.e.
it did not give poles whose positions were highly stable as one varied the orders of the
approximants. As usual, the values of the position of the singular point vary less among the
Padé entries than the values of the exponent. Also, as expected, the values of y, show less
scatter in the higher-order Padé entries than in the lower-order entries. It is true, however,
that these values of y/ do exhibit more scatter than the values of the usval susceptibility
exponent " for the PM—FM critical point u#.. To make this comparison quantitative, it is
sufficient to show the values of u. and y’ extracted from just the diagonal Padé entries;
these are given in table 3.

Table 3. Values of uc, s and p’ from diagonal Padé approximants to low-temperature series for
%y starting with the series to O(u'),

[N/N] Uy, ser [ese, ser — tc/ ot ¥
[6/6] 0.171540 17 1.9 107* 1,740
[(7/M 0.17156038 0,73 x 104 1.745
(8/8] 0.17146527* 6.3 x 1074 1,791°
[9/9) 0.17156858" 2.5x107% 1.747*
{10/10]  0.17157013 1.6 x 10-3 1.748
[0 00757232 32 x 1078 1,749
1127121 007157423 7.9 % 10-% 1751*

Exact 0171572875... 0O 1.750
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Table 4. Values of #; from Padé approximants to g(u) = (I — 6u + 1?)"/*%,, starting with the
scries for g{«) to order O(un).

N [IN=2YND [(N=1)/NT [N/N] [V + 1)/NY [V +2)/N]
6 — —1.05279 -1.07822* —0.991 486 —1.001 045
T =10%002" —1.04502 ~0.999217 =0.989684* -1.00833*
8 1010665 —1.0214] —1.003 84 —0.996 939 —0.989857
9 -101138" —1.34302 —0.985 198 -(.995437 —0.996976
10 —0.988442 —1.264 78" -0.996 803 -0.995048  —0.998644*
11 —1.00156 -1.00354 —0.998084 -0.997731 —0.998407"

12 -1.001685* -0.997653 -0.998042* -0996954* —
I3 0999656 -0994374* — — —

Table 5. Values of y; from Padé approximants to g(z) = (1 — 6u + u*)7/43,, starting with the
series for gu) to order O(x'2).

NN -2Y/N] (N -1/N] IN/N] TN+ D/NT TV + 2)/N]

6 — 1.998 2179 1.464 1.361
7 2278 1.950 1.540 1.449* 1.640*
g 1664 1.769 1.585* L1512 1.434
9 L& 1.356 1372 1.497 1516
10 1418 1.490* 1.513 1.493* [1.5336*
1l L575 1.600 1.528 1.524 [.533*
12 137* 1,523 1.528*  1.514* —
13 L5501 1.481* — — —

3.2. Analysis of series for g(u)

Clearly, a property of Padé approximants which is crucial for our study is their sensitivity
to singularities which are not the closest to the origin of the Taylor series expansion. In
order to explore the possibility of obtaining a more sensitive probe of the complex singular
point, we have also carried out a similar study of a series with the physical singularity
removed. In order to keep the coefficients rational, we actually multiply ¥ by the factor
[ — we)(u — 1/u)]"* = (1 — 61 + u®)?* and thus study

gy = (1 —6u+u?) " 5e(w). (3.9)

This is an old technique (see, for example, [5]). Note that the spurious finite branch-point
singularity introduced at the PM—AFM critical point has no effect on our analysis, since the
small-|#} series for ¥ and g only apply in the FM region, which is not contiguous with the
region of the PM—AFM critical point in the # plane. The results of our Padé analysis of the
series for g(u} are given in tables 4 and 5.

As one can see from these tables, the resultant values for u; and y, are in very good
agreement with those from our analysis of the series for %;. One improvement that occurs
is a slight reduction of the number of entries with nearly coincident pole-zero pairs, which
should increase the accuracy of the results somewhat.

3.3. Analysis of series for ¥ in the variable k.

Finally, it is useful to transform the series for the susceptibility from the usual low-
temperature variable u to the elliptic modulus . and to study the resultant series. An
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Table 6. Values of (kc)sser and y; from diagonal Padé approximants to low-temperature series

for x starting with the series to o(k‘j). cp denoles a complex pair of poles close to ~1. The
superscript * indicates that the approximant has one or more nearly coincident pole-zero pau(s)
closer to the origin than (k.); = —1. As before, our criterion for near-coincidence is that
(k< pote = (k<)aera] < 107,

{NfNI (k<JS.56|.' Kk<)s.scr + i' ys’

[6/6] —0.998 766 1.2 % {073 1.513

[7/7 —0.999 940 0.60 x 10~4 1.552

[8/8} —1.000012  1.2x10-5 1.555

[9/9] —0.999734  2.7x 10" 1.543

[10/10] —0.999819* {8x10™4 1.546*
[11/11]  —0.999873 L3 x107* 1,549
[12/121 cr _ —

important motivation for this is that ¥ is given formally by a sum over all connected
correlation functions, and these correlation functions, which can be computed exactly in
terms of certain Toeplitz determinants {16, I7], have explicit forms which are polynomials
in the complete elliptic integrals X'(k,) and E(k.) [18], where k; = k. in the FM and AFM
phases and k; = k. in the PM phase. The variables k. and k.. are thus natural ones for fow-
and high-temperature series expansions of j, respectively. We therefore have transformed
the known small-|#| series to one in k., which takes the form

o2
5 =2‘2k2<(1 +Zc;,k';). (3.10)
n=l1
The series in parentheses defines a reduced function ¥, = 4kZ%% as before. Since as a
function of u, k. has the expansion near u = u; = —1,

«==1+ 30+ 17+ 0 + 1Y) 3.11)
with no linear term, it follows that in the variable k., the singular form of ¥ corresponding
to (3.3), as k. approaches the point k. = —1 from within the FM or AFM phase (L.e. from
within the interior of the unit circle in the complex k. plane) is

Jk) ~ B+ k™AL + b1+ k) + ) (3.12)

where B is the critical amplitude for this expression of the singularity in terms of the
variable k.. We have performed a dlog Padé analysis of the series in k. for ;, i.e. an
analysis of the function dIn . /dk.. Our results for the diagonal entries are given in table 6.
The results from the series in k. agree very well with those which we obtained from the
other series. The analysis of the series in k. also gives results for the regular PM—FM critical
point at k. = 1 and the associated exponent ' of comparable accuracy to that of the series
in #. We have also carried out an analysis of the series for j; in the variable # using
differential approximants (for further details on this method, see section 7 below). This
yields results close to those in table 6.

One important new piece of information can be obtained from our analysis of the series
for ¥ in the variable k. near the singular point k. = (k<)s = uy = —1: this is an answer
to the question of whether the critical exponent is the same when one approaches this point
from within the interior of the complex-extended FM phase and from within the complex-
extended AFM phase. Recall from figure 1(c) that in the i plane these approaches are distinct,
since the complex FM and AFM phases lie on opposite sides of u,. Since the complex FM
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phase is the one which contains the origin in the « plane, our analysis of the small-[| series
could only determine the singular behaviour as & approached u, from within the complex
FM phase. However, since the complex FM and AFM phases are mapped onto each other in
the k. plane, our analysis of the series in this variable shows that the exponent y; is the
same for the approach to u, = (k<); = —1 from within both the FM and AFM phases (as
has been implicit in our notation}.

