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Abstract 

We consider the stationary solution for the Ca2+ concentration near a point Ca2+ source describing 

a single-channel Ca2+ nanodomain, in the presence of a single mobile buffer with one-to-one Ca2+ 

binding stoichiometry. Previously, a number of Ca2+ nanodomains approximations have been 

developed, for instance the Excess Buffer approximation (EBA), the Rapid Buffering 

approximation (RBA), and the Linear approximation (LIN), each valid for appropriate buffering 

conditions. Apart from providing a simple method of estimating Ca2+ and buffer concentrations 

without resorting to computationally expensive numerical solution of reaction-diffusion equations, 

such approximations proved useful in revealing the dependence of nanodomain Ca2+ distribution 

on crucial parameters such as buffer mobility and its Ca2+ binding properties. Here we present a 

new form of analytic approximation, which is based on matching the short-range Taylor series of 

the nanodomain concentration with the long-range asymptotic series expressed in inverse powers 

of distance from channel location. Namely, we use a “dual” Padé rational function approximation 

to simultaneously match terms in the short- and the long-range series, and show that this provides 

an accurate approximation to the nanodomain Ca2+ and buffer concentrations. We compare the 

newly derived method with the previously obtained approximations, and show that it yields a better 

estimate of the free buffer concentration for a wide range of buffering conditions. The drawback 

of the presented method is that it has a complex algebraic form for any order higher than the 

lowest bilinear order, and cannot be readily extended to multiple Ca2+ channels. However, it may 

be possible to extend the Padé method to estimate Ca2+ nanodomains in the presence of 

cooperative Ca2+ buffers with two Ca2+ binding sites, the case which existing methods do not 

address. 
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I. Introduction 

In the face of great diversity of Ca2+-dependent mechanisms, intracellular Ca2+ signals have to be localized 

in time and space to allow selective activation of specific reactions (1-3). This is particularly true in the case 

of fast Ca2+-triggered processes such as synaptic neurotransmitter release, hormone secretion and muscle 

contraction, which are controlled by localized Ca2+ influx through trans-membrane Ca2+ channels (4-7). The 

tight temporal and spatial localization of Ca2+ influx is maintained in part by the abundant intracellular Ca2+ 

buffers that absorb most of the Ca2+ influx soon upon its entry through a Ca2+ channel (8, 9). The resulting 

localized Ca2+ elevation near a cell membrane Ca2+ channel is termed Ca2+
 nanodomain, while 

corresponding events caused by brief opening of ryanodine and IP3 receptor-coupled Ca2+ channels are 

referred to as sparks or blinks (2, 7, 10), with relevant spatial scales of 10-100 nm, and the temporal scales 

of domain formation and collapse on the order of 10-100μs. It is a great challenge to image Ca2+ 

concentrations on such fine temporal and spatial scales; further, Ca2+-sensitive dyes perturb the very Ca2+ 

signals they are employed to measure. This explains the central role that mathematical modeling of buffered 

Ca2+ diffusion has played in the study of Ca2+ dynamics in neurons, endocrine cells and myocytes (2, 3, 11-

16) 

One of the contributions of early modeling efforts was the development of accurate analytical 

approximations of quasi-stationary Ca2+ nanodomains (15, 17, 18), which estimate the Ca2+ and buffer 

concentration profiles rapidly established near an open Ca2+ channel. Such approximations rely on the 

assumption of simple, one-to-one Ca2+-buffer binding, and can be understood in terms of asymptotic 

expansions with respect to appropriate model parameters (18) (see Methods). They allow avoiding 

computationally expensive integration of reaction-diffusion equations or stochastic simulations, while 

retaining considerable accuracy (19-23). These approximate solutions of deterministic reaction-diffusion 

equations can be combined with stochastic simulations of channel gating for computational efficiency in 

modeling cell Ca2+ dynamics (20, 24), noting however that buffering may increase Ca2+ fluctuations (25), 

which may in turn influence stochastic gating of Ca2+-dependent Ca2+ channels (24, 26) . Importantly, 

approximate closed-form solutions also provide deep insight into the dependence of Ca2+ concentration on 

buffering conditions. For example, the lowest-order Excess Buffer approximation (EBA) yields an 

approximate Ca2+ concentration decay proportional to exp(r / ) / (DC r), where r is the distance from the 

open Ca2+ channel, and the characteristic length =[DC /(k+/BT) ]1/2 clearly describes the effect of Ca2+ 

diffusivity DC, buffer concentration B
T
 and binding rate k+ on Ca2+ domain localization (15, 18, 27, 28). Also 

notable is the Rapid Buffering approximation (RBA) (15, 17, 27-30), which has been generalized to an 

arbitrary collection of Ca2+ channels along a flat membrane, despite the nonlinearity inherent in the buffering 

(21). Finally, the Linear approximation (LIN) is noteworthy for the simplicity of handling an arbitrary number 

of simple buffers (31), and gives an accurate approximation of Ca2+ concentration for a very wide range of 

buffering conditions (18) (see Fig. 5B, 6). 

