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Abstract Synchronization of excitable cells coupled by
reciprocal inhibition is a topic of significant interest due
to the important role that inhibitory synaptic interac-
tion plays in the generation and regulation of coher-
ent rhythmic activity in a variety of neural systems.
While recent work revealed the synchronizing influence
of inhibitory coupling on the dynamics of many net-
works, it is known that strong coupling can destabi-
lize phase-locked firing. Here we examine the loss of
synchrony caused by an increase in inhibitory coupling
in networks of type-I Morris–Lecar model oscillators,
which is characterized by a period-doubling cascade
and leads to mode-locked states with alternation in the
firing order of the two cells, as reported recently by
Maran and Canavier (J Comput Nerosci, 2008) for a
network of Wang-Buzsáki model neurons. Although
alternating-order firing has been previously reported as
a near-synchronous state, we show that the stable phase
difference between the spikes of the two Morris–Lecar
cells can constitute as much as 70% of the unperturbed
oscillation period. Further, we examine the generality
of this phenomenon for a class of type-I oscillators that

Action Editor: Frances K. Skinner

Electronic supplementary material The online version
of this article (doi:10.1007/s10827-008-0112-8) contains
supplementary material, which is available to authorized
users.

M. Oh · V. Matveev (B)
Department of Mathematical Sciences
and Center for Applied Mathematics and Statistics,
New Jersey Institute of Technology,
Newark, NJ 07102, USA
e-mail: matveev@njit.edu

are close to their excitation thresholds, and provide
an intuitive geometric description of such “leap-frog”
dynamics. In the Morris–Lecar model network, the
alternation in the firing order arises under the condition
of fast closing of K+ channels at hyperpolarized poten-
tials, which leads to slow dynamics of membrane poten-
tial upon synaptic inhibition, allowing the presynaptic
cell to advance past the postsynaptic cell in each cycle of
the oscillation. Further, we show that non-zero synaptic
decay time is crucial for the existence of leap-frog firing
in networks of phase oscillators. However, we demon-
strate that leap-frog spiking can also be obtained in
pulse-coupled inhibitory networks of one-dimensional
oscillators with a multi-branched phase domain, for
instance in a network of quadratic integrate-and-fire
model cells. Finally, for the case of a homogeneous net-
work, we establish quantitative conditions on the phase
resetting properties of each cell necessary for stable
alternating-order spiking, complementing the analysis
of Goel and Ermentrout (Physica D 163:191–216, 2002)
of the order-preserving phase transition map.

Keywords Synchronization · Non-weak coupling ·
Non-synchronous dynamics · Inhibitory network ·
Type-I excitability · Synaptic inhibition · Leader
switching · Spike-time response · Phase resetting

1 Introduction

The question of synchronization of coupled oscillators
is of fundamental importance for the understanding of
rhythmogenesis in biological networks, and has been
a subject of great interest in mathematical biology
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and neuroscience (Winfree 2001; Izhikevich 2006). In
order to better understand the dynamics of multi-
neuron networks, it is important to fully examine the
case of a two-cell network, particularly relevant in the
study of central pattern generators which often contain
sub-circuits composed of pairs of mutually inhibitory
cells. When the coupling between oscillators is weak,
synchronization and its stability can be analyzed us-
ing the well-developed geometric phase-reduction ap-
proach and the method of averaging (Kuramoto 1984;
Ermentrout and Kopell 1984, 1990; Hoppensteadt and
Izhikevich 1997; Izhikevich and Kuramoto 2006). The
weak-coupling theory is very general in its applicabil-
ity, and for a homogeneous two-cell network predicts
stable phased-locked firing, either synchronous or anti-
synchronous, depending on the properties of the cou-
pling and the intrinsic dynamics of the oscillators (van
Vreeswijk et al. 1994; Hansel et al. 1995; Ermentrout
1996). Non-weakly coupled networks can exhibit a
much richer variety of dynamic behaviors, but their
analysis presents a much greater challenge, as there is
no general method of determining the stable modes of
network activity in this case. However, in the case of
pulsatile coupling which is lasting only briefly relative
to the length of the unperturbed period, and in the case
of sufficiently fast return to the limit cycle upon synap-
tic perturbation, the dynamics of non-weakly coupled
networks can be analyzed using Poincaré return maps

for the inter-spike intervals, derived from the phase-
resetting curves of the coupled cells (Winfree 2001;
Kopell 1988; Canavier et al. 1999; Goel and Ermentrout
2002; Jones et al. 2000; Kopell et al. 2000; Kopell and
Ermentrout 2002; Acker et al. 2003). The Poincaré
firing map approach is also useful in the analysis of
non-weakly coupled relaxation oscillators (Somers and
Kopell 1993; Rubin and Terman 2000; Izhikevich 2000),
and for networks of one-dimensional model cells such
as integrate-and-fire units (Mirollo and Strogatz 1990;
van Vreeswijk et al. 1994; Bressloff and Coombes
2000).

While recent work has revealed the synchronizing
role of inhibitory synaptic interaction on the activity
of many networks (reviewed in White et al. 1998), it is
known that non-weak coupling can destabilize phase-
locked dynamics (Ermentrout and Kopell 1991). For
instance, many network models exhibit the transition
to the “oscillator death” mode as the coupling strength
is increased, whereby some of the neurons become
trapped at a fixed point by the strong synaptic currents
arriving from the active cell (Ermentrout and Kopell
1990; Bressloff and Coombes 1998). Further, several
recent studies explored the emergence of more com-
plex non phase-locked states in the case of heteroge-
neous networks, whereby both neurons are active at
different intervals of the oscillation period (see e.g.
White et al. 1998; Bressloff and Coombes 2000). In
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Fig. 1 Network activity states at different values of coupling
strength, ḡsyn. The potentials of the two cells are shown as red
and black traces, respectively. (a) Synchronous phase-locked
firing (ḡsyn = 0.03). The spiking period is close to the unper-
turbed period of 45 ms. (b) Alternating-order (leap-frog) spiking

(ḡsyn = 0.17) (c) Period-2 alternating-order spiking (ḡsyn = 0.22)
(d) Chaotic state, irregular inter-spike intervals (ḡsyn = 0.29)
(e) Bursting (3:3 alternating-order firing, ḡsyn = 0.34) (f) Spike-
suppress state (“oscillator death”, ḡsyn = 0.5)
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particular, recent work of Maran and Canavier (2008)
revealed that the assumption of preserved firing order
does not hold in a network of Wang-Buzsáki model
neurons with type-I excitability (Wang and Buzsáki
1996). They showed the emergence of 2:2 mode-locked
states (see Fig. 1(b), (c)), and examined the influence of
heterogeneity and second-order phase resetting on this
network activity state.

The goal of our work is to reveal the generality
of such alternating-order firing (termed “leap-frog”
spiking by G.B. Ermentrout, or “leader switching” by
Acker et al. 2003) for inhibitory networks of type-I os-
cillators. In particular, we examine leap-frog dynamics
observed in a network of simpler Morris–Lecar model
neurons in a parameter regime corresponding to type-
I excitability. This network exhibits synchronous firing
for weak coupling, which is readily destabilized even by
a moderate increase in coupling strength (Figs. 1, 2).
Our aim is to provide an intuitive geometric description
of this activity state, by examining the features of the
phase-space trajectory of the two cells during spike-
order switching. We show that leap-frog dynamics can
arise in inhibitory networks of cells which are close to
their excitation thresholds, under the additional con-
dition of slow dynamics of membrane potential upon
hyperpolarization. In the Morris–Lecar model we con-
sider, such slow dynamics is caused by the fast closing of
K+ channels at hyperpolarized potentials, which leads
to time-scale separation and associated trapping of the
trajectory by the nullcline of the recovery variable. This
allows even a moderate synaptic inhibition to retard the
dynamics of the postsynaptic cell for a duration which
is greater than the interval since the preceding spike of
that cell, leading to the change of the spiking order.