Since the low-temperature series for ¥ is not usually given in terms of the variable £.,
we note that it has an interesting feature, The first few terms are

. 13 13 139 139 685 2739
xr=1+k<+23ki k3+—§3—k4+ > —k+ k<+—29—k1
1603
280315 ¢ oy, , 3.13)
Near the point u; = (k<)5 = —1, the terms up to order Q(k2) of the series exactly cancel

amongst each other in a successive pairwise fashion, so that the first non-zero terms in the
series for k. start at order O(ki) (ie. for ¥ at O(k%)). To say it differently, these first six
terms can be expressed as (1-+k.)(1+ (13/23)k2 + (139/25)k%). One can interpret this as
being a hint of a structure which persists to all orders in the exact susceptibility; with this
motivation, one can add and subtract terms in higher orders so as to put ¥, in the form

F=0+kfi=272%1 0. (3.14)
Computing the functions f(k<);, j = 1,2 and defining the convenient variable
y=27% (3.15)

we find

fi = 1 + 26y + 556y% + 10960y> 4+ 206 412y* + 3775 480y° + 67 668 304y°
+1194 824 896y7 + 20856575980y + 360778731 928)°
+6 195017 443 85630 4 105730294 168 640y "
+1795278082 108 368y "2 + 0(y™) (3.16)

and

fo =1+ 33y + 770y* + 15650y -+ 206 006y* + 5363 335y° + 94 504 364y°
+1633461856y7 + 27 844 153 964y® + 469735 545258y° + 0(y'") .
(3.17)

We have performed a Padé analysis of the functions dln f;/dy. We find strong evidence
of a singularity in fi of the form fi ~ |1 — k2|~7/* as &% increases toward 1 from below.
Combining this with the (1 — k) prefactor, it follows that the singularity in ¥ arising from
the fi term can be written as

Uk fi~ |1 =k 7] - k™ (3.18)

as k% approaches 1 from below. For example, the [6/6] Padé approximant gives 16y = &2 =
0.999 844 as the position of the singularity, and 1.745 as the exponent. The results from
the study of f; are also consistent with this conclusion for the singularity in k. Recalling
that |1 + .| =% = constant x [1 4 u[~%? as k. — —1 or equivalently, as u — —I, one
sees that the singular form (3.18) agrees very nicely with our determination of the complex-
temperature singularity by analyses of the small-|«| series for ¥.(u), g(u), and ¥,(k.) given
above.
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3.4. Critical amplitude at u,

In order to calenlate the critical amplituc}c Al in the susceptibility as one approaches 1 = —1
from within the FM phase, we compute the series for (%,}!/%. Since the exact function
(%)% has a simple pole at u,, one performs the Padé analysis on the series itself instead
of its logarithmic derivative. The residue at this pole is —us(A/)'/%, where A/, denotes the
critical amplitude for ;. Using our inferred value 3, = % to calculate the series and the value
us = —1 to extract A , we finally multiply by the prefactor to obtain A] = i-tqu;‘s =44 .
(Alternatively, one could extract (A;‘s)” ¥ from the residue by dividing by the measured
pole position, u .., from the given Padé rather than the inferred exact position, and could
use the prefactor 4u§'m to get A;; the differences between the two methods are quite small
and vanish asymptotically; these differences are incorporated in the final uncertainty which
is quoted for the critical amplitude.) Our results from the diagonal Padé entries are listed
in table 7. From this analysis, we calculate

A = 0.186 £ 0.001 (3.19)

where the quoted uncertainty is an estimate.

Table 7. Values of (A!}*/? from Padé approximants to small-fu] serles for (%,)'/7. cp indicates
a complex pair of poles near to u; = =1,

[N/N] Uy Ry = _“5(4;,5)2"'3
[6/6] ~(.993282 0.128915

[7/7 —0.9942585 0.129496

8/81 —0.994204 0.125 460

/9 =0.994 088 0.129 3865

{10/10) —0.995080  0.130178
[1/11]  —0.993497  0.129264
[12/12] cp cp

This value may be compared with the low-temperature critical amplitude in this model
at the usual PM—FM critical point, u,, defined by ¥ () ~ ALl — u/u.|~"* as u — u, from
below. A} was determined first by analysis of low-temperature series expanstons 5] and
subsequently to higher accuracy by analytic methods [13]f to be A, = 0.068865538....
Using our determination of Af, it follows that A[/A] = 2.70) £ 0.015. We note that
this is consistent, to within the numerical accuracy, with the analytic relation A}/A; =
(—Inu Yt =2.6966995. ...

4. Singular behaviour of other quantities at uy = —1

4.1. Specific heat

In this secfion we extract the singular behaviour of the exactly known thermodynamic
quantities at the complex-temperature singular point u, = — 1. We begin with the specific
heat. It is convenient to consider K —2C, which (in units with kg = 1} is given by (2]

K™C = ;( 1 ;2" )[2(1«@ ~ E()) ~ (1~ )57 + &' K (x))] (4.1)

§ Reference [13] actualiy gives the critical amplitude A[  defined by Z(T) ~ AL 7|l — T/ T|™"/%, we have
converted this to A, here.
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where the elliptic modulus is

_ 2 _ 2 (1 —w)

K = (ki”z-i-k;]/z) = (kl’(z—l—k:”g) - {1+ u)2

and its complementary modulus is «" = (I — «%)"/2. We use the standard convention
that the branch cut for the complete elliptic integrals runs from m = «? = 1 to m = co
along the positive real axis in the complex m-plane. From equation (4.2), it foilows that
as u approaches —~1 with Im{x) small and positive, ¥ — icc (and if Im(x) is small and
negative, then ¥ — —ico, taking the usual convention for the branch cut for the square
root), and thus ' — cc. From inspection of (4.1}, it is clear that as u — —1, C diverges,
with the leading divergence arising from the last term, —2(«*/k)K () — 2i'K (k).
Using the identity (see for example [20]) «'K (k) = K (ix/«’) and the fact that as A — |,
K(A) — % In(16/(1 — %)), we can express the most singular term as fT In(4|x) asu — —1.
Next, using the fact that near u = —~1, 1/x = —%(1 + )2 + O((1 + u)?), we find, finally,
that the leading divergence in C as u — —1 is

C~Eﬁm(l ). (4.3)

42)

T (1+4+u)
Taking the value of K; on the first Reimann sheet in (3.8), i.e. K, = —in/4, this becomes

cm—Zf L 4.4
2 n((l-i—u))' @4

Since the elliptic integrals and also the factor &' only depend on «2, the leading singularity
is of the same type whether 1 approaches u, = —1 with Im{«) positive, negative, or zero,
and also whether the approach occurs from within the complex FM, AFM, or PM phases,
The logarithmic divergence in C at u, is evidently of the same type as the divergence at
the physical PM—FM and PM—AFM critical points. Note, however, that at these latter points,
k — 1 (&’ — 0) so that the ¥ K (x) term (which gives the leading divergence at & = —1)
vanishes, and the divergence arises instead from the first term in the square brackets of
(4.1), 2K (x). Another obvious difference is that, while the specific heat is required to be
positive at physical temperatures, it is, in general, complex at complex-temperature points,
and the critical amplitude at u, is real but negative. The critical exponents corresponding
to this logarithmic divergence in C at u, are

o, = =0, (4.5)

As one crosses the complex-temperature phase boundaries at points other than r = i,
v = t/u., and u = —1, the specific heat C has singularities associated with the fact that the
image point in the x2 plane crosses the image of these boundaries, namely, the line segment
extending from «2 = 1 to «? = oo, which is the natural branch cut of the complete elliptic
integrals K{x) and E(«x} in (4.1.1).

