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Absiract. We study the complex-temperature properties of a rare exampie of a statistical
mechanical model which is exactly solvable in an external symmetry-breaking field, namely,
the Ising model on the square lattice with #H = *ix/2. This model was solved by Lee and
Yang. We first determine the complex-teraperature phases and their boundaries. From a low-
temperature, high-field series expansion of the partition function, we extract the low-temperature
series for the susceptibility x to O(x®®), where & = e~*%, Analysing this serdes, we conclude
that x has divergent singalarities (i) at u = u, = —(3 — 23/2) with exponent y! = 5/4, (i} at
u = 1, with exponent y{ = 5/2, and (iii) at # = u; = —1, with exponent y; = 1. We also
extract a shorter series for the staggered susceptibility and investigate its singularities. Using the
exact result of Les and Yang for the free energy, we calculate the specific heat and determine
its complex-temperature singularitics, We also carry this out for the vniform and staggered
magnetization.

1. Introduction

The Ising model has long served as a prototype of a statistical mechanical system which
undergoes a phase transition with associated spontaneous symmetry breaking and long range
order. In the absence of an external magnetic field H, the free energy of the d = 2 (spin-
1/2) Ising model was first calculated by Onsager [1], and the expression for the spontaneous
magnetization first calculated by Yang [2], both for the square lattice. The model has never
been solved in an arbitrary external magnetic field. However, in one of their classic papers,
Lee and Yang [3] did succeed in solving exactly for the free energy and giving an exact
expression for the magnetization of the Ising model on the square lattice for a particular
manifold of values of H depending on the temperature T', given by

H= "”;BT. (1)
Although this is not a physical set of values, owing to the imaginary value of H and the
resultant non-hermiticity of the Hamiltonian, this model is, nevertheless, of considerable
interest as a rare example of a statistical mechanical model for which one has an exact
solution in the presence of a symmetry-breaking field, Further work on the derivation of
the Lee—Yang solution was reported in [4-7].
In the present paper, we shall investigate this model in a wider context, generalizing
the temperature to complex values. There are several reasons for studying the properties of
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statistical mechanical systems with the temperature variable generalized to take on complex
values. First, one can understand more deeply the behaviour of various thermodynamic
quantities by seeing how they behave as analytic functions of complex temperature, Second,
one can see how the physical phases of a given model generalize to regions in appropriate
complex-temperature variables. Third, a knowledge of the complex-temperature singularities
of quantities which have not been calculated exactly helps in the search for exact, tlosed-
form expressions for these guantities. This applies, in particular, to the susceptibility of the
present mode}, which, like that of the zero-field Ising model, has never been calculated.

2. Generalities and complex-temperature phases

In this section we shall work out the complex-temperature phases and their boundaries. We
begin with some definitions and notation. Recall that the Ising model is defined by the
partition function Z = 3, ¢™# with the Hamiltonian

H=-J oyon~HY o @.1)
{nn) n

where ¢, = =1 are the Z, spin variables on each site n of the lattice, 8 = (kgT)"!, J is the
exchange constant, {nn’) denote nearest-neighbour pairs and the units are defined such that
the magnetic moment which would multiply the H Y o, is unity, We shall concentrate
here on the square (sq) lattice. We use the standard notation K = 8J, k= SH, v =tanh X,
z=e X y=g2=e* w=1/u and u = e~ 2% Note that v and z are related by the
bilinear conformal transformation

1—vw
== ; 22
=1 +v @2
It will also be useful to intreduce two elliptic moduli. The first is
i 4y
=T Ty @

which occurs in elliptic integrals in the exact expressions for the internal energy and specific
heat, where we use the abbreviations

C = cosh(2K) 2.4)

§ =sinh(RK). (2.5)
We record the symmetry

u— lju=re—« (2.6)

The second elliptic modulus,

_ i _ Afu
TOS(SZ+ V2T (1~ u)( 4 6u + u)2
occurs in a natural way in the magnetizationt,

The reduced free energy per site is f = —BF = limp,~o00 N.' In Z (where N; denotes
the number of sites on the lattice). In addition to the susceptibility itself, it will also be
convenient to refer to the reduced susceptibility ¥ = g1y,

We begin by discussing the phase boundaries of the model as a function of complex
temperature, i.e. the locus of points across which the free energy is non-analytic. As

ke 2.7

1 Note that these differ from the respective elliptic moduli xp and k. p which occur in the internal energy, specific
heat and spontaneous magnetization for the Ising model on the square lattice at & =0.
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noted in [8], there is an infinite periodicity in complex K under the shift X — K + nim,
where n is an integer, and, for lattices with even coordination number g, also the shift
K — (2n + 1}im/2, as a consequence of the fact that the spin~spin interaction oy¢; in ‘H
is an integer. In particular, there is an infinite repetition of phases as functions of complex
K; these repeated phases are reduced to a single set by uvsing the variables v, z or u (or
variabies based on these).

We also note an elementary symmetry involving 4 for the (spin-1/2) Ising model on a
general lattice A. The low-temperature, high-field expansion of Z has the form

Z = /DK N7 (2.8)
where
Z =1+Y allmu" (2.9)
n.n

where the only property of Z, that we need is the fact that it is a polynomial in z and . In
(2.8), we assume periodic boundary conditions, but for the free energy, in the thermodynamic
limit, this is not essential. Now

h=h+nir=p—pu (2.10)

where n is an integer. Hence, uader such a shift, the only change in Z is in the prefactor,
e Equivalently, in the corresponding (reduced) free energy

£ =Gk +h im N7 (14 S e ) 211)

the only change is in the second term, /. Therefore, aside from this term, one may, and we
shall, restrict to the range

ir i
a?<mmg? (2.12)

without loss of generality. In the present context, we shall consider just the value i = tw/2;
our results will apply in the same way to b = —in /2,

It is useful to review the connection between the square-lattice Ising model with
h = im/2 and the Ising model on the square lattice in zero field [6,7]. This is done
by first considering the Ising model on the checkerboard (also called generalized square)
lattice, defined by assigning different couplings K;, j = 1, ..., 4, to the bonds of the square
lattice, as shown in figure 1. Again, for discussions of the partition function, we assume
periodic boundary conditions. The free energy [9] and spontaneous magnetization {10, 11]
are known for the zero-field checkerboard Ising model. Now recall the identity

e = coshh + o sinh & (2.13)

for o = £1. For h = in/2, this reduces to ¢#° = io,, and hence exp(h >0 =T1,36,).