Despite their great utility, previously developed approximations have several limitations: (i) they lose 

accuracy and may even yield non-monotonic distance dependence outside of their respective parameter 

regimes (18), and (ii) they are not easily extended to the case of cooperative buffers with more complex 

Ca2+ binding stoichiometry. Here we present a novel method, which involves matching the low-distance 

(short-range) and large-distance (long-range) series representations of the single-channel nanodomain 

solution. We show that the newly developed approximation gives better accuracy in estimating the free 

buffer concentration within a Ca2+ nanodomain, for a broader range of conditions. We believe that it may 

be possible to extend the new method to complex buffers with two Ca2+ binding sites, including buffers such 

as calmodulin and calretinin that contain EF-hand motifs characterized by cooperative Ca2+ binding (32). 
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II. Materials and Methods 

Following previous modeling efforts, we constrain our current analysis to the case of a single dominant Ca2+ 

buffer with molecules possessing a single Ca2+ ion binding described by the reaction 
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Here B and B* represents the free buffer and Ca2+-bound buffer, respectively (i.e. B*=CaB), and k+ (k) are 

the Ca2+-buffer binding (unbinding) rates. Assuming isotropic diffusion and mass-action kinetics, this yields 

the following reaction-diffusion system (17, 18) 
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where DB, D*B and DC are the diffusivities of the free buffer, bound buffer and Ca2+, respectively, and C, B 

and B* represents concentrations of Ca2+, free buffer and Ca2+-bound buffer, respectively. The boundary 

conditions depend on the details of the cellular compartment being modeled, and include at least one point 

source representing a Ca2+ channel. As in prior modeling efforts, we will consider semi-infinite domain 

bounded by a flat plane, with zero flux boundary condition for Ca2+ and buffer. In this case the reflection 

symmetry allows to extend the domain to infinite space, while doubling the current strength. 

Reaction 1 conserves two quantities, the total Ca2+ and total buffer concentrations; the corresponding two 

linear combinations of Eqs. 2 that cancel the reaction terms yield the two conservation laws (17, 18, 21, 29, 

33, 34): 
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We will adopt the commonly used simplifying assumption that buffer diffusivity is not affected by the binding 

of a Ca2+ ion, 𝐷𝐵 = 𝐷𝐵
∗  (18). Under this assumption, buffer conservation reduces to 𝐵 + 𝐵∗ = 𝑐𝑜𝑛𝑠𝑡 = 𝐵𝑇 

(total buffer concentration B
T
 is constant in time and space). At equilibrium, Ca2+ conservation condition 

becomes (17, 18, 21, 29, 33, 34): 

   2 * 0.C BD C D B          (4) 

For a collection of channels (point sources) on an infinite membrane with zero Ca2+ concentration at 

infinity, this Laplace’s equation has a simple exact solution in terms of the free-space Green’s function 

(21): 
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Here the summation extends over individual open Ca2+ channels with current amplitudes 𝐼𝐶𝑎,𝑘, F is the 

Faraday constant, and z=2 is the valence of the Ca2+ ion. We can use the above two conservation laws to 

eliminate all but one equation in Eq. 2. Choosing to retain the unbound buffer concentration as the remaining 

variable, we obtain:      

     2 .B TD B k BC k B B      (6) 
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where Ca2 concentration [Ca2+]=C can be eliminated using Eq. 5. Equations 5 and 6 completely describe 

the problem analyzed in this work. We will further restrict our analysis to the special case of a single channel 

at the origin, leading to a spherically symmetric solution. As noted above, we assume zero background 

Ca2+ concentration for the sake of simplicity, but the latter condition can be readily relaxed, as shown in the 

Appendix. 

II.1 Non-dimensionalization 

We non-dimensionalize Eqs. 5-6 following Smith et al. (18), normalizing Ca2+ and buffer concentrations by 

the buffer affinity and its total concentration, respectively: * */ , / , /T Tc C K b B B b B B   , and 

introducing the dimensionless distance variable    4 /C Car F K D I , where I
Ca

 is the Ca2+ current and 

/K k k  is the buffer affinity (dissociation constant). This normalizes the source strength to unity: 

   1/c  as 0. The dimensionless buffer conservation condition simplifies to b + b* = 1. For the case 

of a single channel examined here, we obtain: 
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where 
2

  is the spherically symmetric Laplacian operator, and the two remaining dimensionless  

parameters depend on the buffering properties, reactant diffusivities and the Ca2+ current amplitude (18): 
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Here  is the dimensionless buffer diffusion coefficient (denoted b in (18)); it quantifies the ratio between 

the rate of Ca2+ diffusion on the one hand, and the rate of Ca2+ binding and Ca2+ influx on the other hand. 

Therefore, parameter regime <<1 corresponds to the Rapid Buffering approximation (RBA). Because  

depends on the Ca2+ current amplitude, the applicability of RBA and other asymptotic regimes may change 

with changing Ca2+ current, as reviewed below and discussed in (18). 

The second parameter   quantifies the overall buffering effectiveness, and equals the product of the resting 

buffering capacity, =B
T / K, and the relative buffer mobility, D

B / DC
. Some expressions will have a simpler 

form in terms of parameter q=1/(1+), or in terms of the reciprocal denoted  =1/, as in (18). As the Ca2+ 

conservation condition in Eq. 7 shows, sufficiently close to the channel Ca2+ concentration is little perturbed 

from the free diffusion solution, c=1/ρ, unless  is sufficiently large (>>1, <<1; see Figs. 1-2). Example 

values of these parameters are given in Table 1 (cf. table 4.2 in (18)), for two widely expressed endogenous 

buffers and two exogenous buffers, and for several combinations of ICa values and total buffer 

concentration. 