From the thermodynamic relation Cy — Cy = x ' T((3M/3T))?, and the fact that
the term on the right-hand side is finite as 4 — —1 from within the complex-temperature
FM phase, one may infer that the specific heat at constant magnetization, C)y, has the same
logarithmic singularity as the specific heat (at constant field) C(H = 0} in this limit.

4.2. Magnetization

Next, we make use of the exactly known expressions for the spontaneous magnetization
M to analyse the behaviour as a function of complex temperature. In particular, we shail
extract the critical exponent B, at the complex-temperature singular point 4 = u, = —1.



1570 V Matveev and R Shrock

For the square lattice, for real temperature, M vanishes for X < K5 (where for clarity
we restore here the subscript indicating the lattice type) and, for K. < K < 00 is given
by [31 M = My = (1 —k2}'/8, or, in terms of u,
(1 +w)/*() — 6u + u?)1/®

(1 — u)i?
What is normally discussed is the vanishing of M at the usual PM—FM critical point,
e = 3 — 2+/2, with exponent g = ]E' However, as we discussed in section 2, the
function describing the magpetization for positive temperature can be analytically continued
throughout the complex extension of the FM phase, up to the boundaries of this phase,
which for the square lattice are specified by the limagon (2.18). Carrying out this analytic
continuation, one sees two important results.

qu =

(4.6)

(i} The only point, other than the physical PM-FM critical peint, where M vanishes

continuously is at # = u; = —1. Defining an associated critical exponent as
M| ~ constant x {1 — i /1| 4.7}
as u approaches u; from within the complex-extended FM phase, we find the value
Bia=1- (4.8)

(ii) At all other points (i.e. all points except #; and ;) along the boundary of the complex
extension of the FM phase, M vanishes discontinuously.

Result (ii) follows because if one starts in the physical PM phase, a similar analytic
continuation argument shows that M vanishes identically all throughout the complex
extension of this phase. Inspection of (4.6) shows that the (real and imaginary parts of the)
analytic continuation of M are non-zero as one approaches the boundary of the complex-
extended FM phase from within that phase at poimis other than ¥ = w; and v = —1.
Therefore, M must vanish discontinuously as one crosses this boundary from the complex
FM to the complex PM phase, as claimed.

For the complex-extended AFM phase, we use the well known symmetry which holds
on loose-packed lattices: under the transformations K — —K and ; — n;0;, where i; = 1
{(—1) for o; on the even (odd) sublattice, the Hamiltonian is invariant, while the uniform
magnetization M and the staggered magnetization M, interchange their roles. The above
transformation takes £, — k., z = l/z, u — 1/u. The expression (4.6) is invariant and
thus describes the staggered magnetization in the physical AFM phase as well as the uniform
magnetization in the physical FM phase. As before, one generalizes this to a definition of
the staggered magnetization in the complex-extended AFM phase by analytic continuation
from the physical region —oo < K < — K, throughout the complex AFM phase, as indicated
in figure 1. One sees that analogues of the two results which we obtained for M can also
be derived for My

(1) M vanishes continuously at two points on the border of the complex-extended AFM
phase, namely, # = 1/u. = 3+2+/2, the usual PM~AFM critical point, and & = ug = — 1,
the complex-temperature singular point where M also vanishes.

(ii) At all other points on the border of the complex-extended AFM phase, M, vanishes
discontinuously as one crosses this border into the PM phase. Note that, as is clear from
figure 1, the only point where the complex FM and AFM phases are contiguous is the
single point u# = u, = —I, or equivalently, the two points z = £i = —v.

In passing, we note that for both the uniform and staggered magnetizations, the apparent
divergence at ¥ = 1 plays no role since this point is outside the two respective regions
(complex FM and AFM phases) where the expression (4.6) for these quantities applies.
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4.3. The behaviour of the inverse correlation length as u — —1.

4.3.1. Approach from within complex (A)FM phase. For the Ising model on the square
lattice, in the physical low-temperature phase with real X in the interval K, < K £ oo,
the asymptotic decay of the row (or equivalently, column) connected correlation functions
is given by [19]

{0(0.0y00.n) Jeoun ~ 12 e~/ Emann (4.9)

where the inverse correlation length (mass gap) is

11—z

2
Emb o = In((/2)) = ‘“[Z_Z(Tﬁ) } ' (4.10)

We now analytically continue this result into the complex extension of the FM phase and
inquire where the mass gap vanishes. We find that for points within, and on the border of,
the complex-extended Fm phase, the mass gap vanishes for the following set:

Efmicow =0 for z={z, +i} @.11)
i.e. the usual PM—FM critical point z. = +/2 — 1 and at the two points z; = £i (ug = — 1)
The additional apparent zero at the PM—AFM critical point z = —1/z; is not relevant for

the complex FM phase because this point lies outside this phase and thus outside the region
which can be reached by analytic continuation of the original formula (4.9); however, it
will be relevant for the inverse correlation length defined within the complex-extended AFM
phase (see below), We note the somewhat subtle pomt that the correct analytlc continuation
of the physical, real-X theory to complex K requires that one use $FM ow = In((v/2)?)
as given in (4.10) and not {;‘FM ow = 21n(v/z); although these are identical expressions for
physical X, the latter form would miss the zero in &'FM ow At =—1.

We now extract the critical exponent(s) for this inverse correlation length (mass gap) at
z = i as these poifits are approached from within the complex-extended FM phase. These
exponents (which will turn out to be equal) are defined by

Efatcow ~ CONSEANE X |2 F if*2e for 7z — i (4.12)
from within the FM phase. Expanding Efni row @bout these points gives

row = 0+ 2(Ei — DEF D) + O F ) (4.13)
from which it follows that
M ow = Vopson = 1 (4.14)

3, oW =i, fow
This motivates the use of a single exponent to describe the singularity at the single point
#s = —| corresponding to z = =i, as approached from within the complex-extended FM
phase:

W =1. (4.15)

5. row

By the standard argument noted above which shows that on a loose-packed lattice such
as the square lattice

it (C":‘Uj)(_K)conn = (ﬂ'io'j}(K)conn (4.16)

it follows that the same inverse correlation length (4.10) describes the asymptotic decay of
the connected 2-spin correlation functions along a row or column in the AFM phase, ie.
formal[y, S;'FM row EAFM row+ Although the same expression is used in different phases. Now
gAFM ow vanishes at the physical PM~AFM critical point z = —1/z, i.e. u = 1/u,, and at
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the complex-temperature singular points z = i. It follows that the expansion (4.13) also
controls the critical exponent as one approaches the peints © = —1 from the AFM phase
(i.e. from the left in figure 1(b)).