An interesting aspect of the alternating-order spik-
ing is that it cannot be obtained in a network of
phase oscillators with instantaneous synaptic coupling,
and that non-zero synaptic time constant is crucial for
achieving leap-frog spiking in such networks. However,
we show that order alternation can be obtained in
a purely pulse-coupled network if the phase domain
of each oscillator is augmented with an additional
negative-value branch representing the strong suppres-
sion of the cell upon synaptic inhibition. For instance,
we find that leap-frog spiking can also be achieved in
a network of pulse-coupled quadratic integrate-and-
fire model neurons. Further, such pulse-coupled aug-
mented phase model network provides an accurate
description for the dynamics of the Morris–Lecar
model network. Following Maran and Canavier (2008),
we use the phase-resetting method to analyze leap-frog
spiking on a quantitative level, and provide a simplified
analysis of existence and stability conditions for leap-
frog spiking for the case of identical cells. Restricting
our consideration to a homogeneous network allows
us to establish the most basic conditions on the phase-
resetting properties necessary for leap-frog spiking.

We note that alternating-order firing was examined
previously in homogeneous networks of two coupled
relaxation oscillators with excitatory synapses by Bose
et al. (2000) and with inhibitory synapses by Sato and
Shiino (2007). However, in both works the stable phase
difference between successive spikes of the two cells
is much smaller than the width of an action potential.
This is also true for the activity states explored by
Maran and Canavier (2008). For this reason, earlier
studies referred to the alternating-order spiking as a
near-synchronous state. In contrast, here we show that
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Fig. 2 Bifurcation diagram of the Morris–Lecar model network.
ISI∞, the asymptotic values of the intervals between consecutive
spikes (not necessarily spikes of the same cell) are plotted as a
function of the coupling strength, ḡsyn, for two values of synaptic

decay time: (a) τsyn = 1 and (b) τsyn = 2. The dotted lines corre-
spond to each of the six activity states in Fig. 1(a)-(f). Note the
difference in scale along the ḡsyn axis
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the interval between the neighboring spikes of the
two cells can constitute more than one half of the
resting oscillation period. This is particularly true for
the multiple-period leap-frog spiking, in which case
the interval between the spikes of the two cells can
reach 70% of the unperturbed period, and is an order
of magnitude longer than the decay time of synaptic
inhibition (see e.g. Fig. 1(c)). Thus, alternating-order
activity represents a distinct activity state that cannot
be described as a near-synchronous state.

2 Model

We consider a pair of two identical model neurons
with type-I excitability (Rinzel and Ermentrout 1998),
each modeled as a Morris–Lecar oscillator (Morris and
Lecar 1981). Each cell possesses a periodic limit cycle
trajectory corresponding to an action potential, which
results from the interplay between the depolarizing cal-
cium current ICa and the activation w of the repolariz-
ing potassium current, IK. The two cells are assumed to
be identical, and are coupled by an inhibitory synaptic
current, Isyn(V, s):

C
dV
dt

= −ICa − IK − IL − Isyn(V, s) − Iapp

dw

dt
= (w∞(V) − w)/τ∞(V)

ICa = ḡCam∞(V)(V − VCa)

IK = ḡKw(V)(V − VK)

IL = ḡL(V − VL) (1)

where C = 2 μF/cm2 is the membrane capacitance, V
is the cell membrane voltage in mV, t is time in ms, IL is
the passive leak current, and Iapp = −14 μA/cm2 is the
applied current. The remaining parameters are VCa =
120mV, VK = −84mV, VL = −60mV, gCa = 4mS/cm2,
gK = 8mS/cm2, gL = 2mS/cm2.

The steady-state activation of calcium current is

m∞(V) = 1

2

[
1 + tanh

(
V + 12

18

)]

The potassium current activation amplitude and activa-
tion rate are

w∞(V) = 1

2

[
1 + tanh

(
V + 8

6

)]

1

τ∞(V)
= 2

3
cosh

[
V + 8

12

]
(2)

Given this choice of model parameters, each of the
two uncoupled oscillators exhibits periodic spiking with

a period of about 45 ms. Note the fast approach of
τw(V) to zero at hyperpolarized potentials (Eq. (2)),
whereby the trajectory overlaps the w-nullcline in the
quiescent phase of the oscillation (see schematic repre-
sentation of the limit cycle in Fig. 4). The fast closing
of the K+ channels is a critical condition for achieving
alternating-order spiking in the Morris–Lecar model.
Such fast kinetics of the w variable can be somewhat
relaxed without destroying the qualitative aspects of
the dynamics, and alternating-order firing can also be
achieved in the type-I parameter regime corresponding
to Fig. 7.7 of Rinzel and Ermentrout (1998).

The two cells are coupled through the synaptic cur-
rent given by

Isyn = ḡsyns(t)(V − Vinh)

where ḡsyn is the maximum synaptic conductance and
Vinh = −80 mV is the reversal potential. The dynamics
of the synaptic gating variable s(t) depends on the
presynaptic cell potential, Vpre:

ds
dt

= − s
τsyn

σ(Vth − Vpre) + 1 − s
τγ

σ (Vpre − Vth) (3)

where Vth = −3 mV is the synaptic threshold, σ(·) is
a sigmoid function, σ(x) = [1 + tanh(4x)]/2, and τsyn

and τγ = 0.2 ms are the synaptic decay and rising time
constants, respectively. We focus primarily on short
synaptic decay times of about τsyn = 1 − 5 ms, and in
Section 3.8 discuss the effect of longer τsyn.

3 Results

3.1 Network activity states

We start by exploring in detail the behavior of the sys-
tem described by Eq. (1), the two identical ML model
neurons with mutually inhibitory synaptic interaction.
Figure 1 shows the diversity of behaviors exhibited
by this network for different values of the maximal
synaptic conductance, ḡsyn, and the bifurcation diagram
presented in Fig. 2 demonstrates the transitions be-
tween the different activity states. For very small values
of this coupling parameter, the two neurons fire in
synchrony, as predicted by the weak coupling theory.
When ḡsyn is increased, the synchronized state loses
stability, and the network transitions to the alternating-
order 2:2 mode-locked state shown in Fig. 1(b), also re-
ferred to as “leap-frog” spiking by Maran and Canavier
(2008). In this state, there is a stable non-zero time
interval between the spikes of the two cells, with cells
changing firing order in each cycle of the oscillation.
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For yet higher values of the coupling, the interval
between consecutive spikes of the two cells alternates
in each cycle between two distinct values, as shown in
Fig. 1(c). For higher still values of ḡsyn, the alternating-
order firing state undergoes a period-doubling cascade
and gives way to chaotic firing in which the inter-
spike intervals and the spiking order change irregularly.
Further, for narrow ranges of ḡsyn values multi-spike
m : n alternating order firing states emerge, as shown
in Fig. 1(e), which represent a form of bursting. Finally,
very strong coupling leads to the so-called “oscillator
death” state shown in Fig. 1(f), whereby the spiking of
one neuron provides enough inhibition to completely
prevent the spiking of the partner cell (Ermentrout and
Kopell 1990; Bressloff and Coombes 1998).

Bifurcation diagram presented in Fig. 2 explores the
transitions between these different behaviors, showing
the coupling-strength dependence of the asymptotic
(equilibrium) intervals between two consecutive net-
work spikes, which may or may not be the spikes of the
same cell. These inter-spike intervals are normalized to
the period of the uncoupled cell, and are denoted ISI∞.
The values of ḡsyn corresponding to each of the activity
states shown in Fig. 1 are marked by vertical dashed
lines. Even though the set of ISI∞ values does not fully
characterize the network state, since it does not ex-
plicitly contain information about the spiking order of
the two cells, it allows one to easily infer the dynamics
at any given value of ḡsyn. Note in particular that the
presence of the value ISI∞ ≈ 1 indicates that at least
one of the cells spikes twice in a row in each cycle, with
negligible interference from the other cell. This is only
possible if the cells change their firing order in each
oscillation cycle. The fact that the interval between the
spikes of the same cell in Fig. 1(b)–(c) is close to the un-
perturbed period indicates that the second-order phase

resetting is not crucial for the alternating order state,
and that the first-order phase resetting dominates (cf.
Maran and Canavier 2008). It is one of our main goals
to provide a simple geometric explanation and quanti-
tative analysis of the alternating-order spiking behavior
seen in Fig. 1(b)–(c), and to explain the period-doubling
cascade evident in Fig. 2.