Next, consider a dimer site covering of the checkerboard lattice, where by site covering,
we mean that each site is the member of one {and only one) dimer. As is clear from figure 1,
a simple covering of this sort is provided by each of the bonds of a single type, say those
with the K, couplings. We may thus associate pairs of the o,s in the above product with
the dimers of this covering. To do this, we separate one of the two factors of i for such
pair and place it in front of Z. One then has

_ My (ncm,as)) exp ( Y oukuwor ) 214)

[en) ™ (rs} {n.n'}
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where ch denotes checkerboard and K, refers to the appropriate K, j = 14 depending
on which bond connects the sites n and n’ (cf figure 1). Then one can use the identity
(2.13) again to write

Z ="y exp ( 3 onK;.n.Un} (2.15)

[ow} ('}
that is,
Z((K)i k= i/ = OV ZUKD b= O) (2.16)
where K] = K;, i =1,2,3, and
Ki=Kit+ . @.17)
Hence, for the free energy,
. i
FUKE B =i/ = o + fUKL b = O)en. (2.18)
Ki Ka
Ka Kz K4
Ka K1
Kz K4 Kz
K1 Ka

Figure 1. Assignment of couplings X;, { = 1-4 to links (bonds} of the checkerboard lattice,

Then, setting K; = K, i = 1,2,3,4, one can obtain the Lee~Yang result for
FIR, b = im/2) [3] from the (analytic continuation of the) free energy for the zero-field
checkerboard lattice [9]. The same method works for the magnetization and yields the
relation

MK} h =im/2)q = MK} h = 0 (2.19)
and the m-point correlation functions satisfy
{On - Ony Y({Ki}o b = 17/ 2)cn = (On, ... On, YAK [}, h = O)en. (2.20)

Further, it follows from the special case of (2.20) for two-spin correlation functions, together
with the expression for the susceptibility as a sum over the connected (conn) two-spin
correlation functions

= E{Gﬁar)conn 2.21)

where (0907 )com = {0p0r) — M?, that
X({K:} h=in/2)a = RUK} A = Oen. (2.22)

Of course, the Ising model with zero field is not equivalent to one with non-zero field, since
in the former case the partition function and free energy are exactly invariant under the Z;
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transformation o, — —o,, whereas in the latter case this symmetry is broken explicitly by
the external field term. This inequivalence is manifested in the fact that equations (2.16)—
(2.17) are not Z-invariant. Thus vnder the transformation o, — —ay,, which is equivalent
ta A = —h, the i’s in these equations are replaced by —i. It is also manifested in the fact
that while the zero-field Ising model always has a Z;-symmetric paramagnetic (pPM) phase,
the mode] with non-zero external field 2 # O does not have any PM phase. The usefulness
of equation (2.18) stems from the special feature that for & = Lim/2, this non-invariance
is localized to just a constant term in the free energy. The square-lattice Ising model with
= imr/2 is also related to a certain frustrated Ising model [12].
The (reduced) free energy is [3]{

FK h=%in/2) = i +1n2

1 dg,de
+Zf.,,f_,, o )22 n{3[C* + 8% — 1+ 5%(cos(8) + 62) —cos(f — 6:)]}
(2.23)

where C and § were defined in (2.4) and (2.5). From U = —8f/98 = —Jaf/3K, one has
the symmetries

U(ﬁ.J.H-—:%) (ﬁ J, H_—%%) (2.24)
(,3 .fh—%’-):U(, h-%) (2.25)
( B.J i = l;)=—U(ﬁ,1,h=i§). (2.26)
Similarly, from C = kpK*82f/8K?, one has
c (K, b= '-;_5) c (K b= —%) 2.27)
and
c(x,&:%):c( M—'_;f). (2.28)

The free energy is trivially divergent at K = Zoo, i.e. 4 = 0, 0o; however, this will not
be important here since these are isolated points and not part of any phase boundaries. The
curves along which the free energy is non-analytic are given by the locus of points where
the argument of the logarithm in the integrand of equation (2.23) vanishes. Expressed in
terms of the variable u, f is

— )2
fK, k=Zin/2) = ;j; +,_1 I:(l u):l

2 u?
de,dé, 9
- In[{1 —2uP(6, 8 2,29
+4f_“f_n(2m2 [(1 +1)* = 2uP (), 6)] (2.29)
where
P8, 82) = cosfy + cosbs. (2.30)

t The Hamiltonian in [3] was defined with a different zero point of the energy than that used here.
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The above locus of points where the argument of the logarithm vanishes is given by the
solutions of the equation

(14 u)? —2ur=0 (2.31)

where x = P{f;,8;), taking values in the range —2 <€ x < 2. These are integrable
singularities. Since the coefficients in this equation are real, the solutions are either
real or consist of complex conjugate pairs. Moreover, under the replacement u — 1/u,
equation (2.31) retains its form, up to an overall factor of 42, Consequently, the locus
of solutions is also invariant under this mapping # — 1/4. The solutions are shown in
figure 2(a) and consist of the union of the unit circle

u =g —m<p<m (2.32)

and the finite line segment

1
— LU, (2.33)
Ue

where the inner endpoint is
e = —(3 — 24/2) = —0.171572875... (2.34)

and the cuter endpoint is 1 /u, = —(34+2+/2) = —5.828427. ... Note that u, = —u,, where
u. is the usual critical point in the zero-field square lattice Ising model separating the Za-
symmetric, paramagnetic (PM) phase from the phase in the Z» symmetry is spontaneously
broken by long-range ferromagnetic (FM) long-range order.

It is of interest to see how the solutions to equation (2.31) are traced out in the complex
u plane as x varies. For x = 2, this equation has a double root at # = 1. As x decreases
from two to zero, this root splits into a complex conjugate pair, the members of which move
counterclockwise and clockwise along the unit circle, and finally rejoin to form a double
root at « = —1 when x = 0. As x decreases from zero to —2, this double root again splits,
but this time into two reciprocal real roots, one of which moves to the right, from u = —1
to the endpoint u, and the other of which moves leftward to # = 1/u.. The corresponding
phase boundaries in the z plane consist of the unit circle [z| = 1 together with the two line
segments from z = &z, = *i(+/2 — 1) upward and downward along the imaginary axis to
z=Fl/z. = +i(v/2 + 1), respectively.

The circle (2.32) divides the u plane into two separate phases. A fundamental property
of this model is that the non-zero external field breaks the £; symmetry explicitly, so
that there is no Z,-symmetric phase. Even without using the known expression for the
magnetization, one can identify the phases in this diagram as follows. For sufficiently large
real K, the interaction of the external magnetic field with the spins is negligible compared
with the spin—spin interaction, which thus produces a ferromagnetically ordered phase, just
as it does in the model with £ = 0. This shows that the neighbourhood of the origin in the
u {or z) plane is ferromagnetically ordered. By analytic continuation, it then follows that
the entire region inside the unit circle j«| = 1 is a ferromagnetically ordered phase, and this
is so denoted in figure 2(a). Similarly, for sufficiently large negative K, the interaction of
the external field with the spins is again negligible compared with the spin-spin interaction,
which produces a phase with antiferromagnetic (aFM) long-range order. By analogous
analytic continuation arguments, it follows that the entire region outside the unit circle is
the AFM phase. In passing, we note that complex-temperature properties of the A = 0
Ising model on d = 2 lattices have been studied in [8, 13-21]. In the case # = 0 for the
square lattice, the analogous locus of points, across which the free energy is singular, form
a limagon [20] defined by Re(u) = 1 + 232 cos w + 2 cos 2w, Im(ur) = 2%/ sinw + 2 sin 2w
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Figure 2. {a) Phases and associated boundaries in the complex « plane for the Ising model on
the square lattice with & = xix /2. The boundaries are given by equations (2.32) and (2.33)
in the text. In particular, the line segment extends from #. as given in equation {2.34) off the
figure to the left, ending at 1/ue = —=(3 + 2./2) > —5.828, v and AFM refer to phases in
which M £ 0, My, =0 and M =0, M,, # 0, respectively. (&) The complex-temperature phase
diagram in the v plane.

