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Abstract We study the complex-tempentu? properties of a rare example of a statistical 
mechanical model which is exactly solvable in an external symmetry-breaking field. namely. 
the king model on the square lattice with pH = 2zin/Z. This model was solved by Lee and 
Yang. We first determine the complex-temperature phases and their boundaries From a low- 
t e m p e m  high-field series expansion of the partition function, we e x w t  the low-temperature 
series for the susceptibility ,y to O(uz3), where P = e-4g, Andysing t h i s  series. we conclude 
that x has divergent singnlarities (i) at U = uc = -(3 - 2”) with exponent y: = 514, (ii) at 
U = 1, with exponent y[ = 512, and (iii) at U = us = -1, with exponent y: = 1. We also 
extract a shorter series for the staggered susceptibility and investigate its singularities. Using the 
exact result of Lee and Yang for the free energy, we calculate the specific heat and determine 
its complex-temperatun singulaities. We also cany ulis ont fw the uniform and staggered 
magnetization. 

1. Introduction 

The king model has long served as a prototype of a statistical mechanical system which 
undergoes a phase transition with associated spontaneous symmetry breaking and long range 
order. In the absence of an external magnetic field H, the free energy of the d = 2 (spin- 
la) king model was first calculated by Onsager [I], and the expression for the spontaneous 
magnetization first calculated by Yang 121, both for the square lattice. The model has never 
been solved in an arbitrary external magnetic field. However, in one of their classic papers, 
Lee and Yang [3] did succeed in solving exactly for the free energy and giving an exact 
expression for the magnetization of the Ising model on the square lattice for a particular 
manifold of values of H depending on the temperature T, given by 

H = - .  ( 1 . 1 )  

Although this is not a physical set of values, owing to the imaginary value of H and the 
resultant non-hermiticity of the Hamiltonian, this model is, nevertheless, of considerable 
interest as a rare example of a statistical mechanical model for which one has an exact 
solution in the presence of a symmetry-breaking field. Further work on the derivation of 
the LesYang solution was reported in [4-71. 

In the present paper, we shall investigate this model in a wider context, generalizing 
the temperature to complex values. There are several reasons for studying the properties of 

t Email: vmatveev@max.physics.sunysb.edu 
$ Email: shmck@m;u.physics.sunysb.edu 

inkBT 
2 

0305-447~95/174859t2~19.50 @ 1995 IOP Publishing Ltd 4859 



4860 V Matveev and R Shrock 

statistical mechanical systems with the temperature variable generalized to take on complex 
values. First, one can understand more deeply the behaviour of various thermodynamic 
quantities by seeing how they behave as analytic functions of complex temperature. Second, 
one can see how the physical phases of a given model generalize to regions in appropriate 
complex-temperature variables. Third, a knowledge of the complex-temperature singularities 
of quantities which have not been calculated exactly helps in the search for exact, closed- 
form expressions for these quantities. This applies, in particular, to the susceptibility of the 
present model, which, like that of the zero-field king model, has never been calculated. 

2. GeneraUties and complex-tempera- phasns 

In this section we shall work out the complex-temperature phases and their boundaries. We 
begin with some definitions and notation. Recall that the king model is defined by the 
partition function 2 = CC, e-BH with the Hamiltonian 

where on = i1 are the 2 2  spin variables on each site n of the lattice, p = (kBT)-', J is the 
exchange constant, (nn') denote nearest-neighbour pairs and the units are defined such that 
the magnetic moment which would multiply the H E, U" is unity. We shall concentrate 
here on the square (sq) lattice. We use the standard notation K = p J ,  h = pH, U = tanh K, 
z = e-ZK, U = z2 = eAK, w = l / u  and f i  = e-Zh. Note that U and z are related by the 
bilinear conformal hansformation 

1 - U  z'- 
l + u '  

It will also be useful to introduce two elliptic moduli. The first is 

which occurs in elliptic integrals in the exact expressions for the internal energy and specific 
heat, where we use the abbreviations 

C = cosh(2K) (2.4) 
s = sinh(2K). (2.3 

U +  l / U = k - K + K .  (2.6) 

We record the symmetry 

The second elliptic modulus, 

occurs in a natural way in the magnctizationt. 
The reduced free energy per site is f = -BF = IimN,,, N;' I n 2  (where N, denotes 

the number of sites on the lattice). In addition to the susceptibility itself, it will also be 
convenient to refer to the reduced susceptibility 2 = B-' x . 

We begin by discussing the phase boundaries of the model as a function of complex 
temperature, i.e. the locus of points across which the free energy is non-analytic. As 

t Nore lhat these differ from the respective elliptic mQduli KO and k,,o which h%u~ in the intemal energy, specific 
heat and spontaneous magnetizatian for thc king model on the square lattice a[ h = 0. 
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noted in 181, there is an infinite periodicity in complex K under the shift K + K + n i a ,  
where n is an integer, and, for lattices with even coordination number q ,  also the shift 
K -, (2n + l)ia/2, as a consequence of the fact that the spin-spin interaction uiuj in 'H 
is an integer. In particular, there is an infinite repetition of phases as functions of complex 
K ;  these repeated phases aTe reduced to a single set by using the variables U, z or U (or 
variables based on these). 

We also note an elementary symmetry involving h for the (spin-1R) Ising model on a 
general lattice A. The low-temperature, high-field expansion of Z has the form 

Z, (2.8) z = e(q/Z)N8Keh"h 

where 

where the only property of Z, that we need is the fact that i t  is a polynomial in z and /I. In 
(2.8), we assume periodic boundary conditions, but for the free energy, in the thermodynamic 
limit, this is not essential. Now 

(2.10) h --f h + n i n  + p + f i  

where n is an integer. Hence, under such a shift, the only change in Z is in the prefactor, 
eNak. Equivalently, in the corresponding (reduced) free energy 

(2.11) 

the only change is in the second term, h. Therefore, aside from this term, one may, and we 
shall, restrict to the range 

ia irr -- e Im(h) C - 
2 2 

(2.12) 

without loss of generality. In the present context, we shall consider just the value h = in/2; 
our results will apply in the same way to h = -ia/2. 