Figure 2(b) presents the bifurcation diagram for a
larger value of the synaptic decay time constant (τsyn =2
as opposed to τsyn = 1 used in all the simulations in this
paper), and demonstrates that the qualitative features
of the network behavior are preserved for a range
of τsyn values. The main effect of prolonging synaptic
decay is to increase the total amount of inhibition that
each cell receives from its partner, thereby compressing
the bifurcation diagram along the ḡsyn axis. The dynam-
ics of the network undergoes a significant change only
for values of τsyn beyond about 6 ms, or roughly 1/8 of
the unperturbed period of 45 ms. The case of longer
synaptic decay time is examined in Section 3.8.

3.2 Destabilization of phase-locked firing: comparison
of excitation and inhibition

Given the type-I Morris–Lecar parameter regime we
consider, the weak coupling theory predicts stable
anti-synchronous and synchronous firing for excita-
tory and inhibitory synaptic coupling, respectively (van
Vreeswijk et al. 1994; Hansel et al. 1995; Ermentrout
1996). As demonstrated in Fig. 3, this agrees with the
dynamics exhibited by our model in the case of small
synaptic conductance (top panels, ḡsyn = 0.01). As the
synaptic conductance is increased however, there is a
qualitative difference between the stability of phase-
locked firing in the case of excitation versus inhibition.

Fig. 3 Effect of an increase in
coupling strength on the
stability of phase-locked
firing in (a) an excitatory
network, and (b) an
inhibitory network. ḡsyn
changes from 0.01 to 0.2 in
both cases. In the case of
excitation (a), anti-phase
synchronous firing is stable
for a wide range of coupling
strength, while the phase-
locked synchronous firing is
readily destabilized in the
case of mutual inhibition (b)
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Fig. 4 Effect of non-weak coupling on the phase-plane trajectory
of the postsynaptic cell. Double arrows indicate the movement
of the V-nullcline during each cycle of the network oscillation.
(a) In the case of excitation, an increase in synaptic coupling
causes no qualitative change in the phase-plane dynamics. (b)
For sufficiently strong inhibition, the V-nullcline of the post-

synaptic cell intersects the w-nullcline with each presynaptic
input, pushing the cell below the excitation threshold and off the
limit cycle trajectory. Thick blue curve indicates the trajectory of
each cell during one cycle of the alternating-order spiking shown
in Fig. 1(b), (c). Note that the trajectory overlaps the w-nullcline
during the hyperpolarized phase of the oscillation

Namely, the anti-synchronous state remains stable for
non-weak excitatory coupling (see Fig. 3(a)), but an in-
crease in inhibitory coupling quickly destabilizes phase-
locking and leads to the alternating-order state shown
in Fig. 3(b).

This difference between the effects of non-weak
excitation and inhibition becomes obvious when one
considers the phase plane dynamics of the system.
Figure 4 illustrates schematically the effect of non-weak
synaptic interaction on the phase-plane dynamics of
the post-synaptic cell. Note that there is no qualitative
change in the geometry for a wide range of excita-
tory conductances. However, an obvious qualitative
change occurs when the inhibition strength becomes
sufficiently strong to suppress the cell below its
excitation through the saddle-node on the invariant
cycle bifurcation (Hoppensteadt and Izhikevich 1997).
If such suppression last for the entire period of the os-
cillation, the oscillator death occurs (“spike-suppress”
state, Fig. 1(f)). However, for intermediate strength
of inhibitory coupling, the suppression occurs only for
part of the oscillation period, resulting in a transient
subthreshold trapping of each cell during each cycle
of the oscillation. This may lead to the alternation
of the firing order (Fig. 1(b),(c)), whereby one cell is
able to bypass its partner cell along the limit cycle by
transiently keeping the other cell in the subthreshold
“tail” branch of the trajectory, as depicted in Fig. 5(a).

Therefore, synchrony in networks of type-I oscillators
can be destabilized even for moderate increase in in-
hibitory coupling.

Interestingly, we find that in the Morris–Lecar model
network we consider, this leader-switch mechanism re-
mains valid even in the limit of infinitely short synaptic
current. This is the result of a fast approach of the
trajectory to the w-nullcline at hyperpolarized poten-
tials, as shown in Figs. 4(b) and 5(b), which leads to
the separation of time scales, with slow dynamics in
the V direction, whereby the w-nullcline plays the role
of the slow manifold of the system. A perturbation
of sufficient strength along the slow manifold (the w-
nullcine) allows to achieve a strong time delay which
is longer than the time to the preceding spike. This
condition is crucial for achieving leader-switching for
infinitesimally short synaptic interaction. Such strong
reset corresponds to an isochron that curls around the
limit cycle, intersecting it at a position that is retrograde
to the peak of the action potential, as shown in Fig. 5(b)
(cf. discussion in Brown et al. 2004). This dynamical fea-
ture is closely linked to the cell’s characteristic phase-
resetting properties and the concept of negative phase,
explored in the following sections.

The mechanism described above has some generality
and is not specific to the Morris–Lecar model cells
that we consider. In particular, we believe that the
same mechanism is at play in the network of Wang-
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Fig. 5 Phase-plane dynamics of the coupled Morris–Lecar model
cells during periodic alternating-order spiking. (a) Tadpole-
shaped curves represent the phase-plane trajectory in panel (b),
schematically shown in Fig. 4(b). The sequence of four panels
describes the leap-frog spike sequence at the top, with filled red
and open blue circles representing the two cells: (i) “red” cell
spikes; (ii) “blue” cell spikes, pushing the “red” cell into the
subthreshold branch of the trajectory (tadpole tail); (iii) “blue”
cell bypasses the “red” cell along the unperturbed limit cycle
trajectory; (iv) “blue” cell spikes again. The process then repeats
itself, with the “red” cell emitting the next spike. (b) Isochron
foliation of the limit cycle neighborhood. Thick blue curve labels
the leap-frog trajectory, which partially overlaps the w-nullcline
(not shown) at hyperpolarized values of potential. Note that
an isochron corresponding to the hyperpolarized portion of the
trajectory may intersect the limit cycle at a position (filled circle)
which is retrograde to the peak of the preceding action potential
(open circle)

Buzsáki oscillators (Wang and Buzsáki 1996) studied
by Maran and Canavier (2008). However, the existence
and stability of this dynamical state must require cer-
tain conditions on the phase-resetting properties of the

cells (implicitly described by the isochron pattern of
Fig. 5(b)), which will be established in Section 3.4.

3.3 Phase-reduced descriptions

Before we analyze the observed leap-frog spiking tran-
sition on a quantitative level in the next subsection,
let us explore qualitatively the conditions required for
the existence of this activity state. In particular, it
is instructive to examine whether leap-frog firing can
be obtained using a phase-reduced description of the
coupled oscillators, with two phase variables φ1 and
φ2 describing the position of each of the two cells
along their unperturbed limit cycles. Note that this
phase description is only possible in the weak-coupling
limit, whereby the cells stay close to the limit cycle
trajectory, and the phase value can be defined using the
isochron foliation of its basin of attraction (Winfree
2001; Izhikevich and Kuramoto 2006). Figure 6(a)
schematically illustrates the phase plane trajectory of
the 2:2 periodic alternating-order firing state in terms
of the corresponding (φ1, φ2) variables in such a general
phase-reduced description, not necessarily correspond-
ing to the specific ML network that we examine. Here
the right and top boundary values (φ1,2 = 1) correspond
to the peak of an action potential of the respective
cell. In the case of continuous synaptic interaction, the
periodic trajectory is a continuous closed curve on the
(φ1, φ2) torus, and its curvature is a measure of synaptic
current that deflects the trajectory from a straight line.
Note that the trajectory would have to self-intersect
on the 2-D surface of the torus in order for the cell
spike order to change in each cycle of the oscillation.
Therefore, the network exhibiting alternating-order fir-
ing cannot be described in terms of autonomous flow on
the (φ1, φ2) torus. In particular, it cannot be obtained
in the framework of the weak-coupling theory, which
reduces network dynamics to such an autonomous
flow (reviewed in Hoppensteadt and Izhikevich 1997;
Rinzel and Ermentrout 1998; Izhikevich and Kuramoto
2006):