for 0 € w < 2w, or equivalently, in the z plane, the circles [13, 14] z = %1+ V2e¥, for
08 <2m.
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By the use of the conformal mapping (2.2) on the z plane, or by re-expressing the free
energy in terms of the variable v and again solving for the locus of points where the argument
of the logarithm vanishes, we find that the phase diagram of the model in the v plane is
as shown in figure 2(»). The unit circle Jz] = 1 is mapped to the imaginary axis in the v
plane, and the respective line segments from z = Zz. to F1/z. are mapped to the arcs from
v = eFim/4 to y = ¥4 It is interesting that the Re(v) = 0 (i.e. imaginary) axis forms
the boundary between the complex-temperature FM and AFM phases. One may understand
this by recalling that: (i) if & were real and positive (negative), this would favour FM (AFM)
ordering, but a pure imaginary value of & does not favour FM over AFM ordering, or vice
versa; (ii) similarly, if the spin-spin coupling K is real and positive (negative), it favours
FM (AFM) ordering, but a pure imaginary value of X (and hence v) does not favour FM over
AFM ordering, or vice versa. Therefore, if both # and K are pure imaginary, as is the case
here for the imaginary axis in the v plane, then the system is precisely balanced between Fm
and ArM order, so that this axis should be the boundary between the complex-temperature
FM and AFM phases, and this is just what our explicit calculation shows.

The mapping defined by u — &2, where « was defined in (2.3), takes the the locus of
points (2.32} and (2.33) to a single semi-infinite line segment extending from 1 to co in the
complex «? plane. All points in the #2 plane are analytically connected to alf other points.
In particular, the mapping u — «? takes both the complex-temperature FM and AFM phases
in the u plane to the same respective regions in the x? plane, as is clear from the symmetry
(2.6) and the fact that the transformation u -» 1/ interchanges the FM and AFM phases in
the u plane.

3. Complex-temperature behaviour of the internal energy and specific heat

3.1, Exact expressions

From the free energy (2.29), it is straightforward to calculate the internal energy U and
specific heat C (per site). In terms of the variable u, we find that

1+ u 1—u 2

U_uj[l—u-i-(l-i-u)(;r—)K(x):l 3.1
where the elliptic modulus ¥ was given above in equation (2.3) and K (k) = U"’/ 2(1 -
k% sin? 6)~1/2d9 is the complete elliptic integral of the first kind. This expression holds for
both the FM and AFM phases and exhibits the symmetries (2.25) and (2.26). Since either
of these has the effect of taking # — 1/u, and since this mapping takes the interior of
the complex-temperature FM phase to the interior of the complex-temperature AFM phase,
the values of U in these two phases are simply related by (2.25)+(2.26). In the FM phase,
the first few terms of the small-ju{ expansion (complex-temperature generalization of the

low-temperature expansion) are
U = —2J[1+ 44® —~ 12u® + 60u* ~ 280u° + O(u®)]. (3.2)

In the AFM phase, the corresponding expansion parameter is w = 1/x, and U has the same
expansion as (3.2) with J replaced by —J and u replaced by w.

As discussed above, in the limit / — co, and heace K — oo with fixed H, the spin—
spin interaction overwhelms the contribution of the external field coupling, which therefore
has a negligible effect, to leading order. It follows that in this limit, the value of the internal
energy should be the same as the value for & =0, i.e.

U=0,r=in/2)=U{u=0,h=0). (3.3)




Complex temperature properties of the 2D Ising model 4867

It is interesting to compare the small-|u| series expansions of these two functions to ascertain
the finite-&2 corrections to this equality. For this purpose, we recall that [1]

_ 2
UK h=0)=—J [1 tu A-butu) (;) K(Ko)] (3.4)

1—u {1 —u?)
where
_ Az(l —u)
(1+u)?"
The expression (3.4) holds for all phases, PM, FM and AFM. In the FM phase, it has the
small-|«| expansion
Uth =0) = =2J[1 — 4u* — 124% = 36u* — 1204° + O5)]. (3.6)

Clearly, the expansions (3.2) and (3.6) agree with the relation (3.3) foru = 0. U(K. £k =10)
also satisfies the symmetries analogous to (2.25) and (2.26), with & = im/2 replaced by
h = 0; as a consequence, in the AFM phase, the small-|w| expansion of U(K, h = 0) is
given by (3.6) with J replaced by —J and u replaced by w.

For C we get

c v (4w E(K)+(1+u2)
8kgk?2  (1—u)? m(l+6u+u) (1l + u)?

Ko (3-5)

K (i) (3.7)

where K (k) was defined above and E(k) = f*/*(1 —k?sin? 8)/2d@ is the complete elliptic
integral of the second kind. Again, this expression holds for both the FM and AFM phases.
It will also be useful to express C in an equivalent form, using (2.3)

c u E(x) (1431 + 0K )

- _ 3.8
Bkp K2 (1-u)? =+« 7 (1 + 6u + u?) @8
C/K? has the smali-|u| expansion
C
= —64u? + 288u> — 1920u* + 112001° + O(5). (3.9)
8kp K2
For comparison, the specific heat for the Ising mode! on the square lattice with £ = 0 [1] is
C 4 -x) [T,
R |21 ) - Eeo)} — (1 = ) [E +esK )] 310

which has the small-|u| expansion

= 64u? + 28847 + 1152u* + 4800u4° + O@5). (3.11)

kpK?
Of course, in this case, the positivity of the specific heat requires that the coefficient of
the lowest order term must be positive (the first negative coefficient occurs in the u” term).
We proceed to determine the complex-temperature singularities of I/ and C for the present
case, h = im /2.

3.2. Vicinity of u = 1,

As discussed in connection with figure 2(a), the point ¥ = u. is the endpoint of the
singular line segment protruding into the complex-temperature extension of the FM phase.
All approaches to this point, except directly from the left along this singular line segment,
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occur from within the complex-temperature FM phase. As u — . = —(3~2%%), ¥ > —1.
The internal energy diverges like

U 2

7 _{r—_ In{l —u/u.) as u — U,. (3.12)

In the specific heat, the dominant divergence arises from the term in (3.7) involving E(k)
and is

C 4.2

K2 w0 —ujne)

so that the associated singular exponent for C at & = u, is

a5 U — Ue (3.13)

Cpprg = @ = 1 (3.14)

where the subscript FM indicates the phase from which this point is approached, and the
prime is the standard notation indicating that the approach to this singular point is from
within a broken-symmetry phase. (The last feature is, of course, true of all of the singular
points for 2 # 0.) There is also a weaker, logarithmic divergence arising from the term
involving K (k). The vatue of K at i, in (3.13) is

K. = —1inue = =13 — 2*?) + in + 2nin] (3.15)

where # labels the Riemann shest used for the evaluation of the logarithm, which we shall
take to be n = 0 below, unless otherwise indicated.