Combining the free buffer equation with Ca2+ conservation in Eq. 7 allows to eliminate the equation for free 

Ca2+ and yields a single ordinary differential equation on a semi-infinite domain ρ>0 for the free buffer 

concentration, b(ρ): 

  2 1 1 /b b b b       .     (9) 

where 
2 b  is the spherical Laplacian. The boundary conditions are: 

  





2

0
lim 0b :  no buffer flux at Ca2+ channel mouth 
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 





lim ( ) 1b  :   buffer is free far from the channel (BB
T
, so b=B / B

T
1)   

This is a challenging equation as it represents a non-linear and singular boundary value problem. The 

concentration of buffer at the channel location, b
o
=b(ρ=0), is not known a priori, which is crucial for the 

existence of a unique solution for any pair of parameter values  and . 

 I
Ca = 0.1 pA I

Ca = 0.5 pA I
Ca = 2 pA 

B
T
 =100M B

T
 =1 mM B

T
 =100M B

T
 =1 mM B

T
 =100M B

T
 =1 mM 

BAPTA 
 

=0.28 

=0.0039 

=0.28 

=0.00039 

=0.011 

=0.0039 

=0.011 

=0.00039 

=0.00047 

=0.0039 

=0.00047 

=0.00039 

EGTA =461 

=0.004 

=461 

=0.0004 

=18.4 

=0.004 

=18.4 

=0.0004 

=1.15 

=0.004 

=1.15 

=0.0004 

Parvalbumin 
 

=0.851 

=0.0026 

=0.851 

=0.00026 

=0.034 

=0.0026 

=0.034 

=0.00036 

=0.0021 

=0.0026 

=0.0021 

=0.00036 

ATP =1060 

=2.62 

=1060 

=0.262 

=42.5 

=2.62 

=42.5 

=0.262 

=2.66 

=2.62 

=2.66 

=0.262 

 

Table 1. Values of dimensionless parameters  and =1/ (Eq. 8) for several endogenous and exogenous Ca2+ buffers: 

BAPTA: K
D

=0.176M, k =0.08ms1, D
B
=0.1m2/ms (35); EGTA: K

D
=0.18M, k=0.5 s1, D

B
=0.1 m2/ms (35); 

parvalbumin: K
D

=0.0514M, k =0.95s1, D
B
=0.043 m2/ms  (36-38); ATP:  K

D
=200M, k =45ms1, D

B
=0.168 m2/ms 

(39). Ca2+ diffusivity was set to D
C

=0.220 m2/ms (40). For a buffer with multiple identical Ca2+ binding sites, B
T
 is 

defined as the concentration of binding sites. 

II.2 Previously developed approximations 

The study of Smith et al. (18) provided a rigorous analysis and review of distinct asymptotic approximations 

for stationary Ca2+ nanodomains and showed that, with the exception of the Linear approximation (LIN), 

these methods can be understood as asymptotic expansions of the solution with respect to two 

nondimensional parameters =1/ and  given by Eqs. 8. These approximations are summarized below, 

focusing for the sake of simplicity on the special case of zero background Ca2+ concentration (c=0, b=1): 

 Excess Buffer approximation (EBA) (15, 18, 27) is an expansion in  around free-buffer solution b=1 

for 𝜆𝜇 = 𝑂(1) (the O() term in c(ρ) is derived in (18)): 

                             
 

21 exp 1 ; exp .b O c O    (10) 

 Linear approximation (LIN)  (15, 18, 23, 30, 31) is a linearization around constant equilibrium baseline 

b=1, c=0; expressed  in terms of parameter 𝑞 = 1/(1 + 𝜈) = 𝜇/(1 + 𝜇), it yields 

                          
   

1 exp 1 ; 1 exp .b q q c q q q    (11) 

 Rapid Buffering approximation (RBA) (15, 17, 18, 21, 27-30, 41) is a singular perturbation expansion 

in parameter  around reaction equilibrium solution, with =O(1). Following (18), we define the 

corresponding expansions up to orders O(1) and O() as 1st- and 2nd-order RBA, respectively: 
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 Nearly Immobile Buffer approximation (IBA), derived in (18), corresponds to <<1, 𝜆𝜇 = 𝑂(1) (<<1): 

 
   

   
 
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    
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   

      
  

2
2 2

4 3

2 1
; .

1 11 1
b O c O         (13) 

As noted above, EBA and LIN provide a convenient approximation for the space constant of exponential 

nanodomain Ca2+ decay as a function of distance from channel location. In contrast to EBA and IBA, RBA 

and the LIN satisfy Ca2+ conservation, and therefore Ca2+ and buffer concentrations are related to each 

other by the condition c = 1/ρ + (b1) (Eq.7). This feature is also shared by the approximation proposed 

in this study. As discussed in (18), LIN reduces to EBA when <<1, and the regions of applicability of EBA 

and LIN approximations substantially overlap. Therefore, we will only use LIN and RBA to analyze the 

relative accuracy of the newly presented approximation method (see Figs. 2-6), since these two 

approximations methods are accurate over a wider range of buffering conditions compared to EBA and 

IBA, as shown in (18). 

We note two critical simplifying assumptions inherent in the above-mentioned and the newly presented 

approximation methods. First, these approximations for Ca2+ concentration are only to be used above the 

spatial scale of the channel pore radius, since the point-channel idealization and the infinite concentration 

at the channel location in Eqs. 5, 10-13 are clearly unphysical: Ca2+ concentration reaches a finite value at 

the channel pore. In fact, the dependence of Ca2+ current on the finite Ca2+ concentration gradient across 

the pore determines the unitary steady-state channel current amplitude (42, 43). Second, the effect of Ca2+ 

pump is neglected, which will affect the accuracy of the approximation far from the channel. The contribution 

of linearized endoplasmic reticulum Ca2+ pumps to steady-state Ca2+ concentration approximation has been 

explored in (43). 