φ̇1 = 1 + εH12(φ2 − φ1)

φ̇2 = 1 + εH21(φ1 − φ2) (4)

Here H(φ) is the connection function that quantifies
the weak synaptic interaction, averaging it out over
one oscillation period. In the case of leap-frog spiking,
this averaging cannot be performed since the phase
perturbation in each cycle is not an infinitesimal quan-
tity relative to the unperturbed oscillation period. The
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Fig. 6 Reduced phase description of the alternating-order state.
(a) In the model with continuous synaptic interaction, the
alternating-order state describes a continuous trajectory on the
2-torus. The spike times of the two cells correspond to the
intersections of the trajectory with the φ1 = 1 and the φ2 = 1
boundaries, respectively. The change in spiking order requires
the trajectory to self-intersect. The dashed gray lines indicate
the correspondence between the continuous coupling description
and the pulse-coupled model description shown in (b). In (b),
the spike of cell i (φi = 1) causes a discontinuous drop (dashed
arrow) in the phase of the partner cell j by amount �(φ j), where
�(φ) is the spike-time response characteristic of the cell, defined
to be positive in case of a phase delay. The change in firing order
requires the phase domain to be augmented with an additional
negative value branch. In order for the spiking order to change,
the spike-triggered phase delay �(φ) should be greater than
current phase φ during the first spike that a cell receives in one
cycle of the oscillation

non-existence of alternating-order firing in a network
of phase oscillators is a corollary of a more general
theorem of Golubitsky et al. (2006).

However, the phase topology of Fig. 6(a) provides
an entirely valid description of the 2:2 activity state if
it is viewed as a projection of a higher-dimensional tra-
jectory onto the (φ1, φ2) plane. The additional degrees
of freedom could represent the two synaptic gating
variables s1,2(t) that evolve according to Eq. (3) (buffer
variables in the terminology of Golubitsky et al. 2006).
Thus, we conclude that the presence of synaptic degrees
of freedom is crucial for achieving leap-frog firing in
a network of phase oscillators. In particular, the non-
zero synaptic decay time course is indispensable in
order for such networks to exhibit the change in the
firing order. In order to verify the phase description in
Fig. 6(a), we constructed its implementation involving
two S1 phase oscillators coupled by continuous synaptic
gating variables, and observed leap-frog spiking for an
appropriately chosen functional form of the interaction
term (see Supplementary Material).

Although non-zero synaptic decay time is a crucial
condition for leap-frog spiking in a network of phase
oscillators, we find that this dynamical state can also
be achieved in a purely pulse-coupled network of os-
cillators that are not phase oscillators on the S1 phase
domain. Figure 6(b) illustrates such a possibility, and
can be viewed as the formal limit of the dynamics in
Fig. 6(a) with respect to shortening the duration of
the synaptic current (“straightening out” the trajec-
tory), while keeping fixed the total amount of phase
resetting due to each spike. In this limit the synaptic
interaction is no longer continuous, but becomes pul-
satile (i.e., it can be described by a delta function).
Although the descriptions in panels (a) and (b) are
formally similar in terms of the spike sequence and the
spike-time phase-resetting values, note that the latter
description requires the extension of the phase domain
to negative values, and therefore is not a true phase-
reduced model. The negative phase value is induced
when the spike-triggered phase delay is greater than
the inter-spike phase difference between the two cells,
i.e. �(φ) > φ, where �(φ) is the spike-time response
curve (STRC) (described below). Thus, the alternating-
order firing state can be obtained in the framework
of an extended phase model with instantaneous cou-
pling, with no additional synaptic degrees of freedom,
if the phase domain is supplanted with a negative value
branch. In particular, in Section 3.7 we show that it can
be obtained in a pulse-coupled network of quadratic
integrate-and-fire cells. Alternatively, the dynamics in
Fig. 6(b) can be implemented by explicitly prohibiting
the model cell to spike again if its winding number is not
increased since the preceding spike (Brown et al. 2004;
Golubitsky et al. 2006). Note however that in the latter
case it would be impossible to independently define
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the magnitude of phase resetting caused by a second
synaptic input that arrives while the postsynaptic cell
is still in the negative-phase suppressed subthreshold
state.

In the Morris–Lecar model network we consider,
the synaptic decay time is short relative to the un-
perturbed limit cycle period, and the leap-frog spiking
corresponds to the phase diagram of Fig. 6(b) rather
than Fig. 6(a). In fact, the negative phase has a definite
biophysical meaning in this case, and represents the
transient suppression of a cell into the subthreshold
branch of the trajectory (off the limit cycle) by the
inhibitory input, as shown in Figs. 4(b) and 5, allowing
the presynaptic cell to pass ahead, reversing the spiking
order of the two cells.

3.4 Analysis of existence and stability of periodic
alternating-order firing

Although Figs. 5–6 explain qualitatively the dynamics
of the alternating-order firing state, we turn to the
phase return map approach to study it on a quantitative
level. The return map analysis is a powerful method
of describing the dynamics of a coupled network
(Winfree 2001), but relies on several crucial assump-
tions. It requires that the cell’s spike width and ampli-
tude are invariant and are not affected by the afferent
synaptic currents, and also assumes that the pertur-
bation only affects the time to the next spike of the
perturbed cell, and has no effect on the dynamics of the
cell thereafter. However, this method can be extended
to the case where perturbation affects several periods
of the post-synaptic cell, under an additional assump-
tion of linear summation of the phase resetting effects
due to multiple presynaptic inputs. In fact, Maran and
Canavier (2008) demonstrated alternating-order firing
in an inhibitory network of type I Wang-Buzsáki model
cells in the presence of significant second order phase
resetting, although they also showed that alternation
in the firing order could emerge in a pulse-coupled
map without second-order resetting. We follow the
approach of Maran and Canavier (2008), but restrict
ourselves to the special case of identical cells, with only
first-order phase resetting.

The alternating-order firing is completely charac-
terized by the inter-spike phase sequence labeled {φ1,
φ2} in Fig. 7. Here we will construct the return map
relating these alternating phase differences, using the
phase-resetting curve, or the STRC of each cell, �(φ).
We define �(φ) to be positive if it produces a phase
delay, and negative if it produces a phase advance,
with φ = 0 point defined as the peak of the mem-
brane potential, V. �(φ) is computed numerically, by
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Fig. 7 Constructing the inter-spike phase return map for the pe-
riodic alternating-order spiking, φ2 = �(φ1). In one cycle of the
alternating-order spiking, one of the cells spikes twice between
two spikes of the partner cell (dashed blue and solid red bars
in top panel). The phase intervals φi are inter-spike intervals
normalized by the unperturbed period of each oscillator. Bottom
panel shows the phase time-course of the cell emitting the red
spikes in top panel. Note that the phase difference between
two dashed blue spikes equals 1 (the unperturbed period). The
phase delays due to each of the two spikes (blue arrows) equal
�(φ1) and �(ξ1), where ξ1 is the phase of the cell at the time
of arrival of the second input, ξ1 = 1 + φ1 − �(φ1). The second
inter-spike interval φ2 is found by the first-passage time condition
ξ1 − �(ξ1) + φ2 = 1, yielding the phase return map, Eq. (5)

calculating the time between successive membrane po-
tential maxima, while synaptic conductance pulses are
applied at different positions of the model cell along
the numerically reconstructed limit cycle. The applied
perturbation represents a single spike of the presynap-
tic cell, and is defined numerically by recording the
spike-triggered synaptic conductance, s(t) in Eq. (3).
Figure 8(a) presents the STRCs for three different
values of the synaptic conductance parameter, gsyn,
corresponding to the distinct activity states shown in
panels (a)–(c) of Fig. 1.