3.3. Vicinity of u = 1/u.

The point # = 1/u, is the left end of the singular line segment protruding into the complex-
temperature extension of the AFM phase. Except for the approach directly from the right
along the singular line segment, all approaches to this point occur from within the complex-
temperature AFM phase. As u — 1/u,, ¥ — —1, as is clear from the previous remarks and
the symmetry (2.6). The internal energy again diverges like

U NG

1
— > ——In(1 — u.u) as u — —. (3.18)
J T Ue

In the specific heat, the dominant divergence again arises from the term in (3.7) involving
E(x) and is

c 4/2
—
kgK? (1l — o)
50 that the associated singular exponent for C at the outer endpoint (oe) v = 1/u. is

as & — 1/u, (3.17)

The value of K corresponding to u = [/u, in equation (3.17) is, for the principal Riemann
sheet of the log, Kee = —(1/4)[In(3 + 2% + in].

3.4, Vicinity of u = —1

As u — —1 (denoted u,), « diverges: if we set u = —~1 + €e® and let ¢ — 0, then
i ~ —4e~2e=2%_ One easily sees that &/(x = ~1) is finite. For C, we observe that the first
and second terms on the right-hand side of equation {3.7) or (3.8) are finite. By the use
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of the elliptic integral identity (1 + «)K (k) = K(2c'?/(1 + &) (see, e.g. [22]), we can
rewrite the term involving K{(«) in equation (3.8) as

1+ 4% 212
Jr(l+6u+u2)K(1+lc)‘ (3.19)

As u — —1 and « diverges, K(2«'/2/(1+ 1)) = K(0) = m/2, so that C is finite, although
non-analytic, at 4 = —1. This is true for the approach to ¥ = —1 from either the FM or
AFM phases. We thus have

Uppm =g amy =0 (log finite). (3.20)

3.3 Vicinityof u = 1

Asuy — 1, — 1, In U the leading potential singularity arises from the first term in (3.1)

U -2
}-—> T asu — 1. (3.21)
Now K = —(1/4)1n u, so that, if one uses the first Riemann sheet of the logarithm, then

u# — 1 maps to K — 0. Recalling that £ = 8J, if this zero in K is due to B — 0 at fixed
non-zero J, then equation (3.21) shows that U/ diverges for ¥ — 1; however, if the zero in
K is due to J — 0 at fixed non-zero §, then, expanding (3.21), one finds that /' — 1/(28).
For the specific heat, from (3.7), it follows that as 4 — 1
1 1 32

kg'C — 8K? |~ —1 3.22
s C7 [ (1—u)2+4n"((1—u)2)+ } 422
where . .. refers to less singular terms. If we again use the principal Riemann sheet of the

logarithm, so that # — 1 corresponds to K — 0, then (3.22) becomes
2

x

i 2
k'€~ —2 + =K%l (F) +0(KY) asu— 1 (3.23)
That 1s, C has a finite logarithmic singularity at this point, and hence a corresponding
exponent

& o = ama =0  (log finite). (3.24)

In passing, we note that if one were to use a Ricmann sheet different from the principal
{rn = 0) one in evaluating K = —(1/4)In(1), so that K = —inmw/2 % 0, then C would
diverge quadratically at u = 1.

3.6. Eisewhere along the singular curves

We discuss here the behaviour of U and C as one crosses the singular locus of points
comprised by the unit circle (2.32) and the line segment (2.33) away from the points ¥ = #.,
1/ue, —1 and 1. The singularities which one encounters in this case are associated with
passage across the branch cut of the elliptic integrals in (3.1) and (3.7). We recall that the
elliptic integrals K («) and E (k) are analytic functions of «? in the complex «* plane except
for respectively divergent and finite branch points at «? = 1 and an associated branch cut,
which is normally taken to run from x? = 1 to k% = oo along the positive real axis in this
plane. To illustrate the nature of the singularities, we shall consider moving outward along
a ray in the u plane defined by u = pe’® with p increasing from O to oo at fixed 6, say
6 = /6. As shown in figure 3, the image point in the «? plane also moves out from the
origin, starting with an angle of x/3 but bending around to the right. As we cross the unit
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circle in the u plane, leaving the PM phase and entering the AFM phase, the image point
in the x? plane crosses the branch cut moving vertically downward, This branch cut is
precisely the image of the unit circle Ju| = 1 (and also of the singular line segment (2.33)).
For 8 = 1 /6, the crossing point is at 2 = 2*(7 — 44/3) = 1.1487...... In the 2 plane, one
thus passes onto the second Riemann sheet of the elliptic functions K () and E (k). If one
projects back to the first Riemann sheet, these functions have discontinuous imaginary parts
across this branch eut. As p continues to increase toward oo, «2 ~ 16p~2e~%# 5o that the
image point curves around and finally approaches the origin in a ‘northwest’ direction, at
an angle of —/3, but on the second Riemann sheet. In figure 3 we show the image point
for p in the range from zero to 30.

¢.3F

e.1p

Figure 3. The path of «® corresponding to 4 = pe¥ for 8 = /6, as p varies from 0 to 30.
Haorizontal and vertical axes are the Re{x?) and Im(x?) axes. The image of the singular curve
{2.32) and line segment (2.33) is the dark line from x% = 1 to k2 = co.

4. Complex-temperature behaviour of the uniform and staggered magnetization

The magnetization M is [3,5]
(1 +u)?
(1 = )41 + 6u + u)!8"

Note that (1+6u+ u?) = (1 —u/u.}(1 —ucu). By analytic continuation, this formula holds
throughout the complex-temperature extension of the FM phase. The identity discussed
above, and the resultant equation (2.19) yields the relation

Mu, h = +in/2) = M(—u, h = 0)"! 4.2)

M@, h=in/2) = 4.1)

where [2]

(14 )41 — 6u + u?)/8
(1= )72

As is well known, one can express M(u, £ = 0) as

M, h=0) = (1 — (ko)) (4.4)

M{u, h=0) = (4.3)
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where
1 4u

T Sinb’K) | (- wP
This quantity also enters in exact expressions for correlation functions in the FM phase of
the 2 = 0 Ising modei [23-25]. Given the relation (4.2), it is natural to write

k<o (4.5)

Mu, b =i7/2) = (1 = (kP8 (4.6}
where the elliptic modulus was introduced in equation (2.7). The magnetization for the
# = im /2 case vanishes continuously at the point # = —1 {denoted ;) with exponent

B=13 @7
diverges at u = u, with exponent

fe=—1% (4.8)
and diverges at ¥ = 1 with exponent

pi=-13 (4.9}

Elsewhere on the boundary of the complex-temperature extension of the FM phase, i.e. the
unit circle in the u plane, M vanishes discontinously. Note that the apparent divergence at
the point ¥ = 1/u. does not actually occur, since this is outside of the complex-temperature
FM phase, where the above analytic continnation is valid.