It is useful to review the connection between the square-lattice Ising model with 
h = irrj2 and the king model on the square lattice in zero field [6,7]. This is done 
by first considering the Ising model on the checkerboard (also called generalized square) 
lattice, defined by assigning different couplings Kj, j = 1, , . . ,4,  to the bonds of the square 
lattice, as shown in figure 1. Again, for discussions of the partition function, we assume 
periodic boundary conditions. The free energy [9] and spontaneous magnetization [ 10,111 
are known for the zero-field checkerboard Ising model. Now recall the identity 

(2.13) 

for U = f l .  For h = k / 2 ,  this reduces to eh". = iu-, and hence exp(h E, un) = na(iun). 
Next, consider a dimer site covering of the checkerboard lattice, where by site covering, 

we mean that each site is the member of one (and only one) dimer. As is clear from figure 1, 
a simple covering of this sort is provided by each of the bonds of a single type, say those 
with the K4 couplings. We may thus associate pairs of the uns in the above product with 
the dimers of this covering. To do this, we separate one of the two factors of i for such 
pair and place it in front of 2. One then has 

eh- = cosh h + U sinh h 

(2.14) 



4862 

where ch denotes checkerboard and refers to the appropriate Kj, j = 1-4 depending 
on which bond connects the sites n and n‘ (cf figure 1). Then one can use the identity 
(2.13) again to write 

V Mahteev and R Shrock 

Kt A - 

KO K2 

K3 K1 

Kz Kq 

K1 IG 

(2.15) 

Kq 

Kz 

(2.16) 

(2.17) 

Hence, for the free energy, 

(2.22) 
Of course, the king model with zero field is not equivalent to one with non-zero field, since 
in the former case the partition function and free energy are exactly invariant under the 22 
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transformation un -+ -U", whereas in the latter case this symmetry is broken explicitly by 
the external field term. This inequivalence is manifested in the fact that equations (2.16)- 
(2.17) are not Zz-invariant. Thus under the transformation o;, + -U", which is equivalent 
to h + -h, the i's in these equations are replaced by 4. It is also manifested in the fact 
that while the zero-field king model always has a Zz-symmetric paramagnetic (PM) phase, 
the model with non-zero external field h # 0 does not have any PM phase. The usefulness 
of equation (2.18) stems from the special feature that for h = f in /2 ,  this non-invariance 
is localized to just a constant term in the free energy. The square-lattice king model with 
h = in/2 is also related to a certain frustrated king model [12]. 

The (reduced) free energy is [3]1 
in 
2 

f ( K ,  h = f i n j 2 )  = f-  + In2 

(2.23) 

where C and S were defined in (2.4) and (2.5). From U = -af/ag = -Jaf/aK, one has 
the symmetries 

Similarly, from C = kBKZa2f/aKZ, one has 

and 

C K , h = -  = C  - K , h = -  . ( j;) ( i:> 

(2.27) 

(2.28) 

The free energy is trivially divergent at K = fco, i.e. U = 0, 00; however, this will not 
be important here since these are isolated points and not part of any phase boundaries. The 
curves along which the free energy is non-analytic are given by the locus of points where 
the argument of the logarithm in the integrand of equation (2.23) vanishes. Expressed in 
terms of the variable U, f is 

where 

p(e,,e,)   COS^^ + C O S B ~ .  

t The Hamiltonian in [3] w s  defined with a different zero point of the energy Ulan that used here. 

(2.29) 

(2.30) 
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The above locus of points where the argument of the logarithm vanishes is given by the 
solutions of the equation 

(1 + U ) Z  - 2UX = 0 (2.31) 

where x = P(B,.82), taking values in the range -2 < x < 2. These are integrable 
singularities. Since the coefficients in this equation are real, the solutions are either 
real or consist of complex conjugate pairs. Moreover, under the replacement U -+ I j u ,  
equation (2.31) retains its form, up to an overall factor of u - ~ .  Consequently, the locus 
of solutions is also invariant under this mapping U + I ju .  The solutions are shown in 
figure 2(a) and consist of the union of the unit circle 

u = ei+ -71 C @ < Z  (2.32) 
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and the finite line segment 
1 

- < u < u u e  (2.33) 
U, 

where the inner endpoint is 

U. =-(3-2-h)=-O.171572875 . . .  (2.34) 
and the outer endpoint is l j n ,  = -(3+2&) = -5.828427.. .. Note that U, = -uc,  where 
uc is the usual critical point in the zero-field square lattice king model separating the Zz- 
symmetric, paramagnetic (PM) phase from the phase in the Zz symmetry is spontaneously 
broken by long-range ferromagnetic (FM) long-range order. 

It is of interest to see how the solutions to equation (2.31) are traced out in the complex 
U plane as x varies. For x = 2, this equation has a double root at U = 1. As x decreases 
from two to zero, this root splits into a complex conjugate pair, the members of which move 
counterclockwise and clockwise along the unit circle, and finally rejoin to form a double 
root at U = -1 when x = 0. As x decreases from zero to -2, this double root again splits, 
but this time into two reciprocal real roots, one of which moves to the right, from U = - I  
to the endpoint U, and the other of which moves leftward to U = ljue. The corresponding 
phase boundaries in the z plane consist of the unit circle IzI = 1 together with the two line 
segments from z = f z e  = hi(& - 1) upward and downward along the imaginary axis to 
z = F1jze = *ti (&+ I), respectively. 

The circle (2.32) divides the U plane into two separate phases. A fundamental property 
of this model is that the non-zero external field breaks the 22 symmetry explicitly, so 
that there is no &-symmetric phase. Even without using the known expression for the 
magnetization, one can identify the phases in this diagram as follows. For suffciently large 
real K, the interaction of the external magnetic field with the spins is negligible compared 
with the spin-spin interaction, which thus produces a ferromagnetically ordered phase, just 
as it does in the model with h = 0. This shows that the neighbourhood of the origin in the 
U (or z )  plane is ferromagnetically ordered. By analytic continuation, it then follows that 
the entire region inside the unit circle IuI = 1 is a ferromagnetically ordered phase, and this 
is so denoted in figure 2(a). Similarly, for sufficiently large negative K, the interaction of 
the external field with the spins is again negligible compared with the spin-spin interaction, 
which produces a phase with antiferromagnetic (m) long-range order. By analogous 
analytic continuation arguments, it follows that the entire region outside the unit circle is 
the AFM phase. In passing, we note that complex-temperature properties of the h = 0 
king model on d = 2 lattices have been studied in [8,13-211. In the case h = 0 for the 
square lattice, the analogous locus of points, across which the free energy is singular, form 
a limacon [20] defined by Re@) = 1 + 23/2 cos w + 2 cos 2w, Im(u) = z3/’sinw + 2 sin 2w 
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Figure 2. (a )  Phases and associated boundaries in the complex U plane for the king model on 
the square lattice with h = i in/2.  The boundaries are given by equations (2.32) and (2.33) 
in the text. In particular, the line segment extends from ue as given in equation (2.34) off the 
figure U, the left, ending at l/o, = -(3 t 2 f i )  z -5.828. FM and AFM refer to phases in 
which M # 0. M,, = 0 and M = 0, M,, # 0, respectively. ( b )  The complex-temperature phase 
diagram in the U plane. 

for 0 < w -= Zrr,  or equivalently, in the z plane, the circles [13, 141 z = 3rl + &eie, for 
o < e < 2 x .  
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By the use of the conformal mapping (2.2) on the z plane, or by re-expressing the free 
energy in terms of the variable v and again solving for the locus of points where the argument 
of the logarithm vanishes, we find that the phase diagram of the model in the U plane is 
as shown in figure 2(b). The unit circle IzI = 1 is mapped to the imaginary axis in the U 
plane, and the respective line segments from z = rtzc to ~ l / z ,  are mapped to the arcs from 
U = eTinI4 to U = eT3jnl4. It is interesting that the Re(u) = 0 (i.e. imaginary) axis forms 
the boundary between the complex-temperature FM and AFM phases. One may understand 
this by recalling that: (i) if h were real and positive (negative), this would favour FM (AFM) 
ordering, but a pure imaginary value of h does not favour FM over AFM ordering, or vice 
versa; (ii) similarly, if the spin-spin coupling K is real and positive (negative), it favours 
FM (AFM) ordering, but a pure imaginary value of K (and hence U) does not favour FM over 
AFM ordering, or vice v e r s a  Therefore, if both h and K are pure imaginary, as is the case 
here for the imaginary axis in the U plane, then the system is precisely balanced between F M  
and AFM order, so that this axis should be the boundary between the complex-temperature 
FM and AFM phases, and this is just what our explicit calculation shows. 