The value of v, is evidently the same as the value v' = | for the physical PM~FM
critical point, as approached from within the FM phase. However, one encounters several
new features at the complex-temperature singular point, which we now discuss.

One may also extract a correlation length critical exponent from the asymptotic decay

of the diagonal (d) correlation function,

(00,0 F(my Yoonn ~ 1 e imed (4.17)
where the distance r = 2!/2|n|. In the physical FM phase,

g = —272In(k%) (4.18)

2
- rnn([])

As with the row (column) spin-spin correlation functions, we may analytically continue
(4.17)—(4.19) to apply throughout the complex extension of the FM phase. Although the
detailed form of &g 4 is different from that of £34 .y they both have the same complex
zeros within the range of this analytic continuation, ie. the complex FM phase and its
boundary. It may be recailed that near the physical PM~FM critical point,

K2 = 14204 + 3v2) (1 — 1) + O((x ~ ue)?) (4.20)

so that the exponent which describes the vanishing of the inverse correlation length
characterizing the diagonal correlation function is the same as that for the row or column

correlation functions. However, the sitvation is different at © = —1: using the expansion
near # = —1 (see also (3.11))
=1L+ w?+o(d +w?) ) @421y
it follows that near i = —1,
= 2732(1 + u)? + O((1 + u)?). - (4.22)
Hence, the correlation length exponent describing the vanishing of the inverse correlation

length for diagonal correlation functions, at v = u; = —1, as approached from within the
complex FM phase is -

=2 (4.23)

i.e. twice the value of the mass gap exponent extracted from the row/column correlation
functions. This situation is unprecedented for critical exponents at physical critical points.

Vs dlag

4.3.2. Approach from complex PM phase. From an analysis of the asymptotic decays of
both the row/column and diagonal correlation functions in the complex extension of the
symmetric, PM phase, we find that the correlation length does not diverge as one approaches
the points v = =i corresponding to the point # = —1 from within this phase. This finding
is very important, since it implies that the susceptibility is finite at # = —1 when this point
is approached from within the complex PM phase.

In the physical PM phase, the row (or column) correlation function has the asymptotic
decay [19]

{con0omn ~ | n| =12 eI benaow (4.24)
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where

I+v
As before, we may analytically continue this throughout the complex-extended PM phase.
The mass gap &;h},,mw vanishes only at the physical PM—FM critical point v, = 2 1. (The
apparent zero at —1/v, = —(+/24 1) is not relevant because this point lies outside the
complex-extended PM phase where the above analytic continuation is valid.) In particular,
as one approaches the points v = =+i from within the complex PM phase, &py o —> In(—1),
so that {o,00w0,0) ~ (—1)*[n]71/? as |n| = oo.
We find the same result for the diagonal correlation function, which, in this complex
PM phase, has the asymptotic decay

Ebaon = Ine/) =t o™ (152 |. 425)

(00.0)Ttnm) ~ |n] 2 e ims (4.26)
where r = 2'/2|n| and
Eond = =27 In(ks) (4.27)
4y?
Y
- 2 [n((l — UZ)z) - (428)

Now near v = =i,
ks ==1—(@FiY+0(@F1)). (4.29)

Hence, although [g';wli.d vanishes at the physical critical point v, it is finite at the points
v = +i, where SP_NII,G = 27"2]n(-1), so that (o,00@m) ~ [#|71/2(—1)" at these points,
just as was true of the row and column correlation functions. One thus encounters precisely
the type of situation that we discussed before in [1], where Re(5™') = 0 but Im(¥ ") is
non-zero. Note that the sum 3 °(—1)""n~'/2 (where ng is an unimportant Jower cut-off)
is finite. Of course, although the correlation length is finite at v = XLi, as approached
from within the PM phase, it is singular at these points since it is unequal to the value
obtained as the points are approached from a different direction in the complex v, z, or
u planes. The asymptotic decay of the general 2-spin correlation function {(6(5.0)%0m.n))
has been calculated (using Toeplitz determinant rnethods) [19]; carrying out an analytic
continuation of this result from the physical PM phase into its complex extension, we again
find that the correlation length is finite at v = £i. Since a divergence in ¥ on the border
of the (complex extension of the) PM phase can only arise from a divergence in the sum
over 2-spin correlation functions contributing to ¥, the above results constitute an analytic
demonstration that the susceptibility is finite at the points v = i, as approached from within
the complex pM phase. This is in sharp contrast to the approach from within the complex
FM or AFM phases, where we have shown that ¥ is divergent. This type of phenomenon
is, again, to our knowledge, unprecedented in the study of singularities in thermodynamic
functions at physical critical points.

4.3.3. A theorem on ¥. From our results in the previous two subsections, using the same
reasoning as in [1], we can infer the following theorem.

Theorem. The susceptibility ¥ has at most finite non-analyticities on the natural boundary
curve (circles in v or zZ, limagon in u) separating the complex-extended PM, EM, and AFM
phases, apart from the divergent singularities as one approaches the point u. = 3 — 2+/2
from within either the complex PM or FM phase and the point 4, = —| from within the
complex FM or AFM phase.



1574 V Matveev and R Shrock
5. Scaling relations and other critical exponents at u, = —1
5.0 0+ 2B + ¥ =2

Using our result (3.7) for »/, together with the exponents & and B extracted from the
known exact expressions for C and M in (4.5) and (4.8), we find that the complex analogue
of the scaling relation (from the low-temperature side) o' + 28 + " = 2 is satisfied:

o+ 28+ Y =2 5.1y

where the subscript s’ indicates that this refers to the point u; = —1 and the primes
indicate that the approach to this point is from the complex-extended broken-symmetry
phases, Fm or AFM. To be precise, this relation is satisfied to within the numerical accuracy
of our determination of y; in (3.5) and is satisfied exactly if one uses our inference in (3.7)
of the exact value of y/. However, our results in the previous section, in particular, the

demonstration that 7 is finite at v == = (¢ = —1) as approached from within the complex
PM phase, and hence that y, < 0, already shows that
o5+ 28+ ¥ #2 5.2)

i.e. the scaling relation for the approach from within the pM phase, is not valid at i, We
do not know of any extension of the arguments for usual exponent relations to complex
temperature, so it should not be considered a surprise that such relations do not hold at a
complex-temperature singularity.