The phase return map derived here is a special case
of a more general return map derived by Maran and
Canavier (2008). Apart from simplifying the analysis,
restricting ourselves to the case of a homogeneous
network with only first-order phase resetting allows us
to probe the most elementary conditions on the phase
resetting properties required for the change in firing
order. Our derivation can be viewed as complementary
to the analysis of the order-preserving phase transition
map by Goel and Ermentrout (2002), since we explicitly
break the map invertibility assumption adopted in that
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(a)  Spike-time response curve, Δ(   )φ 

(b)  Phrase return map, Φ(   )φ 

Fig. 8 Phase resetting properties of the Morris–Lecar oscillator.
(a) Numerically reconstructed STRC, �(φ), for three different
values of coupling strength corresponding to distinct activity
patterns (a)–(c) of Fig. 1. (b) Phase return maps for each of the
three STRCs in panel (a); the intersections of each curve with the
diagonal line represent fixed points of that map. For gsyn = 0.03,
the order-preserving map is shown, with only one stable fixed
point at φ = 0+ (φ = 1−), corresponding to synchronous firing.
The two curves corresponding to gsyn = 0.17 and gsyn = 0.22
show both the order-alternating phase map (Eq. (5)) on the phase
interval where �(φ) > φ, and the order-preserving map of Goel
and Ermentrout (2002) on the portion of the phase domain where
�(φ) < φ. Note that there is one stable fixed point for gsyn = 0.17
corresponding to leap-frog spiking, while the alternating order
fixed point for gsyn = 0.22 is unstable, leading to period-2 leap-
frog dynamics shown in Fig. 1(c). The order-preserving fixed
point on the right end of the interval is unstable for both gsyn =
0.17 and gsyn = 0.22

study (condition 2 on p. 199 therein), by allowing the
phase variable to turn negative. The case of strong
phase resetting was previously considered in the analy-
sis of strongly coupled neurons by Acker et al. (2003)
(see also Jones et al. 2000; Kopell et al. 2000, and
Netoff et al. 2005), and in the study of strongly forced
oscillators by Glass et al. (1984).

Note that the homogeneous network case implies
a permutation symmetry between the two neurons,
which means that the map relating phases φ2 and φ1 in
Fig. 7 is identical to the map relating phases φ3 and φ2.
Therefore, it is sufficient to analyze the phase dynamics
of only one of the two cells, while it receives two spikes
from its partner cell. Let φ1 denote the phase of cell 1
(red spike and red trace in Fig. 7) at the arrival time
of the first synaptic current pulse due to the spike of
the pre-synaptic cell (dashed blue line), where phase
is defined as the time since the last spike, normal-
ized to unperturbed oscillation period. The amount of
phase delay induced by the synaptic input at phase φ1

equals �(φ1), since we define phase delay as positive
phase resetting, contrary to the sign convention of Goel
and Ermentrout (2002). For sufficiently strong synaptic
inhibition this phase reset satisfies �(φ1) > φ1 which
delays the first passage time to next spike of the post-
synaptic cell (cell 1) to a value greater than 1, the
intrinsic (uncoupled) oscillation period. Note that this
breaks the conditions on the STRC assumed by Goel
and Ermentrout (2002). As a result, the pre-synaptic
cell 2 has a chance to spike again (second dashed line),
after a phase interval corresponding to the unperturbed
oscillation period, �φ = 1, since cell 2 receives no input
from cell 1 during this period. This second synaptic
current from cell 2 arrives when the phase of cell 1
equals ξ1 ≡ 1 + φ1 − �(φ1), which takes into account
the delay due to the first spike. Therefore, the second
spike induces a phase delay equal to �(1 + φ1 − �(φ1)).
It is only after receiving this second input that cell 1
finally has a chance to spike, after a phase interval
defined as φ2. The total phase delay due to both inputs
is thus equal to

φ1 + φ2 = �(φ1) + �(1 + φ1 − �(φ1))

Therefore, the return map for the phase intervals φi is
given by

φ2 ≡ �(φ1) = �(φ1) + �(1 + φ1 − �(φ1)) − φ1 (5)
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or, expressed in terms of the phase of the post-synaptic
cell at the time of arrival of the second spike, ξ1 = 1 +
φ1 − �(φ1):

φ2 ≡ �(φ1) = 1 + �(ξ1) − ξ1 (6)

Figure 8(b) shows this phase transition map for each of
the three STRCs shown in panel (a). Note that this map
is only defined on the phase domain where �(φ) > φ.
On the rest of the domain, Fig. 8(b) shows also the
order-preserving map of Goel and Ermentrout (2002).
Fixed points of map (5)–(6) correspond to the periodic
2:2 alternating-order (leap-frog) activity:

φ = 1 + �(ξ) − ξ (7)

Since ξ ≡ 1 + φ − �(φ), this condition can be written in
a more symmetric form

φ = �(φ) + �(ξ)

2
(8)

Taking into account the constraint on the phase do-
mains, ξ ≤ 1 and �(φ) ≤ 1, we also obtain

�(φ) > φ (9)

�(ξ) < ξ (10)

Conditions (8–10) are examined geometrically in Fig. 9.
Note that the synchronous firing solution {φ = 0+, ξ =
1−} always satisfies the periodicity condition (8), if one
assumes �(0+) = �(1−) = 0.

If the inequality ξ ≤ 1 is violated (i.e. when �(φ) <

φ), the cells fire sequentially, so their firing order
does not alternate, while the violation of the condition
�(φ) ≤ 1 (i.e. if �(ξ) > ξ) indicates that the postsy-
naptic cell will emit more than two consecutive spikes.
The latter is true for instance for n:n bursting states
with n > 2 (see Fig. 1(d)), in which case one can de-
rive an extended map analogous to Eq. (5). An ad-
ditional alternating-order constraint �(φ) > 0 requires
that �(ξ) > −(1 − ξ). This condition is automatically
satisfied if the resetting is sign-definite (pure delay
resetting).

Stability of the 2:2 periodic spiking depends on the
value of the derivative of the phase map given by
Eq. (5) at equilibrium:

�′(φ) = [�′(ξ) − 1][1 − �′(φ)] (11)

The fixed point will be stable if |�′(φ)| < 1. Therefore,
the periodic alternating-order firing is stable when the
slope of the STRC at the time of arrival of either of the
two synaptic inputs (corresponding to phases φ and ξ =
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Fig. 9 Phase-map analysis of alternating-order spiking. Top
panel shows the cell potential time course of the two coupled
ML oscillators as red and black traces, for ḡsyn = 0.2. Equilibrium
inter-spike phase difference (φ = 0.144) in the alternating-order
state satisfies Eq. (7). Note that δ = �(φ) − φ = φ − �(ξ), where
ξ is the phase of the postsynaptic cell at the time of arrival of
the second spike, ξ = 1 − δ. In this simulation, δ = 0.0468, and
�(1 − δ) = 0.095. The stability condition given by Eq. (11) is
satisfied

1 + φ − �(φ)) is sufficiently close to 1. This is equiv-
alent to the stability condition derived by Maran and
Canavier (2008). The stability of synchronous firing is
determined by an analogous map slope expression, with
φ = 0+ and ξ = 1− (Eq. 12 in Goel and Ermentrout
2002). Since �′(1) ≈ 0 in the Morris–Lecar model (see
Fig. 10), the bifurcation from synchronous to leap-frog
firing occurs when the slope �′(φ) at φ = 0 becomes
greater than 2, forcing φ to increase (and thus ξ to
decrease) until the stability condition is satisfied. Thus,
the characteristic sharp initial rise of �(φ) followed by
a less steep increase at larger φ, seen both in Figs. 8(a),
9 of this work, and in Fig. 2(b) of Maran and Canavier
(2008), is essential for the transition from synchronous
to leap-frog spiking. This feature corresponds to the
characteristic dip to negative values in the phase transi-
tion return map noted by Maran and Canavier (2008).