III. RESULTS 

As was emphasized by Smith et al. (18) and is demonstrated in Table 1, the applicability conditions of the 

previously developed approximations depend not only on intrinsic, fixed properties of Ca2+ buffers, but also 

depend on the magnitude of the Ca2+ current through the non-dimensional parameter . Thus, the accuracy 

of a particular approximation method will vary with the magnitude of the Ca2+ current, as well as the buffering 

parameters such as total buffer concentration. The primary motivation for the work presented here is to 

seek alternative approximations with more uniform accuracy with respect to the model parameters  and 

, seeking a method that could potentially be extended to cooperative buffers with two Ca2+-binding sites. 

In developing such a method, we will use two distinct series representations of the solution to Eq. 9, and 

will take advantage of its monotonicity in ρ and its boundedness (see Fig. 1). 

III.1 Short-range Taylor series 

Eq. 9 has only a regular singularity at =0, and therefore it does have a solution analytic at =0, representing 

the physical nanodomain solution that we seek. Interestingly, buffer concentration does not vanish at =0 

(see Fig. 1A1,B1,C1) despite unbounded Ca2+ concentration at the channel mouth: b(0)=bo0 (EBA and 

RBA approximate the value of b
o
 as 1 ( /)1/2 and 2 , respectively). Apart from solving Eq. 9 numerically, 

one can examine the solution’s Taylor series in : 
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This relationship between coefficients in the ρ-series will be used by the method developed below. 

Numerical exploration showed that this Taylor series has a finite radius of convergence that depends both 

on  and , and for a wide range of these buffering parameters the convergence radius extends to around 

ρ1. The 3rd order Taylor polynomials are shown as blue curves in Fig. 1, for three distinct sets of parameter 

values. As mentioned above, the boundary value of (0) ob b  is unknown a priori and has to be determined 

by the approximate solution. 

III.2 Long-range asymptotic series 

We will attempt to match the short-range series given by Eq. 14 with the large- (long-range) behavior, 

analyzed by making a coordinate mapping 1/x   in Eq. 9, which transforms this equation to  

         4 1 1 , (x 0) 1.xxx b b b bx b       (15) 

Although the Laplacian formally simplifies in the new variable x, this inversion map reveals an essential 

singularity at x=0 (the power of x multiplying the second derivative is higher than 2). Straightforward 

coefficient matching allows to find the following unique series solution near x=0 satisfying b(x=0)=1 (buffer 

is free infinitely far from channel; see Appendix for non-zero [Ca2+] at x=0): 

     




              3 2 4 3 4 4 4

1

( ) 1 1 (2 1) 2 1 5 1 .n

n

n

b x x qx q x q q x q q q q x O x        (16) 

Here we used parameter q = 1/ (1+) =  / (1+) to simplify the coefficients. Because Eq. 15 has an essential 

singularity at x=0, the obtained series is only an asymptotic series that the physical solution we seek 

approaches as x=1/0. Therefore, it does not converge for any finite value of x=1/ρ, but provides a good 

approximation to the true solution for any finite order, as shown in Fig. 1 (red curves). It is interesting to 

observe that for =1 (q=1/2) and =1/16 this system has an exact (finite) quadratic asymptotic b(x) = 1x/2 

+ x2/8. There is an inherent connection between this long-range expansion and other approximations: terms 

in Eq. 16 up to O(x3) agree with IBA (Eq.13), provided <<1, while terms up to O(x5) agree with RBA (Eq. 

12). This illustrates that reaction is approximately at equilibrium far from channel: note that reaction terms 

sum to zero at least up to order x3. 

III.3 Method 1: continuous match between the long- and short-range series 

While the ranges of applicability of the Taylor series in ρ and the asymptotic series in x are complementary 

to each other, these series representations may be close to each other at intermediate distances ρ1, x1. 

This suggests a simple way of approximating the full solution demonstrated in Fig. 1, whereby one seeks a 

continuous match of these two series representations at some intermediate value ρ* (denoted by a vertical 

dotted line). This involves numerical minimization of the difference between the values of two truncated 

series and their first derivatives at some intermediate coordinate ρ*, with respect to parameters ρ* and bo. 

This optimization procedure therefore provides approximate solution for the boundary value bo. In Figure 1, 

the stitching is achieved numerically (using the fminsearch routine in MATLAB, Mathworks, Inc.) for m=3 

and n=2, for three distinct values of parameters, and the resulting piece-wise polynomial function (red and 

blue curves) gives a good approximation of the exact solution estimated numerically (black dashed curves). 

Although the existence of a continuous optimizer is not in general guaranteed (note the discontinuity in Fig. 
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1B2), this simple method provides a good estimate for the solution for a wide range of model parameters  

and . 

 

When solving for the optimal match analytically rather than numerically, polynomial truncation of the ρ and 

x series up to order m and n, respectively, leads to a polynomial equation of order m+n. Therefore, the 

stitching continuity conditions cannot be solved in closed form for any order higher than m+n=4, and even 

in that case the resulting expressions could be prohibitively complex. Although a very simple closed-form 

solution is available for first-order linear case (m=n=1), we find the corresponding result to be rather 

inaccurate.  