5.2. Hyperscaling relations

Since we have shown above that the inverse correlation length is finite at the points v = +i
when approached from within the complex PM phase, the corresponding exponent v, < 0.
Hence, the hyperscaling relation dv = 2 — & does not hold at these points, as approached
from within the complex PM phase. Concerning the hyperscaling relation for the approach
to #; = —1 from within the complex FM or AFM phases, namely, dv’ = 2 — &', if one used
the correlation length exponent vy = I extracted from the row or column correlation
functions, then this relation would be satisfied. However, the situation is more complicated,
since, in particular, 1] g, =2 7 ¥, oy

6. Violation of universality at u; = —1

Evidently, complex-temperature singularities clearly have different properties from physical,
real-temperature critical points. Among other things, quantities which are real for physical
T in general become complex for complex T. Furthermore, various positivity relations,
such as the property that the specific heat C > 0 is not true even when C is real. One
should therefore be cautious concerning the question of whether a given property associated
with a physical critical point will apply at a complex-temperature singular point. Indeed,
we shall now demonstrate a violation of universality at the complex-temperature singular
point u;.

We recall the meaning of universality as applied to statistical mechanical modeis not
involving frustration or competing interactions: the universality class, as specified by the
critical exponents, depends on (i) the symmetry group G of the Hamiltonian and the related
space of the order parameter; (ii) the dimensionality of the Jattice, but (iii) not on the details
of the Hamiltonian, such as additional spin—spin couplings (provided that these are invariant
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under G and do not introduce frustration or competing interactions), and (iv) not on the
lattice type (again, provided that this does not cause frustration).

We shall now demonstrate, using exact results, that property (iv) is violated at the point
us = —1. In order to do this, we use the expressions for the spontancous magnetization on
the triangular and honeycomb lattices. These can be written in the same general form (4.6)
for the square lattice, but with elliptic moduli which are different functions of z:

M=(1-(ken)))"” ©.1)
where instead of the relation (2.6) for k. 5q, one has
4z3
kot 6.2)

T U+ 3221 - 22y

and

4232(1 — 7 4 22)1/2
(1-z(1+2)

These apply to the physical FM phases for each lattice, i.e. where 0 £ k. < 1. The explicit

forms in terms of the usual low-temperature variable u for the triangular and honeycomb

lattices are thus [21]

1 38 4 1/8
M:=( +u) (1 3u) 64
l1—u 14 3u

e = 4 22381 — 4z + )18

TR e
which apply within the respective FM phases on these lattices and vanish elsewhere. (Recall
that since the honeycomb lattice has an odd coordination number, g = 3, M and ¥ are
not invariant under z — —z as they are for lattices of even 4.} We first note a similar
feature of the spontaneous magnetization on all three lattices: M vanishes continuously at
the same generic set of points, namely the respective PM—FM critical points on each lattice,
and the point ¥ = —1, or equivalently the two points z = +i. As is well known, the critical
exponent f = % is the same at the respective physical PM—FM critical points. However, this
is nor true at u = —1: for the square lattice, the critica: exponent was extracted above as
Bssq = 41, but for the other lattices

ﬁs.t - ﬁs.hc = % 7= ﬁs,sq . (6.6)

Given the fact that M has the same form (6.1) in terms of the (different) elliptic moduli
k< s for the three lattices, and given that u; = —1 maps to £, 5 = —1 for each of these
lattices, it follows that M ~ |14k A|" as k. s approaches —1 from with the FM phase for
each case, with the same value p = %. However, this is not the same as the usual meaning
of universality, since the k. 4 differ as functions of z for each of the three lattices.

Since early studies of low-temperature series expansions, it has been known that
different lattice types have different numbers of complex-temperature singular points (see,
for example, [25] and references therein). However, to our knowledge, the obvious
violation of universality noted above has not been explicitly discussed in the literature.
Indeed, in an early study of complex-temperature {and complex-activity) properties of the
3D Ising model [23], from analyses of low-temperature series expansions on the simple
cubic (sc), body-centred cubic (bec), and face-centred cubic (foc) lattices, it was found that
the numerical evidence was consistent with the equality of critical exponents on these three

(6.3)

k<,hc =

and [22]

(6.5)
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lattices. The critical exponents at the complex-temperature singufar poine # ~ —0.285 in
the Ising model on the simple cubic lattice were recently determined to higher precision
in [24]. 1t would be useful to calculate longer low-tetperature series for C, M and 1 on
the bee and fee lattices to compare with the higher-accuracy critical exponents obtained in
[24] for the sc lattice. However, our exact results on f; already show that universality does
not, in general, hold at complex-temperature critical points.

Some possible insight into this violation may be gained by remembering that even at
physicai critical points, universality does not, in general, hold when there is frustration. One
of the earliest examples is the (isotropic) antiferromagnetic Ising model on the triangular
lattice, for which there is no PM—~AFM phase transition at finite K. Accordingly, when
examining a given singular point to see if one could expect universality to hold, one of
the first things which one would necessarily check would be the presence or absence of
frustration, which, in turn, would involve checking whether various spin configurations only
partially minimize the internal energy. But this initial check cannot be performed in the
usual way at a complex-temperature singular point, since at such a point the Hamiltonian
and internal energy are not, in general, real numbers.

7. Analysis of high-temperature series expansion for the susceptibility

In section 4, as a consequence of our study of the complex-temperature behaviour of
correlation lengths, we showed analytically that the susceptibility is finite at the points
v = &i (i.e. u = —1) as approached from within the complex extension of the PM phase.
In this section we shall carry out a study of high-temperature series expansions for the
susceptibility. The results confirm our analytic demonstration and give further information
about ¥ at these points, To our knowledge, this is the first time that a comparison has been
made of the behaviour at a complex-temperature singularity as approached from both the
complex-extended FM (AFM) and PM phases. For technical reasons, the study of the high-
temperature series in the vicinity of v = i turns out to be considerably more difficalt than
was the case with the low-temperature series in the vicinity of the equivalent single point
u = —1. We begin with a simple dlog Padé study, which is adequate to confirm the absence
of a divergent singularity; we then proceed to a study with differential approximants.
Recal] that the high-temperature series expansion for the susceptibility is given by

o
F=14Y au" (7.1)
n=l

in terms of the usual high-temperature expansion variabie. We have also transformed the
series to one in the elliptic modulus variable (k)12

[
F=1+) gk (7.2)
n=1
via the relation
ks )'? = 20/(1 - ¥%). (1.3)
Note the symmetry
v—= —1/u = (k)7 — (k)2 (7.4)

The motivation for using the variable (k.)!'/? is the same as was discussed in reference to

the low-temperature series, namely that the exact expressions for the spin—spin correlation
functions which actually contribute to the susceptibility are polynomials in the complete
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elliptic integrals of modulus k. in the PM phase {multiplied by algebraic functions of
{k~)'/2) {16-18]. Under the mapping from v to (4.)/2, the boundaries between the phases
transform as follows: the circle v = —142'2 e is mapped to the right-hand unit semicircle
in the (k. )!/? plane, ie. (k.)!/? = e with —n/2 € ¢ < w/2. Given the symmetry (7.4),
this is a two-fold covering; in particular, the image of the the PM—-FM critical point v, and the
point —1 /v, is the single point (k.)!/? = . Similarly, the circle v = 1 +2}2¢¥ is mapped
by a two-fold covering to the left-hand unit semicircle, (k)% = e with 3z 2 ¢ > 7/2.
The points —v, {the PM~AFM critical point) and 1/v., are taken to the point (k,)"/? = —1.
Finally, the points v = i which lie on the intersections of the two circles are mapped to
(k)% = i, respectively.