The mapping defined by U + K', where K was defined in (2.3), takes the the locus of 
points (2.32) and (233) to a single semi-infinite line segment extending from 1 to 03 in the 
complex K~ plane. All points in the K' plane are analytically connected to all other points. 
In particular, the mapping U + K~ takes both the complex-temperature FM and AFM phases 
in the U plane to the same respective regions in the K' plane, as is clear from the symmetry 
(2.6) and the fact that the transformation U + l/u interchanges the FM and AFM phases in 
the U plane. 

3. Complex-temperature behaviour of the internal energy and specific heat 

3.1. Exact expressions 

From the free energy (2.29), it is straightforward to calculate the internal energy U and 
specific heat C (per site). In terms of the variable U ,  we find that 

where the elliptic modulus K was given above in equation (2.3) and K ( k )  = i:/2(1 - 
k' sin' e)-'/2d0 is the complete elliptic integral of the first kind. This expression holds for 
both the FM and AFM phases and exhibits the symmetries (2.25) and (2.26). Since either 
of these has the effect of taking U + I/u,  and since this mapping takes the interior of 
the complex-temperature FM phase to the interior of the complex-temperature AFM phase, 
the values of U in these two phases are simply related by (2.25)-(2.26). In the FM phase, 
the first few terms of the small-)ul expansion (complex-temperature generalization of the 
low-temperature expansion) are 

U = - z J [ ~  + 4 2  - 1 2 ~ 3  + 6oe4 - 280u5 + o ( U 6 ) ~ .  (3.2) 
In the AFM phase, the corresponding expansion parameter is UJ = l / u ,  and U has the same 
expansion as (3.2) with J replaced by - J and U replaced by W .  

As discussed above, in  the limit J + CO, and hence K --f 00 with fixed H, the spin- 
spin interaction overwhelms the contribution of the external field coupling. which therefore 
has a negligible effect, to leading order. It follows that in this limit. the value of the internal 
energy should be the same as the value for h = 0, i.e. 

U ( u  = 0, h = ix/2) = U ( u  = 0, h = 0).  (3.3) 



Complex temperature properries of the 2D king model 4867 

It is interesting to compare the small-lui series expansions of these two functions to ascertain 
the finite-u corrections to this equality. For this purpose, we recall that [I] 

where 

(3.4) 

(3.5) 

The expression (3.4) holds for all phases, PM, FM and AFM. In the FM phase, it has the 
small-lul expansion 

U ( h  = 0) = -2J[1 - 4u2 - 12u3 - 36u4 - 120us + 0(u6)]. (3.6) 

Clearly, the expansions (3.2) and (3.6) agree with the relation (3.3) for U = 0. U ( K .  h = 0) 
also satisfies the symmetries analogous to (2.25) and (2.26), with h = i r /2  replaced by 
h = 0, as a consequence, in the AFM phase, the small-lw\ expansion of U(K, h = 0) is 
given by (3.6) with J replaced by - J  and u replaced by ID. 

For C we get 

where K ( k )  was defined above and E(k)  = st’’(1 - kZ sinZB)’/*d8 is the complete elliptic 
integral of the second kind. Again, this expression holds for both the FM and AFM phases. 
It will also be useful to express C in an equivalent form, using (2.3) 

(3.8) 
c U E(K) + ( I + U ~ ) ( I + K ) K ( K )  -=_-- 

W s K Z  ( I - U ) ~  r r ( l + ~ )  r r ( 1 + 6 u + u 2 )  ’ 

C / K 2  has the small-lul expansion 

(3.9) 
c 

8ksK2  
- = + 28sU3 - 19zoU4 + I 1 2oou5 + o@). 

For comparison, the specific heat for the king model on the square lattice with h = 0 [ l ]  is 

which has the small-lul expansion 

C - = 64u2 + 2 8 8 ~ ~  + 1 1 5 2 ~ ~  + 4 8 0 0 ~ ~  + 0(u6). 
kBK2 

(3.1 1) 

Of course, in this case, the positivity of the specific heat requires that the coefficient of 
the lowest order term must be positive (the first negative coefficient occurs in the U’ term). 
We proceed to determine the complex-temperature singularities of U and C for the present 
case, h = irrj2. 

3.2. vicinity of u = ue 

As discussed in connection with figure 2(u), the point U = U, is the endpoint of the 
singular line segment protruding into the complex-temperature extension of the FM phase. 
All approaches to this point, except directly from the left along this singular line segment, 
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occur from within the complex-temperature FM phase. As U 4 ue = -(3 - Z3/*), K + -1. 
The internal energy diverges like 

(3.12) 
U &  - + - In(1 - u/u,)  
J a  as U + uE. 

In the specific heat, the dominant divergence arises from the term in (3.7) involving E ( K )  
and is 

(3.13) 

so that the associated singular exponent for C at U = ue is 

a;,FM =a; = 1 (3.14) 

where the subscript F'M indicates the phase from which this point is approached, and the 
prime is the standard notation indicating that the approach to this singular point is from 
within a broken-symmetry phase. (The last feature is, of course, true of all of the singular 
points for h # 0.) There is also a weaker, logarithmic divergence arising from the term 
involving K ( K ) .  The value of K at uC in (3.13) is 

(3.15) 

where n labels the Riemann sheet used for the evaluation of the logarithm. which we shall 
take to be n = 0 below, unless otherwise indicated. 

I Ke = -i lnu. = -4[In(3 - Z3'2) f i n  + bin] 

3.3. lliciniry of u = I /ue  

The point U = l/u, is the left end of the singular line segment protruding into the complex- 
temperature extension of the AFM phase. Except for the approach directly from the right 
along the singular line segment, all approaches to this point occur from within the complex- 
temperature AFM phase. As U -+ l/ue, K + -1, as is clear from the previous remarks and 
the symmetry (2.6). The internal energy again diverges like 

(3.16) 
U &  1 - + --ln(1 - U & )  
J x UC 

as U 4 -. 
In the specific heat, the dominant divergence again arises from the term in (3.7) involving 
E ( K )  and is 

as u + l / u ,  C 4 4 5  -+ 
kBK2 ~ ( l  - l i e u )  

(3.17) 

so that the associated singular exponent for C at the outer endpoint (oe) U = I/u, is 

a:,,Am = ff:, = 1. (3.18) 

The value of K corresponding to U = I/u, in equation (3.17) is, for the principal Riemann 
sheet of the log, KO, = -(1/4)[ln(3 + Z3P) + ia]. 