As demonstrated in Figure 1 and noted earlier, the relative deviation of the Ca2+ concentration from the free 

diffusion case (c(ρ)=1/ρ) is small sufficiently close to the channel unless buffering is strong, i.e. unless <<1 

( >>1). 

III.4   Method 2: dual-Padé Approximation 

As mentioned above, one drawback of the piece-wise match method is that the existence and uniqueness 

of a smooth match is not guaranteed, and that it is inaccurate at the lowest order for which analytic continuity 

Figure 1. Matching short-range Taylor series (blue; 3rd order in ρ) and long-range asymptotic series (red: 2nd order 
in x=1/ρ) yields an accurate approximation of the numerically computed single-channel nanodomain profile (black 
dashed curve). A1, B1, C1: the dimensionless buffer concentration, b(ρ), as a function of distance from the Ca2+ 

channel, for the three indicated choices of model parameters  and . A2, B2, C2: corresponding dimensionless 

Ca2+ concentration, c = 1/ρ + (b 1)/, on a logarithmic concentration scale. The value of b(ρ=0) and the “stitching” 
argument value ρ* (vertical dotted lines) are chosen to minimize the difference between the two polynomials and 

their derivatives at the stitching point, ρ*. Parameter values in (A1, B1) correspond to the RBA regime <<1, 

=O(1); (A2, B2) correspond to the LIN regime, while neither RBA nor LIN are accurate for ==0.05 (A3, B3; cf. 

Fig. 2). Note that Ca2+ concentration is close to the free (unbuffered) nanodomain profile c(ρ) = 1/ρ, unless <<1, 
as in B2, B3. Continuous match is not achieved for parameter values in (B1, B2). 
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conditions can be obtained. Here we present an alternative approach, which we find to be more accurate 

for the same truncation order, and which yields a unique smooth approximation. This approach involves a 

rational function Ansatz to simultaneously match leading terms of the low- (short-range) series described 

by Eq. 14 and the low-x (long-range, high-) series given by Eq. 16: 

 

  





        
   

       

2 1

1 2 1

2 1

1 2 1

1 ... ...1
.

1 ... ...

n n n

n n

n n n

n n

A x A x A x A A
b x

B x B x B x B B
       (17) 

This can be viewed as a “dual” Padé approximation that simultaneously matches two distinct series 

representations up to order n, in contrast to the standard Padé method, which matches a single series up 

to order 2n. Imposing additional constraints 0k kB A   and 
1 1/ / 1k k k kB A B A
 

   enables us to satisfy 

two important physical constraints: the free buffer concentration b() is bounded and monotonically 

increasing from 0ob   at the channel mouth to   1b     infinitely far from the channel.   

It is instructive to consider carefully the lowest-order dual-Padé approximation, namely n=1, corresponding 

to the primitive bilinear function approximation:   



 

   
   

  

1 1

1 1

11
.

1

A x A
b x

B x B
      (18) 

Expanding this rational function in a Taylor series around ρ=0 yields 

      


   21 1 1

2

1 1

.
A B A

b O
B B

      (19) 

On the other hand, expanding the same function in a series around x=0 yields 

          2

1 11 .b x A B x O x       (20) 

Comparing these expansions with Eqs. 14 and 16 yields 3 constraints for the 3 unknowns, A
1
, B

1
 and b

o
: 

 


    



1 1 1
1 1 12

1 1

1
, , .

2 1

o
o

bA B A
b b B A

B B
     (21) 

 This nonlinear system has a unique solution satisfying monotonicity and boundedness conditions: 

 

 

 

 

   

 

            
 

 

1/2 1/2

1 1

1 1 8 1 1 1 8 1
, .

2 1 2 1
A B     (22) 

Figure 2 shows surprisingly decent performance of the primitive rational approximation given by Eqs. 18, 

22 (solid red curves), as compared with the more sophisticated Rapid Buffering approximation (RBA, blue 

curves) and the Linear approximation (LIN, green curves). Note also that the approximate solution for 

Ca2+ (Fig. 2A2, B2, C2) is harder to distinguish by eye from the exact solution, due to the dominance of 

the 1/ρ free diffusion term near the channel mouth.  

In dimensional form, the Ca2+ and buffer concentrations corresponding to the lowest-order, bilinear 

approximation are given by 



 
  

 

21 1 1

1 1

ˆ ˆ ˆ
[Buffer] , [ ] .

ˆ ˆ4

Ca T B
Total

C Ca

Ir A B D A B
B Ca

D F r Dr B r B

    (23) 

where    1 1 1 1
ˆ ˆ4 , 4Ca C Ca CA A I F K D B B I F K D    have dimensions of length, and F is the Faraday 

constant. 
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As results in Figure 2 demonstrate, the ratio of quadratic functions (dashed red curves) is even more 

accurate, and is superior to RBA and LIN in approximating buffer concentration for all three chosen pairs 

of parameter values. However, it should be noted that RBA has one important advantage in that it can be 

generalized to the case of multiple channels (21). Therefore RBA is a particularly powerful method 

whenever its applicability conditions <<1, =O(1) are satisfied.  

Another drawback of the Padé approach is the complexity of algebra beyond the leading order. Let’s 

consider for example the 2nd order approximation. As in the case of bilinear approximation (Eqs. 17-20), we 

start with the dual expansions of the rational function: 

    
   

 
 

   
 

    
    

 

2
2 2 2 1 1 2 1 2 2 31 2 2 1 2 2 1

2 2 3

1 2 2 2 2

,
B B A B A B B AA A A A B A B

b O
B B B B B

 (24) 

          
 

           

2
2 31 2

1 1 1 1 1 2 22

1 2

1
1 .