The staggered magnetization M, does not seem to have been explicitly discussed in the
literature, but one can easily obtain it, as follows. My may be defined via

MZ% = lim (6o, ) (4.10)
Ir]—o00
where
& = (=1)PMg, 4.11)
where
2
pr) = Z . (4.12)
i=1

i.e. & = o, for v on the same sublattice as » = 0 and —o; for v on the other sublattice
of the (bipartite) square lattice. To evaluate My via eguation (4.10), it suffices to take
r = (r,0) or {0, r), i.e. the row or column two-spin correlation fenction. From the known
asymptotic behaviour of this correlation function [5], one immediately finds that

Mg(w) = M(@u - w) (4.13)
where, as before, w = 1/u. This is consistent with equation (4.6) since (¢f (2.6)) u — 1/u
takes k. — —k., and k. enters squared in (4.6). Of course, My vanishes identically
outside the complex-temperature extension of the AFM phase. Further, we may immediately
conclude that My vanishes continuousiy at ¥ = —1 with exponent (4.7), diverges at u = 1/u,
with exponent (4.8), and diverges at u = 1 with exponent (4.9). Elsewhere along the
boundary of the complex-temperature AFM phase, M, vanishes discontinuously, with the
same discontinuity as M.

It is of interest to compare these results with the behaviour of M and My for h = 0
(again on the square lattice). Aside from the physical PM—FM and PM-AFM critical points
u = u = (3 —2%2) and 1/u., where, respectively, M and My vanish continuously with
exponent 8 = 1/8, they also both vanish continuously at the complex-temperature point
u = —1, with the same exponent, 8 = 1/4. Note that for & = 0 there is only one point, viz.,
u = —1, where the FM and AFM phases are contiguous and M and My vanish continuously,
whereas for A = in/2 there are two such poinis, namely, ¥ = —1 and u = 1.
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5. Exiraction and analysis of the low-temperature series for

5.1. Generalities

In order to investigate the complex-temperature singularities of the susceptibility %, we
shall make use of the low-temperature, high-field series expansion for the free energy or
equivalently the partition function of the Ising model on the square lattice [26-28]. In [28],
Baxter and Enting calculated this expansion for the partition function to order O(#**). The
series for Z, in equation (2.9) is

Zo= 14 Y Yt (5.1)

n=2 m

where j <m < j2forn=2jand j <m < j(j—1) for n = 2j — 1. We extract the series
for i = im/2 by caleulating ¥ = 9% f/8h% and then subsituting 2 = —1. This has the form

o0
i, h=in/2) = 4u2(2c,,u"). (5.2)
n=0

The results for the ¢, are listed in table 1; the series for Z and the resultant series for ¥ to
O(u®) yields the ¢,s to order 1 = 21, Parenthetically, we note that ¥ has been calculated
to O®®) in [29] and to O(«®) in [18], but the low-temperature, high-field expansion of
the partition function as a function of u = e, which would be necessary to extract
¥(h = i /2), was not given in these papers (it would be a rather long expression).

Table 1. Low-temperature series expansion coefficients for ¥{(», & = in/2) in equation (5.2),

n Cn
0 =1
! 8
2 ~48
3 304
4 —1863
5 113568
6 ~638 840
7 414872
8 —-2490437
9 14903648
19 —88 963696
11 529939176
12 —3151205475
13 18710180192
14 —110948037424
15 657164713 520
16 —3 888670886593
17 22990 566 432904
18 —135819110416784
19 801 806651 588 348
20 —4730485389238263
21 27892958533539 784

We have analysed this series using dlog Padé and differential approximants. For a recent
review of these techniques, see [30]. Our notation for these approximants follows [30] and
our earlier work on complex-temperature properties of the A = 0 Ising model {19-21]. In
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particular, we use first-order differential approximants (i.e. X = 1 in our previous notation);
as before, we used unbiased approximants so as to be able to use an extrapotation method
for exiracting critical exponents. Since the prefactor 4u® is analytic, we have actually
performed the analysis on the reduced function

=X = > ents”. (5.3)

As one approaches a generic complex singuiar point denoted sing from within the complex-
temperature extension of the FM phase,
% is assumed to have the leading singularity

R~ Al (1 — /) T (1 + @y (1= /uging) + ) (5.4)

where A;mg and ys’mg denote, respectively, the critical amplitude and the corresponding
critical exponent, and the . .. represent analytic confluent corrections. One may observe that
we have not included non-analytic confluent corrections to the scaling form in equation (5.4).
The reason is that, as discussed in our earlier work [20], previous studies have indicated
that they are very weak or absent for the 2D Ising model. We proceed to our results.

5.2. Singularity at u = u,

We obtained the most accurate results using differential approximants. In table 2 we list
the pole positions #yq, and corresponding exponents y, for the approximants which yield
poles closest to u,7.

The dlog Padé approximants (Pas) gave similar, but slightly less accurate, results.
For example, the [9/9] and {10/10] pas yielded pole positions with normalized distances
|ttsing — Hel/luel = 3.2 x 107% and 1.7 x 1073, and corresponding exponents y; = 1.2463
and 1.2471, respectively. From this analysis, we infer the location of the singularity to be

ying = —0.17157 % 0.00001, (5.5)

This, together with our knowledge of the exact focation of the endpoint of the singular
line segment (2.33), supports the conclusion that the exact location of this singularity is
at u = u, = -0.1715729... given in (2.34), Accepting this conclusion, we piot the
values of the comesponding exponent y, for the differential approximants as functions of
the normalized distance from this point, i.e. [#gny — e[/ |1/, and extrapolate to zero distance.
(This extrapolation method is similar to the use of biased differential approximants; in hoth
of these approaches, one uses one’s knowledge of the exact position of the singularity.)
From our extrapolation, we obtain

¥l =1.25+001 (5.6)

(where the quoted uncertainty reflects the scatter in the points and the estimated uncertainty
from the small extrapolation to zero distance). This strongly supports the following inference
for the exact value of this exponent, which we shall make
5
Yo =7 : (5.7)
To calculate the critical amplitude for jy at the 4 = u. singularity, we use the standard
method of analysing Padé approximants to the series (—%,)/*% (where the minus sign is

t To save space, we omit a number of tables of differential and Padé approximants. The reader may obtain these
tables from the file hep-lat/94 121085, archived at hep-lat@xxx.lanl.gov or directly from the authors.
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Table 2. Values of pole near u, = —(3 — 2%/?) = ~0.171572876 ..., normalized distance
from this point, leang — tel/[uel, and exponent y) from differential approximants (Das) to
low-temaperatuce series for %, We list only the Das which satisfy the accuracy criterion

(#sing — trel/lute| € 2 x 1073,

!