Finally, let’s briefly consider the case where the in-
tervals φ1 and φ2 between the spikes of the pre- and
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Fig. 10 Comparison between the first- and the second-order
STRCs of the Morris–Lecar oscillator. The first-order STRC is
shown in blue (�(φ)), while the second-order STRC is shown
in red (�2(φ)), for synaptic conductance of ḡsyn = 0.2. The inset
zooms in on the part of the phase domain where �2(φ) is non-
negligible. The two functions satisfy the consistency condition
�(0+) = �2(1−). Vertical dashed lines mark the two phase in-
tervals characterizing the leap-frog state, φ and ξ in Fig. 9. Note
that �2(φ) = 0, �2(ξ) � 1.4 · 10−4, therefore second-order phase
resetting does not contribute to the alternating-order dynamics
for this value of coupling strength

the post-synaptic cells alternate between two distinct
values, as in Fig.1(c). We call this state the period-2
alternating-order 2:2 firing, since it results from the
period-doubling of the equal-phase alternating-order
state (Fig. 2). Both φ1 and φ2 are period-2 fixed points
of the map given by Eq. (7), i.e. �(�(φ1,2)) = �(φ2,1) =
φ1,2, therefore

�(φ1) = 1 + �(ξ1) − ξ1 = φ2

�(φ2) = 1 + �(ξ2) − ξ2 = φ1 (12)

where ξi = 1 + φi − �(φi), i = 1, 2. We note that our
choice of the “period-2” designation is somewhat ar-
bitrary, since it can also be applied to the equal-phase
leap-frog spiking: both of these states are character-
ized by a period-2 trajectory of each cell in its phase
space, composed of two unequal loops comprising one
period of the oscillation (see Fig. 5). Note also that the
cell permutation symmetry does not hold in this case,
and therefore this map is closer to the more general
leap-frog spiking map derived by Maran and Canavier
(2008). The stability of period-2 leap-frog spiking de-
pends on the derivative of the map F(φ) = �(�(φ)) at

equilibrium values φ1 and φ2: �′(φ2)�
′(φ1) = [�′(ξ1) −

1][1 − �′(φ1)][�′(ξ2) − 1][1 − �′(φ2)]. We note that
this stability conditions is equivalent to the stability
condition for a sequential phase-locked mode obtained
by Oprisan and Canavier (2001) (see also Oprisan et al.
2004).

An important feature of higher-period 2:2 modes is
the large value of the equilibrium inter-spike interval
relative to the unperturbed period. In the ML network
we consider, this interval can constitute as much as 70%
of the uncoupled oscillation period (Figs. 1(c), 2), and
is an order of magnitude larger than the time scale of
synaptic interaction that underlie this dynamic state.

3.5 Second-order STRC

Figure 10 shows that the second-order phase resetting
�2(φ) is non-zero only for phase values close to 1,
since the synaptic time constant is short (τsyn =1−2 ms).
For the two characteristic phases in Fig. 9, the second-
order phase resetting values equal �2(0.144) ≈ 0
and �2(0.9532) ≈ 1.4 · 10−4. Therefore, second-order
resetting provides only negligible contribution to the
alternating-order periodic firing shown in top panel
of Fig. 9. This is to be contrasted with the network
of Wang-Buzsáki model cells studied by Maran and
Canavier (2008), who showed that 2-nd order phase re-
setting provides a more significant, albeit not necessary,
contribution to leap-frog spiking in that network.

Although the second-order phase resetting is not
critical to achieving stable alternating-order activity,
it will influence the critical value of ḡsyn at the bi-
furcation from synchrony to leap-frog spiking, since it
affects the stability of both states. Noting once again
that the second-order phase-resetting is negligible for
small values of the phase, we find that the map slope
previously given by Eq. (11) is modified according to
(see Appendix for derivation):

�′(φ) = [�′(ξ) − 1][1 − �′(φ)] + �′
2(ξ) (13)

In particular, synchronous firing is stable if

|[�′(1−) − 1][1 − �′(0+)] + �′
2(1

−)| < 1 (14)

Further, taking into account the small slope of the
first-order STRC at φ = 1 (see Fig. 10), we obtain an
approximate condition

|�′(0+) + �′
2(1

−) − 1| < 1

Since both derivatives are positive, synchrony is
stable if

�′(0+) + �′
2(1

−) < 2 (15)
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Therefore, the bifurcation from synchronous to leap-
frog spiking occurs when �′(0+) + �′

2(1
−) = 2. The sta-

bility condition (Eq. (13)) suggests that second-order
phase resetting has a generally destabilizing effect on
both synchronous and alternating-order activity. This
agrees with our finding that stable alternating-order
spiking cannot be achieved when τsyn is comparable
to the length of the uncoupled oscillation period (see
Section 3.8).

3.6 Effect of variation in coupling strength

Given the knowledge of the STRC, one can readily
determine the stable network activity modes for the
corresponding value of the coupling strength. However,
the full range of activity states demonstrated in the
bifurcation diagram of Fig. 2 requires one to know the
STRC at each value of the synaptic conductance. In
the case of weak coupling, the STRC is assumed to scale
linearly with the strength of the coupling, a condition
which is violated in the case of non-weak interactions
that we consider, as shown in Fig. 8(a). In particular, the
right-ward shift in the peak of the STRC curve evident
in Fig. 8(a) is a well-known feature of the Morris–
Lecar model (Ermentrout 1996). The question then
arises whether this change in the shape of the STRC
has a qualitative effect on the bifurcation structure of
the network dynamics shown in Fig. 2, or whether this
bifurcation structure describes a stereotypical period
doubling cascade, representing universal behavior ex-
pected for a large class of STRC functions with respect
to a simple scaling of their amplitudes.

To verify the generality of the observed leap-frog
spiking and the associated bifurcation structure, we
considered the case of a quadratic STRC defined as
�(φ) = 4mφ(1 − φ). Note that the STRC of this shape
agrees with the existence conditions for leap-frog spik-
ing, illustrated in Fig. 9, as does any continuous func-
tion with a sharp initial rise and downward concavity
at small phases, and decaying to zero as the phase
approaches 1−. We employed the “emulator” algo-
rithm introduced by Canavier et al. (1999) to artifi-
cially generate the “inter-spike” phase sequence for the
quadratic STRC, and explored the effect of increasing
the STRC amplitude, m. We verified that the entire
bifurcation structure of the ML network dynamics is
reproduced by the quadratic STRC emulator, and is
presented in Fig. 11 (cf. Fig. 2). Note that the map
amplitude corresponding to the bifurcation from syn-
chronous to alternating-order firing can be obtained an-
alytically for the case of quadratic PRC, using Eq. (11):
�′(0) > 1 for m > mcrit = 2−3/2 (see Fig. 11). The bi-
furcation to the oscillator death is also easily analyzed,
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Fig. 11 Emulated bifurcation diagram for the inter-spike (inter-
event) interval differences as a function of the amplitude of
a quadratic STRC, �(φ) = 4mφ(1 − φ). Asymptotic inter-spike
interval differences ISI∞ are plotted as a function of the STRC
peak amplitude, m. Bifurcation from synchronous to alternating-
order event sequence occurs at mcrit = 2−3/2, while the oscillator
death requires m ≥ 1. Note that bursting dynamics similar to
Fig.1(e) is also obtained, for instance for m = 0.785

and occurs at m = 1. Finally, the bursting states such
as the one shown in Fig. 1(e) are also obtained using
the quadratic STRC. Although it is well-known that
the iteration of a quadratic map leads to a period-
doubling cascade and chaos, these results are of value
in proving that the alternating-order firing is a general
phenomenon for models characterized by STRC of a
given shape, and that the observed bifurcation structure
is explained by the change in STRC amplitude only, and
does not require a change in the shape of the STRC
characteristic of the Morris–Lecar oscillator.

3.7 Alternating-order spiking in a pulse-coupled
network

As discussed in Section 3.3, leap-frog spiking can be
achieved in a purely pulse-coupled network if the cou-
pled cells do not represent phase oscillators, but in-
clude an additional subthreshold branch, implemented
for instance by augmenting the standard S1 phase do-
main with a negative phase value interval, leading to
the dynamics in Fig. 6(b). This negative-phase branch
represents the tail of the “tadpole”-shaped trajectory
shown in Fig. 5(b). The topology of such an extended
phase model is in fact equivalent to the topology
of an integrate-and-fire class of models, as noted by
Golubitsky et al. (2006). If a given IF model includes
a finite reset potential, then the interval between such



J Comput Neurosci

reset value and the threshold potential can be identified
with an S1 phase domain. However, an inhibitory per-
turbation of sufficient strength can lower the voltage of
a cell below the reset value, which can be viewed as a
negative phase.