3.4. Kciniry of u = - I  

As U + -1 (denoted us) ,  K diverges; if we set U = - 1  + €ei+ and let E -+ 0, then 
K - -4e-2e-2i4. One easily sees that U(u  = -1) is finite. For C, we observe that the first 
and second terms on the right-hand side of equation (3.7) or (3.8) are finite. By the use 
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of the elliptic integral identity (1 + K)K(K) = K(2~'12/(1 + K)) (see, e.g. [22]), we can 
rewrite the term involving K ( r )  in equation (3.8) as 

(1 + U*) 2K'/2 
n(1 + 6u + U*) (K) (3.19) 

As U -+ - I  and K diverges, K ( Z K ~ / * / ( I  + K ) )  -+ K(0) = 7r/2, so that C is finite, although 
non-analytic, at U = -1. This is hue for the approach to U = -1 from either the FM or 
AFM phases. We thus have 

= = 0 (log finite). (3.20) 

3.5. Wcinity of U = 1 

As U + 1, K + 1. In U the leading potential singularity arises from the first term in (3.1) 
U -2 -+ -  a s u +  1. (3.21) J 1 - U  

Now K = +/4) In U ,  so that, if one uses the first Riemann sheet of the logarithm, then 
U + 1 maps to K + 0. Recalling that K = PJ, if this zero in K is due to ,9 4 0 at fixed 
non-zero J ,  then equation (3.21) shows that U diverges for U --f 1; however, if the zero in 
K is due to J -+ 0 at fixed non-zero p ,  then, expanding (3.21), one finds that U + 1/(2g). 

For the specific heat, from (3.7), it follows that as U + 1 
1 + -L In (-) 32 + . . .] 

(1 - U)? 4R (I  - U)* 
where . . . refers to less singular terms. If we again use the principal Riemann sheet of the 
logarithm, so that U + 1 corresponds to K --t 0, then (3.22) becomes 

(3.23) 

That is, C has a finite logarithmic singularity at this point, and hence a corresponding 
exponent 

= L Y ; , ~ ~  = 0 (log finite). (3.24) 

In passing, we note that if one were to use a Riemann sheet different from the principal 
(n '= 0) one in evaluating K = -(1/4) ln(l), so that K = -inn/2 # 0, then C would 
diverge quadratically at U = 1. 

3.6. Elsewhere along the singular curves 

We discuss here the behaviour of U and C as one crosses the singular locus of points 
comprised by the unit circle (2.32) and the line segment (2.33) away from the points U = ue, 
l /ue ,  -1 and 1. The singularities which one encounters in this case are associated with 
passage across the branch cut of the elliptic integrals in (3.1) and (3.7). We recall that the 
elliptic integrals K ( K )  and E ( K )  are analytic functions of K' in the complex K' plane except 
for respectively divergent and finite branch points at K* = 1 and an associated branch cut, 
which is normally taken to run from K' = 1 to K' = 00 along the positive real axis in this 
plane. To illustrate the nature of the singularities, we shall consider moving outward along 
a ray in the U plane defined by U = pe" with p increasing from 0 to 00 at fixed 8, say 
0 = n/6 .  As shown in figure 3, the image point in the K' plane also moves out from the 
origin, stating with an angle of x /3  but bending around to the right. As we cross the unit 
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circle in the U plane, leaving the FM phase and entering the AFM phase, the image point 
in the K' plane crosses the branch cut moving vertically downward. This branch cut is 
precisely the image of the unit circle IuI = 1 (and also of the singular line segment (2.33)). 
For .9 = ~ / 6 ,  the crossing point is at K' = 24(7 - 4 4 3  = 1.1487.. .. In the K' plane, one 
thus passes onto the second Riemann sheet of the elliptic functions K ( K )  and E ( K ) .  If one 
projects back to the first Riemann sheet, these functions have discontinuous imaginary parts 
across this branch cut. As p continues to increase toward 00, K' - 16p-Ze-28 so that the 
image point curves around and finally approaches the origin in a 'northwest' direction, at 
an angle of -7r/3, but on the second Riemann sheet. In figure 3 we show the image point 
for p in the range from zero to 30. 
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4. Complex-temperature behaviour of the uniform and staggered magnetization 

The magnetization M is [3,5] 

(4.1) 

Note that (1 +6u + U') = (1 -U/&)(] -U&). By analytic continuation, this formula holds 
throughout the complex-temperature extension of the FM phase. The identity discussed 
above, and the resultant equation (2.19) yields the relation 

M(u, h = f i a / 2 )  = M(-U,  h = 0)-' 

where [2] 

(1 + u)'r4(l - 6u + u')~/* 
M(u, h = 0)  = 

(1 - u)1/' 

As is well known, one can express M(u, h 0) as 
M(u, h = 0 )  = ( I  - (k<,o)2)"8 (4.4) 
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where 

. .  
This quantity also enters in exact expressions for correlation functions in the FM phase of 
the h = 0 king model [23-25]. Given the relation (4.2). it is natural to write 

M ( u ,  h = iir/2) = (1 - (k<)2 ) ' /8  (4.6) 
where the elliptic modulus was ineoduced in equation (2.7). The magnetization for the 
h = in/2 case vanishes continuously at the point U = -1 (denoted us)  with exponent 

(4.7) 
diverges at U = ue with exponent 

(4.8) 
and diverges at U = 1 with exponent 

Elsewhere on the boundary of the complex-temperature extension of the FM phase, i.e. the 
unit circle in the U plane, M vanishes discontinously. Note that the apparent divergence at 
the point U = l/u, does not actually occur, since this is outside of the complex-temperature 
FM phase, where the above analytic continuation is valid. 

The staggered magnetization M,, does not seem to have been explicitly discussed in the 
literature, but one can easily obtain it, as follows. Mst may be defined via 

,5 - 1  

,5 --1 

Dl = - I  4'  (4.9) 

5 - 2  

e -  8 

(4.10) 

(4.1 1 )  

(4.12) 

i.e. & = 0, for r on the same sublattice as T = 0 and -c7 for T on the other sublattice 
of the (bipartite) square lattice. To evaluate M,, via equation (4.10), it suffices to take 
T = ( r ,  0) or (0, r ) ,  i.e. the row or column two-spin correlation function. From the known 
asymptotic behaviour of this correlation function [5 ] ,  one immediately finds that 

MSt(w) = M ( u  + w) (4.13) 
where, as before, w = I/u. This is consistent with equation (4.6) since (cf (2.6)) U -+ I /u  
takes k ,  -+ -k< ,  and k ,  enters squared in (4.6). Of course, M,, vanishes identically 
outside the complex-temperature extension of the AFM phase. Further, we may immediately 
conclude that Mst vanishes continuously at U = -1 with exponent (4.7), diverges at U = l/u, 
with exponent (4.8), and diverges at U = 1 with exponent (4.9). Elsewhere along the 
boundary of the complex-temperature AFM phase, M,, vanishes discontinuously, with the 
same discontinuity as M. 