[L Mo M)] Hsing 1“sing = tre| /e Ye

10/5: 53 —0.1715743 081 x 105 1.2474
{0/5: 6] —-0.1715716  0.72 x {0~ 1.2470
[0/5 7 01715696 1.9 x 10~% 1.2467
[0/6: 5] -0.1715717  0.66 x 1075 1.2470
{0/7: 51 —0.1715706 1.3 x 1073 1.2469
{0/9; 9} -0.1715754 1.5 x 10~% 1.2505
{0/9; 10] -0.1715716  0.72 % 10™7 1.2481
[0/10;: 9] -0,1715718  0.64 x 1075 1.2482
[1/7;91 —0.1715702 1.6 x 10~% 1.2475
(/89 —0.1715700 1.7 x 10~% 1.2474
f1/%; 10] —0.1715701 16 x 1077 1.2475
[1/9; 8] —0.1715699 1.7 x 10~9 1.2474
[1/9;9] —0.1715704 14 x 1078 1.2476
[1/10; 8] —0.1715702 1.5 x i0~* 1.2475
2/7:7 ~0.1715701 16 x 1073 1.2463
[2/7: 9] —0.1715698 1.8 x 107? 1.2473
(2/8: 9] —0.1715737 045 x 1075 1.2501
(3/7:8) —0.171569% 1.7 x 1075 1.2478
[3/7:9) —0.1715697 19 x 109 1.2464
[3/8:7 —~0.1715696 19 x 1075 1.2474
{5/ 6) —0.1715754 14 x 1077 1.2488
[5/7: 5] —0.1715698 1.8 x 10-* 1.2478
[5/8: 6] —~0.1715723 035 x 1073 1.2495
[6/5: 5] —0.1715697 19 x10~% 1.2464
[6/7: 6] —0.1715746 099 x 10°F 1.2505
[7/4: 6] —0.1715707 13 x10°% 1.2495
[7/5:7] -0.1715709  12x10°% 1.2483
[8/6: 4] -0.1715700 1.7 x 1073 1.2476
[9/6; 41 -0.1715709 1.1 x 1073 1.2483
{10/5:3] -0.1715698 1.8 x 10-% 12476
{11/5; 3] —0.1715707 12%10°% 1.2481

inserted because cg = —1 in equation (5.2)). For A, as defined in equation (5.4) with

Msing = Me, WE Obtain

A, = =0.11515 £ 0.00020.

5.3. Singularizyatu =1

(5.8)

Our most precise results for , relevant to the singularity at u = 1 are again from differential
approximants; we list a few of these in table 3.

The dlog Padé approximants yield similar values. From these results, we obtain the
location of the singularity as

lesing = 0.999 & 0.001.

(59

From this and our determination of the phase boundaries (2.32)-(2.33), we infer that the
exact location of this singularity is at ¥ = 1. Given this conclusion, we then plot the values
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Table 3. Values of pole near » = I, normalized distance from this point, |ugog — 1), and
exponent yy from differential approximants to low-temperature series for %;. We list only the
differential approximants which satisfy the accuracy criterion Juging — If < 1 x 10-3,

[LiMy: M1]  stsing [tgmg — 1] Yi

[0/9; 9] 09999105 0.89 x 107%  2.4776
[1/6; 8] 0.9989524 1.0x10~%  2.4554
[1/9:9] 0.9990590 094 x107%  2.4617
[2/4; 6] 1.0004562 046 x 10™%  2.4545
[2/6: 4] 1.0008071 0.81 x 10~%  2.4534
{2/6:7) 0.9997209 27 x 10~* 24673
[2/7; 6] 0.9996006 40x 16~*  2.4651
[2/8; 8] 10006495  0.65 x 107> 2.4969
[3/6; 6] 1.0005153  0.52x 1072 2.4841
[3/9; 71 09991902 081 x 107*  2.462)
[4/7; 8] 0.9950659 (.93 x 107>  2.4624
[4/8: 7] 09990450 0.96 x 1073 2.4618
[5/4; 5] 1.0009762 098 x 107> 24429
[5/6: 7] 09993881 0.61x 1077  2.4709
[5/6: 8] 09991317 0.87 x 103 2.4644
15/7. 71 0.9990811 0.9 x107% 24629
[5/8; 6] 1.0000180 18x10"5  2.4888
(6/4; 6] 09993653 0.63 x 1077 2.5040
[6/5: 71 10002641 26x10~%  2.4944
[6/6; 7] 09991189 088 x 10~? 24641
[6/7; 5] 10003178 32x10~*  2.4956
[6/7; 6] 0.9993080 069 x 1073 2.4698
[7/5; 6] 09990014 1.0x1073 24365
[8/4; 6] 0.9893253 067 x107% 24757
{8/5: 6] 05994784 052x 103 24852

of ¥ as a function of the distance from & = 1 and extrapolate to zero distance. This yields
the value

¥i = 2.50+0.01 (5.10)

(where, as before, the quoted uncertainty reflects the scatter in the points and the estimated
uncertainty from the small extrapolation to zero distance). This strongly supports the
following inference that we shall make for the exact value of this exponent

¥=3. (5.11)
Hence, in particular,
¥i =2y (5.12)

We note that the relation (5.12) can be understood if one re-expresses ¥ as a function of
the elliptic modulus variable k.. in equation (2.7), since k. diverges at ¥ = 1 with an
exponent which is twice as large as the exponent describing its divergence at # = 4., ie.,
ke~ (l—u)y "' asu— 1, while ko ~ (1 — w/ua)‘”2 as u — U,

35.4. Singularity at u = —1

We have studied the singularity in ¥ at ¥ = —1 (denoted x;) by using the series for ¥ in the
variable # and also transforming this series to one in the elliptic modulus variable k.. The
series in k. showed a greater sensitivity to this singularity, and therefore we concentrate on
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the results from our analysis of this series. The reason for this greater sensitivity is clear;
the series in u is strongly affected by the fact that, as one can see from figure 2(a), there
is an intervening singular line segment protruding into the FM phase and ending at 1 = u,,
in front of the point #« = —1 as one moves out from the origin along the negative Re(u)
axis. The transformation from u to £. maps the singular endpoint at ¥ = 1, away t0 —co
and maps the singularity at ¥ = 1 to oo in the k. plane, thereby leaving the singularity at
u = —1 as the nearest to the origin. Specifically, the image of the singular line segment
from u = u, leftward to u = —1 is the semi-infinite line segment from —co to —1 in the £ .
plage. The line segment from « = 1/u. to u = —1 has the same image, again the segment
from —co to —1 in the k. plane, while the unit circle |4| = | maps to the line segment
from one to 0o in this plane. The series in k< has the form ¥ = (1/4)(k<)? > ooy ch k)",
and, as before, we actually analyse the reduced function ¥, = 4(k.)72%.
Using the Taylor series expansion of k. near y = —]

ke =—1=27(1+uw)* +0((1 +u)®) (5.13)

it follows that as k< — —1 and u — —1, the singular form § ~ (1 + k<)< corresponds
to ¥ ~ (1 4+ u)~%, with

yi =4y, (5.14)

Because the actual pole positions in the differential approximants have small imaginary
parts, typically a few times 10~ of the size of the real part, there are resultant imaginary
parts in the values of the corresponding exponent y, from the differential approximants,
Since the exact singularity in ¥ (%) is at the real value # = —1, and since ¥ (u, h = ix/2)
is real for real u, we know that ¥ at u = (k<) = —1 is real. Given this and the relation
(5.14), it follows that we may take only the real parts of the exponents from the differential
approximants to the series in k., and we do so, From this study, we obtain for the position
of the singularity

i
(k<Dsing = —0.9993 = 0.0001 (5.15)

consistent with the expectation (k)sng = —1, or equivalently, ugn, = 4 = —1. The
values of Re(y,) from the differential approximants are almost all slightly below 0.25;
however, when we carry out our method of plotting the values as a function of the distance
I(k<) + 1| and extrapolating to zero distance from the exact singularity, the extrapolated
value is actually slightly above 0.25. Accordingly, we give a conservative estimate