Since the standard integrate-and-fire model is char-
acterized by a monotonically increasing STRC with
downward concavity (Mirollo and Strogatz 1990), it
does not satisfy leap-frog firing existence conditions,
Eqs. (8–10). However, the quadratic integrate-and-fire
model (QIF) is a more promising candidate, due to its
close association with the canonical model of type-I
SNIC excitability bifurcation (Ermentrout 1990, 1996;
Hoppensteadt and Izhikevich 1997). In order to satisfy
the leap-frog existence conditions, we modify the stan-
dard non-dimensionalized QIF model, dv/dt = v2 + 1,
by assuming finite threshold and reset values, which we
set asymmetrically to vt = 5 and vr = −1, respectively,
in order to obtain an STRC shown in Fig. 12(a). This
STRC shares the characteristic shape of the STRC of
the Morris–Lecar model shown in Figs. 8 and 9, and
therefore it too satisfies the leap-frog spiking condi-
tions, Eqs. (8–10). Figure 12(b) shows the correspond-
ing phase return map for the three different values of
pulse amplitude, illustrating both the order alternat-
ing and the order preserving maps. For each of the
three chosen values of the coupling strength, the order-
alternating state is stable. Although a finite threshold
value is not necessary for achieving alternating-order
firing, note that a finite reset value is crucial for creating
a multi-branched phase domain.

3.8 Effect of increasing synaptic decay time

The dynamics of the two-cell network that we study un-
dergoes a qualitative change as the synaptic decay time
is increased beyond short durations of 1–4 ms. Namely,
we observe emergence of bistability between synchro-
nous spiking and alternating-order dynamics, and a
narrower domain of stability of the alternating-order
state, which disappears completely when the synaptic
decay time becomes longer than about 1/6 of the un-
perturbed oscillations period in our ML model. Note
that bistability between synchrony and leap-frog spik-
ing was also observed by Maran and Canavier (2008)
in the Wang-Buzsáki model network. This change in
dynamics can be understood in terms of the measured
changes in the first- and second-order STRC, shown
in Fig. 13. The two panels (a) and (b) of this Figure
also present the phase return map, �(φ), for synaptic
decay times of 6 and 7 ms, respectively. Note that
the second-order STRC becomes more pronounced at
larger τsyn, which is associated also with an increase in
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Fig. 12 Phase-resetting analysis of a pulse-coupled network of
two quadratic integrate-and-fire cells, dvi/dt = v2

i + 1 − g δ(t −
t j), with asymmetric threshold and reset values, vt = 5 and vr =
−1 (a) STRCs for pulse amplitude values of g = 0.4, 0.8, and 1.2
are given by �(φ) = φ + [arctan vr − arctan(tan(Tφ + arctan vr) −
g)]/T, where T = arctan vt − arctan vr is the oscillation period.
(b) Phase return maps corresponding to each of the STRCs
shown in (a). As in Fig. 8, each of the three curves switches
from order-alternating to order-preserving map at point φ =
�(φ) = [π/4 + arctan(g − 1)]/T. For each value of g, there is one
stable leap-frog spiking fixed point, and one unstable fixed point
corresponding to phase-locked order-preserving dynamics. The
equal-phase (period-1) leap-frog spiking is stable for g < 4/3

non-zero value of the 1-st order STRC at zero phase.
Therefore, the second-order STRC cannot be ignored,
leading to the modified stability conditions, Eq. (13),
derived in the Appendix (Eq. (21)) and approximated
as �′(φ) + �′

2(ξ) < 2 (Eq. (22)). Note that the increase
in �(0+) is associated with a decrease in the initial
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slope of the STRC at longer synaptic decay time, as is
evident in Fig. 13 (cf. Fig. 8). This leads to stable syn-
chronous firing, achieved when 0<�′(0+)+�′

2(1
−)<2

(Eq. (15)), and results in the bistability between
synchronous and leap-frog spiking, captured by the
alternating-order phase return maps shown in Fig. 13.

Finally, we note that the STRC analysis is not ap-
plicable if the synaptic decay time is large enough to
be comparable in duration to the interval between
incoming spikes.

3.9 Three-cell network

In order to explore the effects of non-weak inhibitory
coupling in a larger network, we simulated the dynam-
ics of three identical neuron with all-to-all coupling,
and observed a diversity of network behaviors that are
analogous to the activity states exhibited by a two-cell
network. As the coupling strength (ḡsyn) is increased,
the synchronized state becomes unstable, giving way
to the alternating order state shown in Fig. 14, which
is followed by a period-doubling cascade to chaotic
activity, and at sufficiently strong value of the coupling
we observe the transition to the oscillator death mode.
Note that in the three-neuron network, the alternat-
ing order state represents a splay state (Fig. 14). Our
results are in agreement with the results of Maran
and Canavier (2008) for the heterogeneous network of
Wang-Buzsáki model neurons. Larger networks of up
to ten neurons were examined by Maran and Canavier
(2008), who described similar activity states, with an
additional property of clustering, whereby distinct syn-
chronized subgroups of neurons fire in a splay-state
temporal order (see Fig. 12 therein).

4 Discussion

We have shown that the non order-preserving activity
recently observed by Maran and Canavier (2008) in
an inhibitory network of Wang-Buzsáki oscillators can
also be obtained in a network of lower-dimensional
Morris–Lecar model neurons, and therefore is a gen-
eral property of a wider class of type-I excitable cells.
Namely, we found that such “leap-frog” dynamics re-
sults when the inhibition from one cell is sufficient
to transiently bring the post-synaptic cell below the
excitability threshold, producing a phase delay that is
greater than the time elapsed since the preceding spike.
This further illustrates the fact that the range of applica-
bility of the weak coupling results is quite narrow in
inhibitory networks of type I cells that are close to their
excitation thresholds (Hoppensteadt and Izhikevich
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Fig. 13 Longer synaptic decay leads to bistability between syn-
chronous and leap-frog dynamics. Each of the two panels shows
the first-order STRC (�(φ), blue), second-order STRC (�2(φ),
red) and the phase-return map (black) for τsyn = 6 ms in (a) and
τsyn = 7 ms in (b). Note the two stable and one unstable fixed
points for each τsyn, with one stable equilibrium at the origin,
corresponding to synchronous firing, and another stable fixed
point corresponding to leap-frog spiking

1997. As the coupling strength is increased, the leap-
frog spiking state gives way to a period-doubling cas-
cade, leading to more complex m:n periodic bursting
states, as well as chaotic activity. Finally, at sufficiently
strong values of the coupling strength oscillator death
occurs, whereby only one of the cells continues spiking,
suppressing the activity of the post-synaptic cell.

One of our goals was to reveal the conditions re-
quired for alternating-order dynamics, and we showed
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Fig. 14 Network of three all-to-all coupled ML oscillators ex-
hibits splay states in a certain range of synaptic coupling strength
(ḡsyn = 0.14). The potentials of the three cells are shown as black,
red, and blue traces. Note the change in spiking order: 1,2,3 →
3,2,1 → 1,2,3 → ...

that it can be achieved under two different sets of
conditions. First, it can be exhibited by a network
of phase oscillators, in the presence of independent
synaptic degrees of freedom with non-zero synaptic
decay time. Second, leap-frog spiking is also possible
in networks of oscillators whose dynamics cannot be
reduced to a single phase variable. In this case order
alternation can be achieved even in a purely pulse-
coupled network. This is true in particular for a network
of appropriately modified quadratic integrate-and-fire
model cells (Fig. 12). The ML network we examined
also falls within the latter class of models, in that order
alternation is achieved for very short synaptic decay
time, and the periodic trajectory of each cell signifi-
cantly deviates from the unperturbed limit cycle due to
periodically received inhibition.