For the square lattice, the a, have been calculated to the very high order v** by
Nickel [26]. We have performed a dlog Padé analysis on this series and have found evidence
against a divergence in ¥ as v approaches i from within the PM phase. Since j is real
for real v, it follows that if the Padé approximant for d In(}}/dv has a pole at v = ug with
residue Ry at some complex point vg, then it also has a pole at v = v} with residue Rj.
Writing the singular part of ¥ as (1 — v/vp)™" near v = vy and recalling that g = —pp, it
follows that at the two complex-conjugate poles, the real parts of the exponents are equal,
while the imaginary parts (if non-zero) are reversed in sign. Thus, without loss of generality,
it suffices to consider only the singularity at v = i.

We find that the Padé approximants to dIn(j)/dv yield a reasonably stable pole near
to v =i, with Re(yy=) < 0. However, even for rather high-order [N /N] Padé entries with
15 £ N < 23, the pole position is not as close to the singular point as one would require for
accurate results; typically, v e — i} 2 0.08, much larger than the usual level of O(10~2)
(or better) which one would expect for reasonable accuracy.

We have therefore studied the equivalent series (7.2) in the elliptic modulus variable,
(k- )!2. In terms of the latter variable, the leading form of the singularities at (k..)/? = i
is given by

Hsiog ~ Caill £ 1k, ) /2|7l (7.5)

since the Taylor series expansion of (k.)'/2 i as a function of v, near the points v = =i,
starts with the quadratic term:

(k)2 = i+ fiv T2 + O((v F i) (7.6)

Of course, the Padé approximants exhibit the well known pole at (k)2 = 1 due to the usual
PM-FM critical singularity and the sequence of poles and zeroes starting near to (k,.)'/? = —1
and continuing outward along the negative real axis attributed to the finite {1 4 x) In|1 + x|
PM—AFM singularity, where x = (k,.)'/2. For reference, the high-order dlog Padé entries for
the pole position near the physical PM~FM critical point get this accurate to order O(1077).
They also vield extremely precise determinations of the exponent, y; indeed, among the
[N/N] entries with & around 20, the values of y only differ from 1.75 by amounts of
order 107*-1073. As regards complex-temperature singularities, the approximants exhibit
two poles which converge to (k.}'/? = £i. These, together with the values of Re()), are
shown in table 8. The values of Re(3) are stable and are negative, indicating that ¥ has
finite singularities at v = =i as these points are approached from within the complex PM
phase. (The values of Im(y;) will be discussed below.) This confirms the conclusion of cur
analytic study in section 4, namely that j is finite at ¥ = =i as approached from within
the complex PM phase. (That it is singular is obvious since it has different values when
approached from different directions in the complex v, z, or # plane.)
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Table 8. Values of (k> i” % and Re{y) from diagonal dlog Padé approximants to high-temperature
series for f starting with the seres to O((tY2)15) = o(v'5).

(V/N] (k)2 1) =il Re(y)

7 09728461+ 0032631 42 x 1072 —0,4267
[8/8) 1003431 +0.034469  3.5x 1072 —0.5749
19/9] 100632 +0.015344  1.7x10°F  —0.7720
[10/10] 1.00729i+0.003183  08x 1072  —0.83235
[11/11]  0.997106i+ 0.001684 33 x 107>  —0,6024
[12/12] 0.999979% + 0000388  3.9x 107  —0.6432
[13/13)  0.999715i+ 0.000650° 7.1 x 107%  —0.6404"
[14/14) 100053 +0.006735  68x10-}  —0.7166
[15/15] 1.00026i +G.006752° 68x (073  —0.7101*
[16/16] 0.998362i+ 0.003564 3.9 x 1073  —0.6380
[17/17] 0.998506i + 0.003520° 38x 1073  —0.6409*
[18/18] 0.999870i + 0.0030609  3.0x 10  —0.6727
[19/19]  0.998932i + 0002885 3.1 x 1073  —0,6442
[20/20] 0.999033t 4 0.002739* 2.9 x 1073 —0.6449*
[21/21] 0.999021i + 6002416 2.6 x 10~>  —0.6391
[22/22] 0999472 + 0.002638 27 x 1073  —0.6567
[23/23) 0.999487i+0.002646 27 x10°*  =0.6573
[24/24]  0.999162i + 0002051 22x10"%  -0.6374

To check the sensitivity of the dlog Padé analysis to possible divergent singularities, we
have studied the test function

F st = Acx(l =207 = Aamv (T + ) In(E + ) + A (1 + 22 4+ B (1.7)

where x = (k,)'/2. This function incorporates the known PM—FM and PM—AFM singularities,
a hypothetical divergent singularity at (k.)"/2 = » = =i with exponent corresponding
to (1 + v?)~%, and an additional background term B. We have used the known critical
amplitudes A., = 2784, , = 1.4153665..., where A, is defined by Fung ~ Acu(l —
v/u)~"* for v 7 v, and is given by A., = 0.77173406... [12, 27]; and Aapmy =
21/2AD,AFN[ = 0.28, where A, ary is defined by Xsing ™ —Ay ar(l+v/vc) In| 1+ v/ve| for
—v A —u, and is given by A, arm = 0.20 [27]. We have varied A, , and B over a range
of values and y, over the range % < ¥ € %, and have found that if these quantities have
values such that the dlog Padé approximants locate the singularities at v = (k»)!/2 = =i
with an accuracy comparable to that which we observe in table 8, then the approximants
also yield reasonably accurate values for y,. In particalar, if we make the values of A, ,,
¥; and/or B so small that the Padé fails to yield an accurate value for y;, then it also fails
to locate the singularities at (k,)'/2 = i in the test function with the accuracy that it does
successfully locate them for the actual ¥. Hence, the dlog Padé would nof miss divergent
singularities at v = (k,)'/? = i if they were really present in ¥.

However, the dlog Padé method is not, in general, satisfactory for a finite singularity,
and hence, given that Re(};) < 0, one cannot, a priori, trust the actual values of 3 which it
vields, The appropriate technique to investigate such finite singularities in the presence of
background terms is provided by differential approximants (DA) [15,28-32]. To be precise,
if a function of a generic variable ¢ is of the product form f({) = ]'[}V:,(l ~ /)", then
the dlog Padé method is, in principle, adequate to obtain the positions and exponents for the
singularities even if some p; < 0. If f has an additive background term near a singularity,
Le. if fing ~ A(l — /)77 + B(¢) with B(¢) analytic near {;, then, if a given p; > 0,
the first Darboux theorem [14] shows that for sufficiently high orders, this will dominate
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over B{{) so that the dlog Padé method can still be satisfactory, but if the given p; < 0,
then one should use differential approximants.