1

A x A x
b x A B x B B A A B x O x

B x B x
   (25) 

Figure 2.  Comparison of the rational approximation (Padé, red curves) with the Linear (LIN, green curves) and Rapid 
Buffer (RBA, blue curves) approximations for the equilibrium single-channel domain. A1, B1, C1: free dimensionless 

buffer concentration as a function of distance from the Ca2+ channel, for 3 distinct choices of model parameters  and 

. A2, B2, C2: free dimensionless Ca2+ concentration as a function of distance from the channel, on logarithmic scale. 
Dashed black curves show the accurate numerical solution. Note that the lowest-order, bilinear approximation (red 
solid curves, Eq. 22) is less accurate than RBA (blue curves in A1, A2) and comparable to LIN (green curves in B1, 

B2) in their respective parameter regimes, but its approximation of buffer concentration is superior for ==0.05 (C1, 
C2), where neither RBA nor LIN is applicable. Finally, 2nd-order rational approximation (red dashed curves, Eq.17) is 

as accurate as RBA (A1, A2) and LIN (B1, B2), and yields a far more accurate buffer estimate for ==1 (C1). Since 

2nd order RBA is inaccurate for ==0.05, 1st order RBA is shown in (C1, C2). Note the change in scale in (B1): the 

relative error of 1st order Padé approximation is within 6% of true solution. 
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Matching the coefficients of these two series expansions with Eqs. 14,16 yields the following 5 constraints 

for the 5 unknowns, A
1,2

, B
1,2 

and b
o
 (cf. Eq. 21, and recall that q = 1 / (1+) =  / (1+) ): 

     
         

 

 

 

      
   

 
 

    
 

2 2 2 1 1 2 2 12 1 2 2 1

2 3

2 2 2

2

1 1 2 2 1

1 1 / 2
, , ,

2 6

, .

o o oo
o

b b b B B A B A B A BbA A B A B
b

B B B

B A q B A q B q

 (26) 

After extensive algebraic simplification, one obtains two coupled quadratic equations for B
1
 and B

2
 

(coefficients A
1
 and A

2
 are then found using the last two equations in Eq. 26): 

  
 

        

  

 

      


        

2 2 2 2

1 1 2 2 1 2

2 3 2 2

1 1 2 1 2

2 / 2 2 0,

1 2 / 2 3 1 6 1 .

B B B B q q B q B

q B B B q q B q B q q q

    (27) 

This system has a unique, closed-form solution satisfying given physical constraints. However, this solution 

is too lengthy to show in print. Padé approximations of third order and higher are given by even more 

complicated polynomial system, with no closed-form solution for general values of  and =1/. However, 

for any particular set of parameter values, the coefficients are readily calculated directly or by substituting 

parameter values into obtained analytic expressions. For instance, below is the dual-Pade representation 

for the case ==1 (see Fig. 7), obtained by rounding to 52 bits the closed-form solution obtained using 

MATLAB’s symbolic toolbox (Mathworks, Inc.): 

 
52 2

52 2

2 8494216396637444 5511819248185369
.

2 10746016210322694 10321877399925404

 


 

 


 
b     (28) 

We emphasize that it matches exactly the long-range series up to 2nd order in x, and the relationship 

between coefficients in the quadratic Taylor polynomial in ρ. Given fixed values of parameters  and , we 

were able to obtain unique solutions for coefficients of the dual-Padé approximation up to fifth order and 

higher; the corresponding MATLAB code is given in Supplementary Information. Figure 3 shows that Padé 

approximations of increasing order quickly converge to the exact solution. 

 

As Figure 2 shows, both the previously developed approximations and the newly presented method have 

the lowest accuracy near the channel, and the greatest accuracy far from the channel, since the asymptotic 

Figure 3. Convergence of Padé approximations of increasing order (solid red-shade lines) to the numerically 

computed solution (dotted line) for ==0.05 (cf. Fig. 2C1, 2C2). Note that the 4th order Padé approximation is 
visually indistinguishable from the exact solution on the given axis resolution scale. 
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behavior for x0 is determined by the Dirichlet boundary condition corresponding to the resting background 

Ca2+ concentration infinitely far from channel. However, when comparing free Ca2+ concentration the loss 

of accuracy close to the channel is compensated by the fact that the singular free diffusion term 1/ρ 

dominates [Ca2+] near the channel mouth (see Figs. 1A2, B2, C2). 

Figures 4, 5 quantify the accuracy of estimating the free buffer and free Ca2+ concentrations, respectively, 

comparing the presented Padé method (Fig. 4C,4D,5C,5D) with RBA (Figs. 4A, 5A) and LIN (Figs. 4B, 5B), 

for a wide range of parameters  and  spanning 6 orders of magnitude. Following Smith et al. (cf. Fig. 9.2 

in (18)), in Figure 4 we use an absolute deviation measure to quantify the accuracy in buffer concentration, 

while a logarithmic deviation measure is used to quantify the accuracy in Ca2+ concentration, in view of the 

unbounded 1/ρ behavior close to the source (channel):  

    


  
1

1
,

N

approx numer approx n numer n

n

b b b b
N

      (29) 

    


  
1

1
log log .