Yo = 0.250£0.020 (5.16)
and hence, using (5.14),

¥ = 1.00 &£ 0.08. (5.17)
This supports the conclusion, which we shall draw, that the exact value of this exponent is

vi=1. (5.18)

We show our summary of exponents in table 4. The exponent relation a;.ph+2ﬁf‘+ y;‘ph =2
is evidently satisfied at all three of the singularities # = #., 4t = 1 and # = -1,

6. Extraction and analysis of low-temperature series for %@

We have also investigated the complex-temperature singularities in the staggered
susceptibility § ¢ for the present model. To do this, we have extracted and analysed the low-
temperature series expansion for this function, using the low-temperature, high staggered
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Table 4. Expovents at singularities in the 2p Ising model with & = =in /2. The results for e,
and f, are exact; the results for y are our conclusions for the exact values from our series

analysis. The notation — indicates that the point cannot be approached from within the given
phase. For the singularity of C at # = | (marked with a *), the values of ' cotrespond to
evaluating K = ~{1/4) In{l) = O on the principal Reimann sheet of the logarithm, as discussed
in the text.

u &, M Toarm B Ya o ®on T 280+ Vegh

e =—(3-23% 1 — -1/8 5/4 2

1 0 finite* O finite* —1/4 5/2 2

e = —1 0 finite 0 finite /2 1 2

field series expansions for the free energy of the Ising model on the square lattice caiculated
by the King's College group [31.26]. These are denoted antiferromagnetic polynomials in
these papers and were calculated to order O(w'') in [26], where, as before, w = 1/u is the
low-temperature expansion variable in the AFM phase. The antiferromagnetic polynomials
were apparently not calculated to higher order subsequently [32].

We have extracted from these the resultant low-temperature series expansion for 3@
for & = im /2, which is

F9h = in/2) = 4w [—1 - Sw? + 24w® — 135w* + 648w — 3336w° + 17 240w7
—90501w® + 479192w® + O(w'%). (6.1)
For reference, we recall that the series for ¥@ for £ = 0 on this lattice is [31,26]
F@h = 0) = 4w [1 + 4w? + 8w + 39w* + 152w° + 672w’ + 3016w’ + 1398%w®
466 664w° + O(w'®)]. (6.2)

The series (6.1) is much shorter than the one which we extracted for ¥, given by
equation (5.2) and table 1, and hence one does not expect to derive results for %* which
are as precise as those which we obtained for ¥. As before, we have used both dlog Padé
and differential approximants for this analysis.

We study first the vicinity of the singular point w = 1, using Padé and differential
approximants. One would not normally expect a dlog Padé approximant of such low
order as [1/2] to yield an accurate result; however, it happens that the denominator of this
approximant is o {1 — w)(1 — (11/2)w}, so that it produces a location for the pole which
is exact. For this reason, it yields a much better determination of the associated exponent
than would otherwise have been the case; this is ] , = 2.462. The differential approximant
which locates the pole position most accurately is the [2/2;2] DA, yielding wgq, = 0.999 046
and y; , = 2.554. From the full set of Padé¢ and differential approximants we infer the crude
result

Vi, =25+05 (6.3)

where the quoted uncertainty reflects the scatter in the values obtained from the various pa
and DA approximants. This is consistent with the exact value ¥/, = 5/2 and hence with
the equality y{ , = ;. However, clearly the results for y; , are much less precise than our
determination of 3.

We also studied the series in the vicinity of the singular endpoint w = w, = —(3—2%2)
(i.e. u = uge = 1/1e = —(3+2%2)). To optimize the sensitivity. we calculated and analysed
series in transformed variables to map the singularity at w = 1 away. We required these
variables to be equal to w for small w and to map w = Foo to oo, respectively. Two
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such variables were w' = w(l + w/8}1 — )™ and w” = w(l — w)~!sichw. The series
in the transformed variables did slightly better in locating the pole positions in w] and w!
corresponding to w,. The dlog Pad¢ and differential approximants indicated that ¥ has
a divergent singularity at w, and yielded values for the associated exponent y,, , in the
range from about 0.2 to 0.4. Given our exact results o, = 1 for the specific heat and
Boe = —1/4 for the staggered magnetization, a value within the above range for yo'w would
indicate a violation of the exponent relation o, + 28 -+ ¥, = 2. In this context, it is of
interest to note that we have already found violations of the relation o + 28+ y = 2 at
complex-temperature singularities, ¢.g. in the zero-field Ising model on the square lattice
at u = y, = —1, as approached from within the PM phase, where ¢; = 0, 8; = 1/4 and
¥ < 0 (since ¥ has a finite non-analyticity for the approach from within the PM phase)
[20], and in the zero-field Ising model on the honeycomb lattice, at the point z = z; = —1,
as approached from within the PM phase, where ¢ = 2, 8; = —1/4 and y, = 5/2, so that

7. Complex-temperature behaviour of the correlation length

In this section we shall study the complex-temperature behaviour of the correlation length.
To do this, we make use of a calculation of the asymptotic form of the spin-spin correlation
function along a row (or equivalently, column), (o g0,0), for large n [5] (where, without
loss of generality, ane may take n > (). From this calculation, carrying out an analytic
continuation to complex temperature, we obtain, for n — co,

(0,00m,0)comn ~ —(2/7)(1 — &) M2n~ u(—u)"
= —@/m)(} — )21+ 6u -+ u?)y Vi u(—u)” (7.1)

where we have used the exact expression for M, (4.1). This analytic continuation
applies within the FM phase. Extracting the correfation length & in the usual way as
71 = — im0 7~ ({0007 Yeona), Where r = |7|, we find

ow = —In(=1). 72)

For usual physical second-order critical points, one can use the connected two-spin
correlation function for any r, with |r] — oo, to extract the correlation length £. However,
in our previous work [19,20], we found that at the complex-temperature singular point
¥ = ug = —1 in the zero-field Ising model on the square lattice, the correlation length
defined from the diagonal connected two-spin correlation function diverges with a different
exponent, v{ 4,,, = 2, from the exponent v; = 1 describing the divergence in the correlation
length defined from off-diagonal (e.g. row) correlation functions. In view of this, we include
the suffix row in (7.2) for clarity. We now consider three particular singular points which
can be approached from within the complex-temperature FM phase, viz., 4 = u,, 4 = —1
and u == 1. As u = u., the two-spin correlation function (7.1) diverges, as (1 — u/u.)~'/4,
because of the divergence in the prefactor M2, but the correlation length &y remains finite,
with r;v'v = —In(—u.} = 1.7627... at u = u.. If this feature of a finite correlation length
applied to all of the connected two-spin correlation functions, precisely at u = 1, as well
as for points approaching u. from within the complex-temperature FM phase, then by the
same argument as was used in [8], it would follow that the only singularity in ¥ would arise
from the divergent M? prefactorj. We know, however, that the above premise cannot be

t Define (opoy) = M2c(r). Then 1 = M2 ¥ . c(r). For purposes of analysing divergences, the asymptotic
behaviour of the sum car be approximated by that of the integral [ d2r ¢(r) for large r {with a short-distance
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true, since then the susceptibility exponent at «. (as approached from within the FM phase)
would be 1/4, whereas we found that y. = 5/4. The fact that the susceptibility diverges
with an exponent different from that arising fromm the divergent M? prefactor shows that at
least some connected two-spin correlation functions must decay like a power law, i.e. the
associated correlation length must be divergent, at # = u,. To obtain more information on
this, #t would be useful to carry ouf analytic calculations of the asymptotic forms of the
general two-spin correlation functions {& o0, ) in the present model, near to and at this
singular point.