We recall that in the differential approximant method the function f = x being
approximated satisfies a linear ordinary differential equation {ODE) of Kth order,
Lurfx®) = Lino Qi8I fx(€) = R(C), where Q;(¢) = Yook @bt and RE) =
Zi‘ o Rett [15,30-32]. In one implementation of the method [30, 31), D = d/d¢, while in
another [30,31], D = ¢d/df. We adopt the choice for D used in [32, 15]; these authors have
found that both choices give comparable results. The solution to this ODE, with the initia]
condition f{(0) = 1, is the resultant approximant, labelled as [L/My; ..., Mg]. The general
solution of the ODE has the form f;{¢) ~ A; (O — {177+ B(¢) for £ — {;. The singular
points {; are determined as the zeros of Qg (¢) and are regular singular points of the ODE,
and the exponents are given by —p; = K — 1 — Qx_1(¢;)/(L; 0% (¢;)). Further details on
the method can be found in [15,30-32]. For an extrapolation procedure to be discussed
below, we shall use a number of poles at different positions close to the singularity; for this
reason, we use unbiased differential approximants. Studying the susceptibility series in the
variable v, we find that the differential approximants do not yield singularities sufficiently
close to &i to be accurate, just as was true of the dlog Padé method (which is a special
case of DA). As before, we have obtained considerably better results with the series in the
elliptic modulus variable (k. )'/2. We have calculated the X = 1 differential approximants
[L/Mo, M\] for 4 € L < 24 and 10 € Mp < 20 with M|, = Mp, Mp £ | subject to the
constraint L + Mo + M, + 2 < 49 (terms up to O(v*) = O((k}/*)®) were used). Many of
the poles may reflect finite singularities along the arcs of the circles bounding the complex
PM phase, as discussed previously [1]. To consider a pole to represent the singularity at
(k- )12 = i, we require that its distance from this point satisfy |(k»)!/2 —i| < 1 x 10™2.
Secondly, we shall show the poles which lie within the circle [£.| = 1 which forms the
boundary of the complex PM phase; these exhibit less scatter than a set including poles
outside this circle and allow us to make at least a crude inference for the value of
(consistent with the theorem of [1] which guarantees that Re(y) < 0). In table 9 we
display the K = 1 differential approximants with L even which satisfy these conditions.
{The approximants with odd L are not listed to save space; they yield conclusions in
agreement with those obtained from the approximants with even L.} Evidently, there is
a large scatter of values of 3. Also, the distances from the singularity are usually larger
than the O(10~3) level which one would normally consider necessary for accurate results.
However, we can still draw useful information from this table. First, all of the values of
¥ satisfying the two conditions above have the property that Re(y) < 0. Second, the
approximants in table 9 which yield poles closest to {k»)"/* = i, namely [{g; 18], [&; 12],
[%; 12], and [%%; Il], do give roughly consistent values of Re(y;). If we plot the values of
Re(y;) as a function of the distance (k. )'/% — i} and extrapolate to zero distance from the
singularity, we obtain Re(y;) >~ —0.65. This is consistent with the values obtained for this
quantity from the dlog Padé study.

We can make further progress by noticing an important correlation; the sign of Im{1)
is opposite to the sign of the deviation Re((k>)i” 2) from zero. Indeed, when we plot the
values of Im{y;) as a function of Re((k.);), they can be roughly fit to a line going through
zero when Re((»‘c,),1 /2y = 0. But the singularity which we are studying is at (k. )}'/? =1,
so we are led to the tentative conclusion that for this singularity, Im(y;) = 0. It follows
also that for the conjugate singularity at (k,)}'/? = —i, Im(y_;} = 0, whence y, = y_; = ¥.
As regards the values of Im(y,) from the dlog Padé study, one can see that all of the high-
order diagonal approximants are characterized by the same (positive) sign for Re((k..)'/?,
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Table 9. Values of (k>):/ ? and ¥ from K = | differential approximants to high-temperature

series for §. See the text for a definition of the [L/Mp, M)] approximant.

[LiMoy M) (k)2 k)2 ~it 3

[4/18: 19] 0.993373i +0.004293 079 % I0-%  —1.420 — .07
{4/18; 20] 0.991349i +0.002545 090 x [0-?  —1.830 - 0.8796i
18/18; 18] 0.990874i 4+ 0.003398 0.97 x 1072 —~1.950 - 0.3293i
[8/18;17] 0.988 5501 — 0.0056 664 1.3 % 10™2 =1.944 + 1.744
[8/18; 18] 0.990 839 + 0.004 293 10x 1072 -2,164 — 0.3726i
[10/16; 18} 0.999 122] = (.00 421 1.7 » 1073 —-0.8568 4 0.4512i
[12/10; 10] 0.998 79051 — 0.005881 0.60 x 10-2 —1.,243 + (.4854i
i14/10; 10] 0,990 0381 + 0.007 285 1.2 x 10-2 =2294 — 1,18t
[14712; 14] 0.950 5661 — 0.001 845 0.96 x 102 —1.61) + 0.3534]
[18/10; 10] 0.990270i + 0.002944 1.0 % 10=2 —~1.907 - 035101
[18/12; 12} 0.9985971 +0.01127 1.1 x 102 -0.7024 — 1417
[20/10; 11]  0.9947481— 0001108  0.54 x 1072 —1.267 + 0.3876i
{20/10; 12} 0.995 176 — 0.002 265 0.53 x 102 =1.214 + 0.5585i
[20/12; 10]  0.998042i + 0.008232  0.85x [0"2  —0.1837 — 1.433i
20/12; 11] 0,995 5931 — 0.003949 0.59 x 10~2 —1,105 4 0.9183;
[20/12; 121 0.998991i — 0.000353 1.1 % 1073 —0,6833 + 03278
[22/10; 113 0.997 7871 - 0,002213 3.1 x 10-2 ~0.8149 + 0.6317A
[22/10; 121 0998212i — 0.001 353 22x 10~ —0,7283 + 0.5223i
[24/10; 9] 0.993917i —0.006415  0.88 x 1072 —1.850 + 0.9510i
[24/10; 10]  0.997266i — 0.001653  32x 1073 —0.9898 + 0.4162i
(24710, &1 0.997902i + 0.0004882 2.2 x 10~2 =(0.5841 = 0.05971
[24/10; 12] 0,997 133i - 0,008 122 0.86 x 1072 =1.120 4 £.803i

i.e. the pole positions are slightly to the right of (k»)'/?2 = i. This correlates with the
observed feature that these Padé approximants have the stable non-zero negative values
Im(y) =~ —0.25. Indeed, when we examine other poles in the dlog Padé approximants
reasonably close to the point (k. }}/? = i, we observe the same correlation that Im(3;) has
a sign opposite to that of Re({k,)'/?). This suggests that if we had a reasonably large
set of such nearby poles, then we could carry out an exirapolation similar to the one that
we performed with the differential approximants. There are not enough close poles with
Re((k..)'/?) < 0 to do this accurately, but one can say that such an extrapolation is crudely
consistent with Im(}) =0,

Summarizing, then, the results of our analysis with differential approximants, like those
of the simple dlog Padé study, confirm our analytic demonstration that ¥ is finite (although,
of course, singular) at the points v = (k,)"/? = i (i.e. ¥ = —1) when approached from
within the complex PM phase. Furthermore, if we restrict to the four poles clogest to
v = (k,)'/? = i, the DAs yield values for Re(j1) which are roughly mutually consistent.
Note that for these four poles, the distance from the singularity, 2-3 x 1073, is comparable to
that for the poles produced by the high-order diog Padé approximants in table 8. Moreover,
when we extrapolate the values of Re(y) to apply precisely at the location of the singularity,
we obtain a value consistent with that from the dlog Padé approximants. Using a similar
extrapolation procedure with the differential approximants, we infer that Im(u) = 0.