It is of interest to compare these results with the behaviour of M and M,[ for h = 0 
(again on the square lattice). Aside from the physical P M F M  and PM-AFM critical points 
U = uc = (3 - Z3l2) and l/uc, where, respectively, M and M, vanish continuously with 
exponent ,5 = 1/8, they also both vanish continuously at the complex-temperature point 
U = -1, with the same exponent, ,5 = 1/4. Note that for h = 0 there is only one point, viz., 
U = - 1, where the FM and AFM phases are contiguous and M and MSt vanish continuously, 
whereas for h = in/2 there are two such points, namely, U = -1 and U = 1. 
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5. Extraction and analysis of the low-temperature series for 2 

5.1. Generalities 

In order to investigate the complex-temperature singularities of the susceptibility 2, we 
shall make use of the low-temperature, high-field series expansion for the free energy or 
equivalently the partition function of the Ising model on the square lattice [26-281. In [28], 
Baxter and Enting calculated this expansion for the partition function to order O(uZ3). The 
series for Zr in equation (2.9) is 

V Mahvev and R Shrock 

where j 6 m < jz for n = 2 j  and j < m 6 j(j - 1) for n = 2 j  - 1. We extract the series 
for h = in/2 by calculating 2 = az f / a h 2  and then subsituting p = -1. This has the form 

The results for the c, are listed in table 1; the series for Z and the resultant series for j to 
O(uZ3) yields the c.s to order n = 21. Parenthetically, we note that X has been calculated 
to O(u=) in [29] and to O(u3') in [181, but the low-temperature, high-field expansion of 
the partition function as a function of /L = e-%, which would be necessary to extract 
X ( h  = in/2), was not given in these papers (it would be a rather long expression). 

Table 1. Low-temperature series expansion coefficients for .?(U. h = in/2) in equation (5.2). 

0 
I 
2 
3 
4 
5 
6 
7 
8 
9 
10 
I 1  
12 
13 
14 
15 
16 
17 
18 
19 
7.0 

- I  
8 

-48 
304 

-1863 
11368 

-68840 
414872 

-2490437 
14903648 

-88963696 
529939 176 

-3151205475 
18710180 I92 

-1 10 948037 424 
657 I64715 520 - 3 888 670 886 593 

22 990566432904 
-135819110416784 
801 806651 588848 

~~ -4730485389238263 
21 27892958533539184 

We have analysed this series using dlog Pad6 and differential approximants. For a recent 
review of these techniques, see [30]. Our notation for these approximants follows [30] and 
our earlier work on complex-temperature properties of the h = 0 king model [ 19-21]. In 
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particular, we use first-order differential approximants (i.e. K = 1 in ow previous notation); 
as before, we used unbiased approximants so as to be able to use an extrapolation method 
for extracting critical exponents. Since the prefactor 4u2 is analytic, we have actually 
performed the analysis on the reduced function 

(5.3) 

As one approaches a generic complex singular point denoted sing from within the complex- 
temperature extension of the FM phase, 

j is assumed to have the leading singularity - ~ : ~ ~ ~ ( i  - U / U ~ , ~ J Y ~ ~ ~ S ( I  i al(1 - U / U ~ " , )  + .  . .) (5.4) 

where A$n8 and y& denote, respectively, the critical amplitude and the corresponding 
critical exponent, and the . . . represent analytic confluent corrections. One may observe that 
we have not included non-analytic confluent corrections to the scaling form in equation (5.4). 
The reason is that, as discussed in our earlier work [ZO], previous studies have indicated 
that they are very weak or absent for the 2D king model. We proceed to our results. 

5.2. Singularity at U = U, 

We obtained the most accurate results using differential approximants. In table 2 we list 
the pole positions u, , , ,~ and corresponding exponents y: for the approximants which yield 
poles closest to U,?. 

The dlog Pad6 approximants (PAS) gave similar. but slightly less accurate, results. 
For example, the [9/9] and [10/10] PAS yielded pole positions with normalized distances 
Iu,in6 - uel/lu.l = 3.2 x and 1.7 x lo-', and corresponding exponents y: = 1.2463 
and 1.2471, respectively. From this analysis, we infer the location of the singularity to be 

u,jn6 = -0.17157f0.00001. (5.5) 
This. together with our knowledge of the exact location of the endpoint of the singular 
line segment (2.33), supports the conclusion that the exact location of this singularity is 
at U = U ,  = -0.171 5729. . . given in (2.34). Accepting this conclusion, we plot the 
values of the corresponding exponent y: for the differential approximants as functions of 
the normalized distance from this point, i.e. I U ~ ~ ~ , - U , I / I U ~ ~ ,  and extrapolate to zero distance. 
(This extrapolation method is similar to the use of biased differential approximants; in both 
of these approaches, one uses one's knowledge of the exact position of the singularity.) 
From our extrapolation, we obtain 

y; = 1.25 * 0.01 

(where the quoted uncertainty reflects the scatter in the points and the estimated uncertainty 
from the small extrapolation to zero distance). This strongly supports the following inference 
for the exact value of this exponent, which we shall make 

, 5  ye = -. 
4 (5.7) 

To calculate the critical amplitude for X at the U = ue singularity, we use the standard 
method of analysing Pad6 approximants to the series ( - i , ) ' /y ;  (where the minus sign is 

t To w e  space. we omit a number of tables of differenlial and Pad6 approximants. The reader may obtain these 
tables from the file hep-la119412105, archived at hep-lat@xxx.lanl.gov or directly from the aulhon. 
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Table 2. Values o f  pole n w  U. = -(3 - Z3/’) = -0.171572876.. ,, normalized distance 
from this point. lusmE - ucl/luJ, and exponent v: from differential approximants (DAS) to 
low-temperature series for i We list only the DAS which satisfy the 3ecumcy citerion 
luring - uel/lucl 6 2 x 10-5. 

I L I k  MI] urmg I k i q  - u e l / l k  v: 
EO/.% 51 -0.1715743 0.81 x 1.2474 
I0/5: 61 -0.1715716 0.72 x IOs5 1.2470 
[0/5: 71 -0.1715696 1.9~ 1,2467 
[0/6: 51 -0.1715717 0.66 x IO-’ 1.2470 
[0/7: 51 -0.1715706 1.3 x IO-’ 1.2469 

[0/9: IO] -0.171 5716 0.72 x 1.2481 
[O/lO: 91 -0.171 5718 0.64 x IO-’ 1.2482 
[1/7; 91 -0.1715702 1.6 x IO-! 1.2475 
[I/8: 91 -0.1715700 1.7 x I0-I 1.2474 
[ I / %  101 -0.1715701 1.6 x 1.2475 

[ I /% 91 -0.1715704 1.4~ IO-’ 1.2476 

1217; 71 -0.171 5701 1.6 x I0-I 1.2463 
[2/7: 91 -0.1715698 1.8 x IO-’ 1,2473 
[2/% 91 -0.1715737 0.45 x IO-’ 1.2501 
[3/7: 81 -0.1715699 1.7~ IO-$ 1,2478 

[3/8: 71 -0.171 5696 1.9 x IO-’ 1.2474 
IS/% 61 -0.1715754 1 . 4 ~  1 W 5  1.248% 
[VI: 51 -0.1715698 1.8 x 1.2478 
[5/%61 -0.1715723 0.35 x IO-5 1,2495 

1617: 61 -0.1715746 0.99~ IO-’ 1.2505 
[7/4: 61 -0.1715707 1.3~ lo-) 1.2495 
[7/5: 71 -0.1715709 1 . 2 ~  IO-) 1.2483 
[8/6: 41 -0.171 5700 1.7 x 10‘) 1.2476 
1916: 41 -0.1715709 1.1 x IO-’ 1,2483 
[10/5: 31 -0.171 5698 1.8 x 1.2476 
[11/5;31 -0.1715707 1 . 2 ~  IO-’ 1,2481 

[0/9; 91 -0.1715754 1.5 x 1 ,2505 

[1/9;81 -0.1715699 1.7 x 1.2474 

[l/lO 81 -0.1715702 1.5 x 1.2475 

[3/7: 91 -0.1715697 1 . 9 ~  IO-’ 1.2464 

[6/5: 51 -0.171 5697 1.9 x 1.2464 

inserted because CO = -1 in equation (5.2)). For A: as defined in equation (5.4) with 
using = U,, we obtain 

(5.8) A: = -0.115 15 i 0.00020. 