As u — 1, the two-spin correlation function (7.1) again diverges, as (1 — #)™%2, and
the correlation length &y is finite: -Er;,i. = —in{—1) = —im (for the principal Riemann
sheet of the logarithm). This is a case similar to that discussed in [8] where Re(2 1) = 0
but Im(&~1) 5 0.

As 1 — —1, each two-spin comrelation function is finite, but the correlation length does
diverge, with exponent

W= 1 (73)

If one were to use the exponent relation ¥ = v/(2 — #s), then with our inference ¥ = 1
in equation (5.18), it would follow that 5, = 1. However, we have shown previously [20]
that one must use caution in trying to apply such exponent relations at complex-temperature
singularities, since different connected spin—spin correlation functions may be characterized
by correlation lengths which diverge with different exponents v.

This type of analysis can also be done with the staggered two-spin correlation functions
{cf (4.11))

(a0.0&n.O}cnnn = (—1)" (GO.OUH,G)WHH' (7.4)

In particolar, as & — 1/u. (ie. w — w,), these comrelation functions diverge, as
{1 — w/w,)"/4, because of the divergent prefactor M>. However, the correlation length
Eow,apv remains finite, If this behaviour characterized all of the staggered two-spin
correlation functions, at w, as well as in the vicinity of w,, then the only divergence
in ¥ would arize from the M> prefactor, and hence Yeu = 1/4. This value is consistent
with our results from the analysis of the low-temperature series for . This merits further
study.

8. Exact solution at « = 1 for arbitrary H

In the body of this paper, we have investigated singularities in the square laitice Ising
model as functions of complex temperature, for the fixed value of external magnetic field,
h =in/2 (or h = —in/2). It is also of interest to study the complementary problem of
singularities as a function of £ for fixed K or 4. Indeed, in pursuing such a study, Yang
and Lee were led to their celebrated circle theorem on the zeros of the partition function
for the Ising model in the complex e?* plane [3,33). Here, we would like to mention some
elementary results which elucidate how various quantities become singular at a particularly
simple point, & = 1, as & is varied.These resulis may be combined with our determination
of the exact singularities in f, &/, C and M as one approaches this point by varying u. At
J =0, hence K = 0 and # = 1, the partition function reduces to a single-site problem,
which can easily be calculated exactly for arbitrary /, dimensionality and lattice type. We

cutoff on the latter). If e(r) ~ r~Fe~"/% as r — oo, this integral is finite. Therefore, a divergence in ¥ would
arise solely from a divergence in the prefactor M2, This was noted in [20],
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find, independent of the dimensionality and lattice type

Flu=1,8)=In(2coshh) &.1)
U=—Htanhkt (8.2)
1 h?

i = 8.3
kB ¢ cosh® h (83)
M =tanhh (8.4)

i

5 = . 8.5

X cosh® A @3

Further, the m-point correlation functions factorize trivially and are independent of the
positions of the spins

(py oo Op,) = {o7,)™ = M™ = (tanh k)", (8.6)

To study the singularities of these functions, we must define new exponents, since the usual
critical exponents apply to singularities of thermodynamic quantities as functions of T. To
avoid a profusion of new symbols, we shall use the same Greek letters as for the respective
T-dependent singularities in thermodynamic quantities, but use a supersctipt (k) to indicate
that they describe the singularity as a function of k for K = 0. Thus, for the leading
singularity in the specific heat, as a function of #, at the point s = A, (s denotes a generic
singularity here) for fixed K = 0 (hence u = 1), we shall write

g™
C()sing ~ Ag:_)s,dir(h — hg) ™ e &7

where dir denotes the direction, in the complex A plane, from which one approaches the
singular point A, Similarly, we shall write

o AW ey 28
Ksing ™ Ay sd:r( 5) (8.8)

and so forth for the singularities in other quantities. From (8.3), it is evident that C diverges
for

h=(2n+1)£2r- nez (8.9)

with corresponding exponent oef” = 2 for any direction of approach to any of the singular
points (8.9). The internal energy itself also diverges at these points, with the exponent
a® — 1 =1 and vanishes at the set

h=nitx  neZ (8.10)

The magnetization vanishes and diverges at the same set of pomts as the mtcma] energy U
{cf equations (8.10) and (8.9)) with the respective exponenis ﬁ, wrn = 1 and ﬁ] i = —1
again, independent of the direction of approach to these pomts in the complex h plane. The
susceptibility diverges at the points (8.9} with exponent V] =2

It is useful to evaluate the general results above for the interesting special case of
complex A = h, + im/2, where h, is real. For this case, we have f = In(2isinh4,),
U= —H/tanhh,, kg'C = —(h, +in/2)*/sinh® h,, M = 1/tanh &, ¥ = —1/sinh® h, and
{or, . ..0n,) = (tanh i, )™™. As k. — 0 so that h — im/2, we recover our previous results,
that {7 and M diverge linearly while C and § diverge quadratically.

For loose-packed lattices, it is straightforward to extend these results to consider a
staggered rather than uniform external field, Hy, i.e. to consider the partition function

= Y exp(3 (1™ hye,).  where p(n) was defined in equation (4.12) and
hy = BHy. Since the summations over the spins on the even and odd sublattices are
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decoupled, one finds the same equations as before, but with H replaced by Hy, ie.
f = InQRcoshhy), U = —Hytanhhy, C = kph’/ cosh®hy and M, = tanhhg. The
staggered susceptibility is % = 1/ cosh? Ay

9. Conclusions

In this paper, we have studied a natural generalization of an exactly solved model from real
non-negative temperature to complex temperature. This is the Ising model on the square
lattice in an external magnetic field given by gH = +im /2, first solved by Lee and Yang
[3). We have worked out the complex-temperature phase boundaries, as shown in figure 2.
We have also extracted a low-temperature series expansion for the susceptibility, ¥. From
an anaiysis of this series using diog Padé and differential approximants, we conclude that
i has divergent singularities at u = u, = —(3 — 2%?) with exponent y/ = 5/4, at u = |
with exponent ¥/ = 5/2 and at ¥ = u; = —1 with exponent y; = 1. We have also
studied the staggered susceptibility. Using exact results, we have determined the complex-
temperature singularities of the specific heat and the uniform and staggered magnetization,
We are currently in the process of extending our studies to other 2D lattices. The findings
show again that even though the Ising model has a very simple Hamiltonian, it exhibits a
fascinating richness of properties.
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