N

approx numer approx n numer n

n

c c c c
N

     (30) 

The two deviations measures are computed on a set of N=100 points spanning 5 orders of magnitude of 

distance ρ, from 10-3 to 102, on a logarithmic scale: 3 5 /10010 n

n
   (n=1, 2, …, N). The gray shade in Figs. 

4 and 5 indicates base-10 logarithm of these deviation measures, with unshaded region corresponding to 

the average deviation of 10-3, which would be too small to resolve by naked eye. As can be inferred from 

Figs. 2A1,B1,C1, the error in estimating buffer concentration quantified by Eq. 29 is to large degree 

determined by the error in estimating the boundary value of buffer concentration at channel location (bo). 

Figure 6 summarizes the data in Figs. 4-5, showing the regions in parameter space where each of the main 

approximations (RBA, LIN and 2nd order Padé) achieves superior accuracy relative to the other two. 

Despite the fact that the newly presented method conserves Ca2+ concentration, and therefore buffer and 

Ca2+ concentrations can be readily derived from one another, the Padé approximation seems to provide 

much greater accuracy in estimating the free buffer rather than the free Ca2+ concentration (cf. Fig. 6A and 

Fig. 6B). In fact, Figs. 5 and 6B show that the 2nd order Padé approximation achieves superior accuracy in 

estimating Ca2+ concentration relative to RBA and LIN only in a narrow region of parameter space. It may 

appear counter-intuitive that the accuracy in Ca2+ estimation does not seem to match the accuracy in 

estimating free buffer concentration, despite the one-to-one relationship between the two. This apparent 

paradox is a result of the difference in the two deviation measures given by Eqs. 29-30. While the deviation 

between exact and approximate buffer concentration is the largest near the channel mouth for all methods 

studied, the relative or logarithmic Ca2+ concentration deviation measure is not sensitive to a finite error 

near the channel location, since it is dominated by the free diffusion term 1/ρ close to the channel: 𝑐(𝜌) =

𝜈(𝑏(𝜌) − 1) + 1/𝜌. Therefore, the relative error in Ca2+ concentration approximation is particularly sensitive 

to the accuracy of the method at intermediate values of distance, rather than its accuracy in the vicinity of 

the channel. 
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IV. Discussion 

As early modeling studies of cell Ca2+ diffusion and buffering demonstrated (11-14, 44), quasi-stationary 

Ca2+ concentration domains are established within a fraction of millisecond after the opening of a single 

channel, and collapse as rapidly after the channels close. This suggests that simple, closed-form 

approximations to the stationary single-channel nanodomains often provide sufficient accuracy in 

estimating Ca2+ and buffer concentration in the vicinity of a Ca2+ channel, allowing to avoid costly reaction-

diffusion deterministic or stochastic simulations. Here we presented an initial attempt at extending previous 

work on such approximate solutions, introducing a qualitatively new type of approximation that takes 

advantage of two properties of the exact solution that previous approximations did not explicitly use: (i) the 

long-range asymptotic series representation of the solution in powers of reciprocal distance, and (ii) the 

monotonic, bounded character of the free buffer concentration. Even at lowest order, the resulting Padé 

approximation achieves a decent estimate for the free buffer and Ca2+ concentration near an open channel, 

for several orders of magnitude of dimensionless parameters  and . Although the presented method is 

particularly accurate in estimating free buffer concentration, it can also provide accuracy improvement in 

estimating free Ca2+ as well, given sufficiently large values of  (Fig. 4C,D; Fig. 5). 

Figure 4. Accuracy of free buffer concentration estimation by the dual-Padé approximation (C, bilinear order; D, 

quadratic order), as compared to the RBA (A) and LIN (B) approximations. In (A), either 1st or 2nd order of RBA 

approximation is used, whichever is more accurate, for each pair of parameter values  and . The six contour lines 
correspond to the average absolute deviation (see Eq. 29) of 10-3 (white), 10-2.5, 10-2, 10-1.5, 10-1, and 10-0.5 (black). 

Symbols mark the three sets of model parameters examined in Figs. 1-2: triangle: =1, =0.05 (RBA regime); square: 

=0.05, =1 (LIN regime); circle: ==0.05  (neither RBA nor LIN is accurate).  (neither RBA nor LIN is accurate). 
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The drawback of the newly presented method is that the expression for the coefficients of the rational 

function become very complex for any order higher than bilinear, requiring the use of a computer algebra 

system. However, we view the Padé approximation as only the first example of a new class of bounded, 

monotonic approximations that combine information about the short- and long-range behavior, and which 

can be improved by seeking a more accurate Ansatz. For example, one could attempt to match the 

singularities of the analytic extension of the true solution to the complex- plane, starting with the behavior 

for negative values of ρ shown in Fig. 7 for the particular case ==1 (see Eq. 28). The presented rational 

approximation does not match the behavior of the solution as  . As Figure 7 shows, b  in this 

limit, with no poles on the real <0 axis, while the Padé approximations always approaches unity as . 

Further, some Padé approximants may have poles on the negative real axis: for instance, the bilinear 

approximation given by Eq. 18 has an obvious singularity at
1B   , contrary to the exact solution shown 

in Fig. 7. This suggest a possibility for significant improvement by seeking an Ansatz which matches the 

behavior of the analytic extension of the true solution seen in Fig. 7. The singularities of the true solution in 

the complex-ρ plane could also be examined. 