5.3. Singularity at U = I 

Our most precise results for f ,  relevant to the singularity at U = 1 are again from differential 
approximants; we list a few of these in table 3. 

The dlog Pad6 approximants yield similar values. From these results, we obtain the 
location of the singularity as 

(5.9) 

From this and our determination of the phase boundaries (2.32)-(2.33), we infer that the 
exact location of this singularity is at U = 1. Given this conclusion, we then plot the values 

Udng = 0.999 * 0.001. 
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Table 3. Values of pole n e x  U = I ,  normalized distance from this point, luIlnl - 11, and 
exponent y( from differential approximants to low-temperature series for 6. We list only the 
differential appmnimants which satisfy the accvracy criterion laring - I1 < 1 x 

[LIMO: MI1 Using /USIR1 - II y: 

[Of% 91 
U/6; 81 
[1/9: 91 
W4; 61 
[ 2 / 6  41 
[2/6: 71 
[2/7; 61 
W8; 81 
[3/6 61 
[3/% 71 
[4/7; 81 
14/8: 71 
[5/4: 51 
I5/6 71 
(516: 81 
P/7; 71 
1518 61 . .  . . 
[6/+ 61 
[6/5 71 
[6/6 71 
[6/7: 51 

[8/4: 61 
W.5: 61 

0.9999105 
0.998 9524 
0.9990590 
1.0004562 

0.9997299 
0.9996006 
1.0006495 
1.000 5153 
0.999 1902 
0.999 0659 
0.9990450 
1.0009762 
0.9993881 
0.9991317 
0.999081 I 
1.000 0180 

i.oo08w1 

0.999 3653 
1.000 2641 
0.999 I189 
LOW3178 
0.999 3080 
0.9990014 
0.9993253 
0.9994784 

0.89 x 
1.0 10-3 
0.94 10-3 
0.46 10-3 
0.81 10-3 
2.7 10-4 
4.0 10-4 
0.65 10-3 
0.52 
0.81 10-3 
0.93 10-3 

0.98 10-3 
0.61 10-3 

0.92 x 10-3 
1.8 x IO-’ 

2.6 10-4 

3.2 10-4 
0.69 x 10-3 
1.0 10-3 
0.67 10-3 

0.96 x 

0.87 x IO-’ 

0.63 x 

0.88 x IO-’ 

0.52 x lo-’ 

2.4776 
2.4554 
2.4617 
2.4545 
2.4534 
2.4678 
2.4651 
2.4969 
2.4841 
2.4621 
2.4624 
2.4618 
2.4429 
2.4709 
2.4644 
2.4629 
2.4888 

2.4944 
2.4641 
2.4956 
2.4698 
2.4565 
2.4757 
2.4852 

2.5a40 

of y; as a function of the distance from U = 1 and extrapolate to zero distance. This yields 
the value 

(5.10) 
(where, as before, the quoted uncertainty reflects the scatter in the points and the estimated 
uncertainty from the small extrapolation to zero distance). This strongly supports the 
following inference that we shall make for the exact value of this exponent 

(5.11) 

y; = 2.50 f 0.01 

5 y; = 3 .  

Hence, in particular, 

y; = 2y;. (5.12) 
We note that the relation (5.12) can be understood if one reexpresses 2 as a function of 
the elliptic modulus variable k ,  in equation (2.7), since k ,  diverges at U = 1 with an 
exponent which is twice as large as the exponent describing its divergence at U = U,, i.e.. 
k ,  - ( I  - u)-l as U -+ 1, while k, - ( I  - U / U , ) - ’ / ~  as U -+ U,. 

5.4. Singularity at U = -1 

We have studied the singularity in j at U = - 1 (denoted us) by using the series for j in the 
variable U and also transforming this series to one in the elliptic modulus variable k, .  The 
series in k ,  showed a greater sensitivity to this singularity, and therefore we concentrate on 
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the results from our analysis of this series. The reason for this greater sensitivity is clear; 
the series in U is strongly affected by the fact that, as one can see from figure 2(a), there 
is an intervening singular line segment protruding into the FM phase and ending at U = U,, 
in front of the point U = -1 as one mows out from the origin along the negative Re(u) 
axis. The transformation from U to k, maps the singular endpoint at U = U, away to -a 
and maps the singularity at U = 1 to 03 in the k, plane, thereby leaving the singularity at 
U = -1  as the nearest to the origin. Specifically, the image of the singular line segment 
from U = U ,  leftward to U = -1 is the semi-infinite line segment from -@a to -1 in the k ,  
plane. The line segment from U = I /U. to U = - 1  has the same image, a s i n  the segment 
from -03 to -1 in the k, plane, while the unit circle IuI = 1 maps to the line segment 
from one to 03 in this plane. The series ink,  has the form R = ( l / 4 ) ( k $  C ~ o = , c ~ ( k , ) ” ,  
and, as before, we actually analyse the reduced function 2, = 4(k,)-’?. 

Using the Taylor series expansion of k, near U = -I 

k <  = -1 - 2-5(1 t + O((I + 4 5 )  (5.13) - (1 + k<)-vi ,k corresponds 

Y: = 4Y&; (5.14) 
Because the actual pole positions in the differential approximants have small imaginary 
parts, typically a few times of the size of the real part, there are resultant imaginary 
parts in the values of the corresponding exponent y,‘ from the differential approximants. 
Since the exact singularity in f ( u )  is at the real value U = -1, and since R(u,  h = iz/2) 
is real for real U ,  we know that y: at U = (k,) = -1 is real. Given this and the relation 
(5.14), it follows that we may take only the real parts of the exponents from the differential 
approximants to the series in k,, and we do so. From this study, we obtain for the position 
of the singularity 

(5.15) 

consistent with the expectation (k&, = -1, or equivalently, using = U, = -1. The 
values of Re(&’) from the differential approximants are almost all slightly below 0.25; 
however, when we carry out our method of plotting the values as a function of the distance 
I(!+) + 11 and extrapolating to zero distance from the exact singularity, the extrapolated 
value is actually slightly above 0.25. Accordingly, we give a conservative estimate 

(5.16) 

it follows that as k, + - 1 and U --f -1, the singular form 
to 2 - ( I  + u)-y ; ,  with 

i 
(k&jng = -0.9993 h 0.0001 

&< = 0.250 42 0.020 

and hence, using (5.14), 

= 1.00 zk 0.08. (5.17) 

This supports the conclusion, which we shall draw, that the exact value of this exponent is 
y: = 1. (5.18) 

We show our summary of exponents in table 4. The exponent relation aY:,ph+2BL+y:,,, = 2 
is evidently satisfied at all three of the singularities U = ue, U = 1 and U = -1. 