We recall that, in principle, ¥ may have singularities elsewhere on the arcs forming the
natural boundary of the complex PM phase, as discussed in [1]. It was proved there that if
such singularities exist, they must be finite. Indeed, from a simple dliog Padé study, it was
observed in that paper that the poles lay close to these arcs. The differential approximants
presumably give some information about these possible finite singularities along the arcs.
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We shall leave the more detailed investigation of the behaviour on these arcs to future work.
However, from our present results, we may make some interesting observations. To the
extent that the poles in the differential approximants away from (k»)'/2 = =i lie near to
the arcs bounding the complex PM region, they might reflect finite singularities in ¥ along
these arcs. The results of our study then suggest that the associated exponents would have
non-zero imaginary parts, at points along the arcs in v or circle in (k)" apart from the
points (k, )2 = £1 {v = dv.) and (k.)"? = i (v = =i). In assessing this possibility,
it is, of course, incumbent upon one to first check whether there are any rigorous theorems
forbidding this. We have not been able to derive any such theorem. Of course, the usual
rigorous theorems governing the behaviour of thermodynamic quantities and, in particular,
their critical exponents, assume physical values of the temperature. Two properties which
must be satisfied are that ¥ must be real and positive for physical temperature. These two
properties do not exclude the existence of a complex exponent at a complex-temperature
singularity in 3. To demonstrate this, we consider a generic form for the singular part of
¥ with such singularities:

King(0) = Aj{1 = £ /&)™ + AG(1 — £ /55)78 (7.8)
where ¢ denotes a generic variable (v, (£.)'? z, etc), Im(3n) # 0, and the form (7.8)
applies, say, for |¢| < |Zl. Evidently, this has the property that

ising(‘:*) = )Esing(‘;)* (7.9}

which implies that if ¢ is real, then ¥ (¢) is also realf. We have also checked that one can
write down examples of ¥y, of the form in (7.8} which yield not just real but positive
for physical temperature. If ¥ has a singularity at the point ¢ = {p of the leading form in
(7.8) where the real and imaginary parts of jy are given by

v = w+in- (7.10)
then for ¢ = ro(1 + €¥), as ¢ — 0,
X ~ le]™™[cos(3 In(le])) — isin(y; In(le[))] . (7.11)

Given our theorem above that ¥ must be finite on the arcs away from v = v, and v = +i
{approached from within the FM or AFM phases), it follows that yr must be negative away
from these points. The effect of the non-zero ¥, is to produce an infinitely rapid oscillation in
7 as &£ — &o with |¢] < {tg]. Although the points on the arcs are not isolated singularities,
but instead, points on the natural boundaries between the complex-extended PM, FM and
AFM phases, this behaviour is quite analogous to the infinitely rapid oscillations at isolated
essential singularities such as in the functions £ sin{l/¢) or £cos(l/¢) at ¢ = 0. Given
our result that ¥ diverges at # = —| as one approaches this point from the complex FM
of AFM phases, but has a finite singularity as one approaches the point from the complex
PM phase, one may observe that this behaviour is somewhat reminiscent of the function
exp(1/¢), which has an (isolated) essential singularity at £ = 0 and diverges (vanishes)
when this point is approached from the positive (negative) real axis.

A physical argument for the divergence in the susceptibility at a second-order phase
transition, such as the PM—FM critical point, is to note that the magnetization vanishes
continuously as one approaches this point from within the FM phase, so that, in the limit,
an arbitrarily small external field H has an arbitrarily large relative effect on the resultant

t Actually, real ¢ may still correspond to complex temperature, for example, as (2.10) shows, K = r 4-nir with r
real cotresponds to real i and hence real x. The symmetries (2.10) and (2.11) imply that for the indicated infinite
sets of complex values of X, quantities such as ¥ are still real.
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magnetization M (H). This argument also agrees with the divergence in the susceptibility
that we found at the complex-temperature point 4 = —1, as approached from within
the complex-extended FM phase, since this is the onfy other point at which M vanishes
continuously, starting from within the complex FM phase. For the physical PM~FM critical
point the same argument motivates the divergence in ¥ as one approaches this point from
within the pM phase. However, our analytic demonstration (and confirmation via high-
temperature series analysis) that § has a finite singularity when one approaches ¥ = —1
from within the complex pPM phase shows that, for complex-temperature singularities, this
reasoning for physical temperatures is not applicable in a naive manner.

8. Conclusions

In summary, we have carried out a study of the complex-temperature singularities of the
susceptibility of the 2D Ising model on a square lattice. From an analysis of low-temperature
series expansions, we have found evidence that, as one approaches the point 4 = &, = —1
from within the complex extensions of the physical ferromagnetic or antiferromagnetic
phases, ¥ has a divergent singularity. Qur results are consistent with the conclusion that
the critical exponent for this singularity is ¥/ = % ‘We have also calculated the critical
amplitude. However, from an analysis of the asymptotic decays of spin-spin correlation
functions, we have shown that the correlation length is finite, and hence the susceptibility
is finite (although both are singular) at the points v = =i corresponding to # = —1 when
approached from within the complex-extended symmetric, paramagnetic phase. This is
confirmed by a study of high-temperature series expansions.

Qur results are of interest because they elucidate the behaviour of the susceptibility as
an analytic function. The goal of calculating the susceptibility of the 2D Ising mode! {or
even making a conjecture for this function which agrees with available series expansions)
has remained elusive for half a century since Onsager’s calculation of the free energy. Qur
results should be useful for this quest because they provide new properties which must be
satisfied by such a conjecture or calculation.

One can think of a number of further related studies to perform. In one direction, using
low- and high-temperature expansions, we have carried out analyses with dlog Padé and
differential approximants to investigate complex-temperature singularities of ¥ in the Ising
model on the triangular and honeycomb lattices. Our results will be reported in a sequel
paper. One could also examine other models like the d = 2, ¢ = 3 Potts model. Yet
another topic is how ideas of conformal field theory, which have greatly illuminated the
critical behaviour at the physical critical points of various 2D models, can be applied to this
complex-temperature singuiarity, Clearly, there is much work for the future,
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