Figure 5. Accuracy in Ca2+ concentration estimation by the dual-Padé approximation (C, bilinear oder; D, quadratic 

order), as compared to the RBA (A) and LIN (B) approximations. In (A), either 1st or 2nd order of RBA approximation 

is used, whichever is more accurate, for each pair of parameter values  and . The six contour lines correspond 

to the average relative (logarithmic) deviation norm (see Eq. 30) of 10
-3

 (white), 10
-2.5

, 10
-2

, 10
-1.5

, 10
-1

, and 10
-0.5

 

(black). Symbols mark the three sets of model parameters examined in Figs. 1-2: triangle: =1, =0.05 (RBA 

regime); square: =0.05, =1 (LIN regime); circle: ==0.05  (neither RBA nor LIN is accurate). 
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More importantly, it is possible that the presented approach can be extended to the study of complex buffers 

with more realistic Ca2+ binding properties. Although most of prior modeling efforts focused on a simple 

buffer with one-to-one Ca2+ binding stoichiometry, the case also considered here, most biological buffers 

possess several binding sites with distinct Ca2+ binding characteristics. If the binding to such multiple sites 

is independent (non-cooperative), they can be effectively modeled as a combination of several simple 

buffers with binding properties that correspond to each of the distinct binding sites. However, many widely 

expressed buffers such as calretinin and calmodulin are characterized by two-site molecular EF-hand 

domains with cooperative Ca2+ binding, whereby the binding of a second Ca2+ ion proceeds with much 

greater affinity once the first binding site is occupied, in a way similar to the oxygen binding to hemoglobin 

Figure 6. Comparison of parameter regions of smallest error in estimating (A) buffer and (B) Ca2+ concentration. 
White: region of best performance of 1st or 2nd order RBA; (gray): region of best performance of LIN; (black): 
region of best performance of the 2nd order Padé approximation. These plots summarize data shown in Figs. 4, 

5. Symbols mark the three sets of model parameters examined in Figs. 1-2: triangle: =1, =0.05 (RBA regime); 

square: =0.05, =1 (LIN regime); circle: ==0.05 (Padé approximation regime). 

Figure 7. Comparison between the numerical solution (blue solid and dotted curves) and the 2
nd

 order Padé 
approximation (red dashed curve, Eq. ) for the dimensionless free buffer concentration at positive and negative 

(unphysical) values of distance, for ==1. Despite the good agreement for physical distances (ρ>0), the analytic 

extension of true solution approaches   = 1 as ρ  , contrary to the rational function approximation, which 
always approaches +1 in this limit.  
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(32, 45). In this case an additional small parameter corresponding to the ratio of affinities of the two Ca2+-

binding reactions would confound the asymptotic conditions of applicability of previously developed 

approximations. Because of the prominent role of calmodulin in a variety of Ca2+-dependent pathways, 

including long-term potentiation (46), extending previously obtained results to cooperative buffering is 

important. Better tools for describing cooperative buffering may also help in interpreting imaging data 

obtained with the latest genetically encoded calmodulin-derived Ca2+ indicator dyes (47-50). More accurate 

description of binding dynamics of these dyes may help in increasing the temporal resolution of Ca2+ 

imaging obtained using these synthetic buffers. Our preliminary exploration suggests that obtaining the 

long-range (high-ρ) asymptotic series for the case of cooperative buffer is not significantly more complicated 

as compared to the simple-buffer case. Analysis of cooperative binding case will be investigated as a direct 

future extension of this work.  
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Appendix 

In the case of non-zero background Ca2+ concentration infinitely far from channel, Ca2+ conservation 

condition, Eq. 5, reads 

   


 



   



1

1
,

4 | |

N
Ca

C B

k k

I
D C C D B B

F r r
    (31) 

where C

 and B

 
 are the background [Ca2+] and [B] infinitely far from the channel and in equilibrium with 

each other:  /T D DB B K K C
 
  . Non-dimensionalizing this Ca2- conservation condition for the case of 

a single channel at the origin, we obtain 

  
 

   1/ ,c c b b      (32) 

where the dimensionless background concentrations of buffer and Ca2+, / Tb B B
 
  and / Dc C K

 
 , 

are related by  1/ 1b c
 
  . The dimensionless equation for free buffer then becomes (cf. Eq. 9): 

   

 




 

  





 


 

     



 

2 1

2

0

Unbound buffer: / ,

Boundary conditions: lim 0, lim .

b b b b b b

b b b

    (33) 

Asymptotic series for the solution near x=0 and the Taylor series near ρ=0 then read (cf. Eqs. 14,16): 

 
 

 

 

 
 

 
     

 

  


   

 
   

 

      


  
 




 



                          
 

   
     

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2 2

1

2 3

0

1 3 1
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/ 2
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2 6

o on o
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Here =1/. The lowest-order Padé approximation is (cf. Eq. 18): 
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with coefficients given by (cf. Eq. 22): 

  
 

  
 

   

 

       

 

         
    

 

1/2 1/2
2 2

1 12 2

8 1 8 1
, .

2 1 2 1

b b b b b b b b
A B

b b

   (36) 

In dimensional forms, the Ca2+ and buffer concentrations corresponding to the lowest-order, bilinear 

approximation are given by 





  

 
   

 

21 1 1

1 1

ˆ ˆ ˆ
[Buffer] , [ ] .

ˆ ˆ4

Ca B

C C

Ir A D A B
B Ca C B

D F r Dr B r B
   (37) 

where    1 1 1 1
ˆ ˆ4 , 4Ca C Ca CA A I F K D B B I F K D   , and F is the Faraday constant. 
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