6. Extraction and analysis of low-temperature series for 

We have also investigated the complex-temperature singularities in the staggered 
susceptibility I(‘) for the present model. To do this, we have extracted and analysed the low- 
temperature series expansion for this function, using the low-temperature, high staggered 
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Table 4. Expooents at singularities in Ihe 2~ king model with h = *in/2. The results for e: 
and 0. are exact: the results for y: are our conclusions for the exact values from our series 
analysis. The notation - indicates that the pint a n d  be approached from within the given 
phase. For the singularity of C at U = I (marked with a *), the values of U' correspond Io 
evaluating K = 4 1 1 4 )  In([) = 0 on the principal Reimann sheet of the logarithm. as discussed 
in the text. 

field series expansions for the free energy of the king model on the square lattice calculated 
by the King's College group [31.26]. These are denoted antiferromagnetic polynomials in 
these papers and were calculated to order O(w") in [26], where, as before, w = l / u  is the 
low-temperature expansion variable in the AFM phase. The antiferromagnetic polynomials 
were apparently not calculated to higher order subsequently [32]. 

We have extracted from these the resultant low-temperature series expansion for j((I) 
for h = in/2, which is 

f ( ' ) (h  = ix/Z) = 4w2[-1 - 8w2 +24w3 - 135w4 + 648w5 - 3336w6 + 17240~' 
-90501~~ + 479 192w9 + O(w")]. (6.1) 

For reference, we recall that the series for j(') for h = 0 on this lattice is [31,26] 

j ( ' ) (h  = 0) = 4w2[l + 4w2 + 8w3 + 39w4 + 152w5 + 672w6+ 3016w7 + 13989~' 
+66664w9 + O(W'~)]. (6.2) 

The series (6.1) is much shorter than the one which we exfxacted for f ,  given by 
equation (5.2) and table 1, and hence one does not expect to derive results for j ( O )  which 
are as precise as those which we obtained for f .  As before, we have used both dlog Pad6 
and differential approximants for this analysis. 

We study first the vicinity of the singular point w = 1, using Pad6 and differential 
approximants. One would not normally expect a dlog Pad6 approximant of such IOW 
order as [1/2] to yield an accurate result; however, it happens that the denominator of this 
approximant is cx (1 - w)(l - (ll/Z)w), so that i t  produces a location for the pole which 
is exact. For this reason, it yields a much better determination of the associated exponent 
than would otherwise have been the case; this is y,'+ = 2.462. The differential approximant 
which locates the pole position most accurately is the [U2;2] DA, yielding wsing = 0.999046 
and y,', = 2.554. From the full set of Pad6 and differential approximants we infer the crude 
result 

Y , ' ~  = 2.5 3= 0.5 (6.3) 
where the quoted uncertainty reflects the scatter in the values obtained from the various PA 
and DA approximants. This is consistent with the exact value y;,, = 5/2 and hence with 
the equality & = y;. However, clearly the results for Y , ' ~  are much less precise than our 
determination of y;. 

We also studied the series in the vicinity of the singular endpoint w = w, = -(3 - 2'/*) 
(i.e. U = uOe = ]/U. = -(3+Z3")). To optimize the sensitivity, we calculated and analysed 
series in transformed variables to map the singularity at w = 1 away. We required these 
variables to be equal to w for small us and to map w = foo to fm,  respectively. Two 
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such variables were w' = w(1 + w/S)(l -IO)-' and w" = w(1 - w)-'sinh w .  The series 
in the transformed variables did slightly better in locating the pole positions in w; and w: 
corresponding to we. The dlog Pad& and differential approximants indicated that ?(") has 
a divergent singulanty at wc and yielded values for the associated exponent yk,, in the 
range from ahout 0.2 to 0.4. Given OUT exact results a; = I for the specific heat and 
Poe = - 1/4 for the staggered magnetization, a value within the above range for y& would 
indicate a violation of the exponent relation a& + Zg,, + y k  = 2. In this context, it is of 
interest to note that we have already found violations of the relation a + Zg + y = 2 at 
complex-temperature singularities, e.g. in the zero-field king model on the square lattice 
at U = U, = -1, as approached from within the PM phase, where as = 0, = 1/4 and 
ys < 0 (since R has a finite non-analyticity for the approach from within the PM phase) 
[ZO], and in the zero-field king model on the honeycomb lattice, at the point z = zi = -1, 
as approached from within the FM phase, where ai = 2, ,9( = -1/4 and y; = 5 / 2 ,  so that 
a; + 2gt + v; = 4 [211. 

7. Complex-temperature behaviour of the correlation length 

In this section we shall study the complex-temperature behaviour of the correlation length. 
To do this, we make use of a calculation of the asymptotic form of the spin-spin correlation 
function along a row (or equivalently, column), ( c r ~ p ~ ~ , ~ ) ,  for large n [5] (where, without 
loss of generality, one may take n > 0). From this calculation, canying out an analytic 
continuation to complex temperature. we obtain, for n -P 03, 

( U Q , O U ~ , Q ) ~ ~ ~  - -(Z/Z)(l - uZ)-'M2n-'u(-u)" 
= - (2 /~) (1  - ~ ) - ~ " ( l +  6u + u * ) - ~ ' ~ ~ - ~ u ( - u ) "  (7.1) 

where we have used the exact expression for M, (4,l). This analytic continuation 
applies within the FM phase. Extracting the correlation length 5 in the usual way as 
.$-I = - limr+mr-' In((ur,cr7)mno). where r = ] T I ,  we find 

6;; = -In(+). (7.2) 
For usual physical second-order critical points, one can use the connected two-spin 
correlation function for any T ,  with  IT^ + 03, to extract the correlation length 6. However, 
in our previous work [19,20], we found that at the complex-temperature singular point 
U = us = -1 in the zero-field king model on the square lattice, the Correlation length 
defined from the diagonal connected two-spin correlation function diverges with a different 
exponent. = 2, from the exponent U: = 1 describing the divergence in the correlation 
length defined from off-diagonal (e.g. row) correlation functions. In view of this, we include 
the suffix row in (7.2) for clarity. We now consider three particular singular points which 
can be approached from within the complex-temperature FM phase, viz., U = U,, U = -1 
and U = 1. As U + U,, the two-spin correlation function (7.1) diverges, as (1 - u/u,)-'/~, 
because of the divergence in the prefactor M2, hut the correlation length trow remains finite, 
with = -In(-&) = 1.7627.. . at U = U,. If this feature of a finite correlation length 
applied to all of the connected two-spin correlation functions, precisely at U = ue as well 
as for points approaching U. from within the complex-temperature FM phase, then by the 
same argument as was used in [8], it would follow that the only singularity in 2 would arise 
from the divergent MZ prefactori. We know, however, that the above premise cannot be 

t Define (coo,) = MZc(r). Then 1 = M2 C,c(r). For purposes of analysing divergences. the asymptotic 
behaviour of the sum can be approximated by that of the integral /dzr C(T) for large I (with a short-distance 



Complex temperature properties of the 20 Ising model 4879 

true, since then the susceptibility exponent at U, (as approached from within the FM phase) 
would be 1/4, whereas we found that y: = 5/4. The fact that the susceptibility diverges 
with an exponent different from that arising from the divergent MZ prefactor shows that at 
least some connected two-spin correlation functions must decay like a power law, i.e. the 
associated correlation length must be divergent, at U = U,. To obtain more information on 
this, it would be useful to carry out analytic calculations of the asymptotic forms of the 
general two-spin correlation functions (uo ,ou~ ,~ )  in the present model, near to and at this 
singular point. 

As U + 1, the two-spin correlation function (7.1) again diverges, as (1 - u)-~/', and 
the Correlation length trow is finite: 6;; = - In(-I) = -in (for the principal Riemann 
sheet of the logarithm). This is a case similar to that discussed in [8] where Re($-') = 0 
but Im(6-l) # 0. 

As U + -1, each two-spin comelation function is finite, but the correlation length does 
diverge, with exponent 

v; = 1. (7.3) 

If one were to use the exponent relation yi = wi(2 - os), then with OUT inference y: = 1 
in equation (5.18), it would follow that os = 1. However, we have shown previously 1201 
that one must use caution in trying to apply such exponent relations at complex-temperature 
singularities, since different connected spin-spin correlation functions may be characterized 
by correlation len,ds which diverge with different exponents U. 

This type of analysis can also be done with the staggered two-spin correlation functions 
(cf (4.11)) 

(~0,O~n.O)co"n = (- ~)"(uo,Oun,O)co"". (7.4) 

In particular, as U + I/u, (i.e. w + we), these correlation functions diverge, as 
(1 - w/we)-'I4, because of the divergent prefactor M,',, However, the correlation length 
& w , ~ ~  remains finite. If this behaviour characterized all of the staggered two-spin 
correlation functions, at we as well as in the vicinity of we, then the only divergence 
in j ( ' )  would arize from the Ms', prefactor, and hence y& = 1/4. This value is consistent 
with our results from the analysis of the low-temperature series for j ( " ) .  This merits further 
study. 

8. Exact solution at U = 1 for arbitrary H 

In the body of this paper. we have investigated singularities in the square lattice king 
model as functions of complex temperature, for the fixed value of external magnetic field, 
h = in/2 (or h = -in/2). It is also of interest to study the complementary problem of 
singularities as a function of h for fixed K or U .  Indeed, in pursuing such a study, Yang 
and Lee were led to their celebrated circle theorem on the zeros of the partition function 
for the king model in the complex eZh plane [3,331. Here, we would like to mention some 
elementary results which elucidate how various quantities become singular at a particularly 
simple point, U = 1, as h is varied.These results may be combined with our determination 
of the exact singularities in f, U, C and M as one approaches this point by varying U. At 
I = 0, hence K = 0 and U = 1. the partition function reduces to a single-site problem, 
which can easily be calculated exactly for arbitrary H ,  dimensionality and lattice type. We 

cutoff on the latter). If c ( r )  - r-Pe-'/( as I -, CO, this integral is finite. Therefore, a divergence in i would 
arise solely from a divergence in lhe prefactor M2. This was noted in [ZO]. 
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find, independent of the dimensionality and lattice type 

f(u = 1, h) = ln(2coshh) 
U = - H t m h h  

h' k;'C = - 
cosh' h 

A4 = tanhh (8.4) 
- 1 x = -  

cosh'h 
Further, the m-point correlation functions factorize trivially and are independent of the 
positions of the spins 

(u7,. . .U?*) = (U,,)'" = M'" = (tanhh)". (8.6) 
To study the singularities of these functions, we must define new exponents, since the usual 
critical exponents apply to singularities of thermodynamic quantities as functions of T. To 
avoid a profusion of new symbols, we shall use the same Greek letters as for the respective 
2'-dependent singularities in thermodynamic quantities, but use a superscript (h)  to indicate 
that they describe the singularity as a function of h for K = 0. Thus, for the leading 
singularity in the specific heat, as a function of h, at the point h = h, (s denotes a generic 
singularity here) for fixed K = 0 (hence U = I), we shall write 

where dir denotes the direction, in the complex h plane, from which one approaches the 
singular point h,. Similarly, we  shall write. 

(kl xsiq - AY,i,,,(h - hr)-"'.*Ir (8.8) 
and so forth for the singularities in other quantities. From (8.3), it is evident that C diverges 
for 

i n  
2 h = (2n+ 1)- n E Z (8.9) 

with corresponding exponent a?' = 2 for any direction of approach to any of the singular 
points (8.9). The internal energy itself also diverges at these points, with the exponent 
a!*' - 1 = 1 and vanishes at the set 

h = n ix  n E Z.  (8.10) 

The magnetization vanishes and diverges at the same set of points as the internal energy U 
(cf equations (8.10) and (8.9)) with the respective exponents ,5i:iro = 1 and , 5 ~ ~ ~ v  = -1, 
again, independent of the direction of approach to these points in the complex h plane. The 
susceptibility diverges at the points (8.9) with exponent y?' = 2. 

It is useful to evaluate the general results above for the interesting special case of 
complex h = h, + in/2, where h, is real. For this case, we have f = ln(2isinhh,), 
U = -H/tanhh,, k,'C= -(h,+irr/Z)'/sinh'h,, M = l / tanhh,,  ;r = -I/sinh'h, and 
(U?, . . .uTm) = (tanh h,)-'". As h, 0 so that h --f in/2, we recover our previous results, 
that U and M diverge linear[y while C and f diverge quadratically. 

For loose-packed lattices, it is straightforward to extend these results to consider a 
staggered rather than uniform external field, H,,. i.e. to consider the partition function 
Z = ~r~~,exp(C.( - l )P(n)hSru, ) .  where p ( n )  was defined in equation (4.12) and 
h,, = OH,,, Since the summations over the spins on the even and odd sublattices are 
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decoupled, one finds the same equations as before, but with H replaced by H,,, i.e. 
f = ln(2coshhS,), U = -H,,tanhh,,, C = keh$lcosh2h,, and M,, = tanhh,,. The 
staggered susceptibility is = I/cosh2 h,,. 

9. Conclusions 

In this paper, we have studied a natural generalization of an exactly solved model from real 
non-negative temperature to complex temperature. This is the king model on the square 
lattice in an external magnetic field given by p H  = %in/2, first solved by Lee and Yang 
[3]. We have worked out the complex-temperature phase boundaries, as shown in figure 2. 
We have also extracted a low-temperature series expansion for the susceptibility, f .  From 
an analysis of this series using dlog Pad6 and differential approximants, we conclude that 
,f has divergent singularities at U = U, = 4 3  - 23'2) with exponent y,' = 514, at U = 1 
with exponent y,' = 5/2 and at U = us = -1 with exponent yi = 1. We have also 
studied the staggered susceptibility. Using exact results, we have determined the complex- 
temperature singularities of the specific heat and the uniform and staggered magnetization. 
We are currently in the process of extending our studies to other ?D lattices. The findings 
show again that even though the Ising model has a very simple Hamiltonian, it exhibits a 
fascinating richness of properties. 
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