In both classes of models, order alternation implies
the same conditions on the phase resetting characteris-
tic of the coupled cells. To establish these conditions,
we followed the approach of Maran and Canavier
(2008), but restricted ourselves to the case of a ho-
mogeneous network, in order to determine the most
basic requirements leading to spiking order alternation
(Eqs. (8–10)). The principle condition for order alter-
nation is that the phase delay produced by an input
arriving shortly after the spike-time should be larger
than the time elapsed since this last spike, �(φ) > φ.
Thus, the phase-transition map (Eq. (5)) is comple-
mentary to the map of Goel and Ermentrout (2002)
derived under the assumption of phase map invertibil-
ity, �(φ) < φ. In a pulse-coupled network, such strong
resetting automatically breaks the phase structure of

each oscillator, since it leads to a delay past the spike-
time, requiring an additional negative-phase domain
branch, or, alternatively, an additional condition that
a cell does not emit a spike unless its winding num-
ber is increased (Brown et al. 2004; Golubitsky et al.
2006). In contrast, in a network of cells with a non-zero
synaptic decay time this complication does not arise,
since such strong phase delay resetting is spread out
over a finite time interval, and the phase variable may
remain positive. For the Morris–Lecar model in the
type-I parameter regime we consider, this strong phase
resetting property is directly related to the fast kinetics
of the K+ channels relative to the rate of change of the
membrane potential, which clamps the trajectory to the
w-nullcline during the quiescent subthreshold phase of
the limit cycle. An inhibitory current pulse applied in
this oscillation phase perturbs the dynamics along the
w-nullcline, which plays the role of a slow manifold,
allowing to achieve a phase delay greater than the time
to the preceding spike.

Finally, we showed that the entire bifurcation struc-
ture of the network, involving a period-doubling cas-
cade to chaos, and more complex m : n mode-locked
bursting patterns, can be explained by a simple scaling
of the STRC amplitude, and therefore does not require
a non-trivial change in the shape of the STRC arising
from the biophysics of a particular cell model. Note that
there are other STRC shapes consistent with leap-frog
spiking. Full analysis of STRC functions supporting
leap-frog spiking is beyond the scope of the current
work.

Our results for the Morris–Lecar network hold in a
certain range of synaptic decay times that are signifi-
cantly shorter than the uncoupled period of each cell. In
the particular parameter regime we consider, second-
order phase resetting effects become significant and can
no longer be ignored when the synaptic decay time
becomes larger than about 1/8 of the unperturbed oscil-
lation period. In this case we see significant bistability
between the synchronous and alternating-order states
(Fig. 13), which is consistent with the observed change
in the shape of the STRC with increasing τsyn. As the
synaptic decay time is increased, the region of attrac-
tion of the leap-frog state shrinks, and at sufficiently
large τsyn, the homogeneous network is no longer ca-
pable of sustaining leap-frog activity. In this case sig-
nificant heterogeneity may be required to destabilize
phase-locking; this conjecture is in agreement with the
results of Maran and Canavier (2008).

These results and the results of Maran and Canavier
(2008) further illustrate the qualitative features of peri-
odic spike train patterns that can be produced by simple
inhibitory networks of cells with type-I excitability,
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beyond the simple phase-locked firing states that can
be predicted using the weak-coupling theory (see also
White et al. 1998). This may have implications for the
study of central pattern generators, which are responsi-
ble for producing distinct firing sequences, for instance
in enervating opposing muscle groups during motor ac-
tivity, and which often contain subnetworks of several
cells coupled by reciprocal inhibition. We note that the
classification of possible network activity states, and its
relationship to the underlying network architecture and
the qualitative properties of cell dynamics, is a subject
of significant recent interest (Golubitsky et al. 1999,
2006; Acker et al. 2003).

Finally, it would be interesting to explore whether
the phenomenon we describe is even more general,
and whether similar dynamical behavior is exhibited
by non-weakly coupled cells of a different excitability
class, satisfying the crucial condition of strong phase
delay, �(φ) > φ. Note that the phase-resetting charac-
teristic of oscillators outside of the type-I excitability
class can change the sign over part of its phase do-
main (Ermentrout 1996). If an inhibitory synaptic input
produces a phase advance rather than a phase delay,
then order alternation may in principle be achieved
in an excitatory network of such cells, given that the
conditions (8-12) on their phase resetting properties are
satisfied.
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Appendix

Derivation of the alternating-order phase map
with second-order phase resetting

We will use the diagram in Fig. 7(a) to derive the
map in the case of non-negligible second-order phase
resetting, �2(φ). Let {φn, ξn} denote the two phases of
the postsynaptic cell at the time of arrival of each of the
two spikes in n-th period of the oscillation. In the case
of zero second-order resetting, Fig. 7 illustrates the re-
lationship between these phases, ξn = 1 + φn − �(φn).
However, due to non-zero second-order phase resetting
received by the presynaptic cell in the preceding cycle,
�2(ξn−1) (where ξn−1 is its phase at the time of arrival of
the first black spike in Fig. 7(a)), the interval between
two spikes of the presynaptic cell in the current cycle,
denoted γn, will not be equal to 1:

γn = 1 + �2(ξn−1) > 1 (16)

Therefore, the modified relationship between ξn and φn

reads

ξn = γn + φn − �(φn) (17)

Note that we neglect the much smaller second-order
phase-resetting due to the first spike of the presynaptic
cell in each period of the 2:2 mode: �2(φn) << �2(ξn).
Finally, given the phase ξn of the postsynaptic cell right
before receiving its second input, one can easily find
its first passage time, φn+1 (i.e. interval φ2 in Fig. 7(a)),
using the first passage time condition

ξn − �(ξn) + φn+1 = 1 (18)

Solving this system of equations for ξn yields the map

ξn+1 =2−ξn+�(ξn)−�(1−ξn+�(ξn))+�2(ξn) (19)

which can be re-written in a more compact form as

ξn+1 = 1 + φn+1 − �(φn+1) + �2(ξn) (20)

If we substitute the conditions for synchronous fir-
ing, ξn = 1, φn = 0, we obtain �2(1) = �(0), which is
the correct periodicity condition relating the first- and
second-order STRC curves. Therefore, the synchro-
nous solution is always a fixed point of Eq. (19).

Differentiating Eq. (20) yields the stability condition

|[1 − �′(φ)][�′(ξ) − 1] + �′
2(ξ)| < 1 (21)

which agrees with Eq. (11) when �2(·)=0. Close to the
bifurcation from synchrony to leap-frog spiking, ξ ≈ 1,
�′(ξ) ≈ 0, and therefore

|�′(φ) + �′
2(ξ) − 1| < 1

which yields

0 < �′(φ) + �′
2(ξ) < 2 (22)

Recall that φ = 1 − ξ + �(ξ) (Eq. (18)). A more gen-
eral stability condition for the case of non-negligible
�2(φn) is given by Maran and Canavier (2008).

References

Acker, C. D., Kopell, N., & White, J. A. (2003). Synchronization
of strongly coupled excitatory neurons: Relating network
behavior to biophysics. Journal Comparative Neuroscience,
15, 71–90.

Bose, A., Kopell, N., & Terman, D. (2000). Almost synchronous
solutions for pairs of neurons coupled by excitation. Physica
D, 140, 69–94.

Bressloff, P. C., & Coombes, S. (1998). Desynchronization, mode
locking, and bursting in strongly coupled integrate-and-fire
oscillators. Physical Review Letters, 81, 2168–2171.

Bressloff, P. C., & Coombes, S. (2000). Dynamics of strongly-
coupled spiking neurons. Neural Computation, 12, 91–129.



J Comput Neurosci

Brown, E., Moehlis, J., & Holmes, P. (2004). On the phase reduc-
tion and response dynamics of neural oscillator populations.
Neural Computation, 16, 673–715.

Canavier, C. C., Baxter, D. A., Clark, J. W., & Byrne, J. H.
(1999). Control of multistability in ring circuits of oscillators.
Biological Cybernetics, 80, 87–102.

Ermentrout, G. B. (1996). Type I membranes, phase resetting
curves, and synchrony. Neural Computation, 8, 979–1001.

Ermentrout, G. B., & Kopell, N. (1984). Frequency plateaus in a
chain of weakly coupled oscillators. SIAM Journal on Math-
ematical Analysis, 15, 215–237.

Ermentrout, G. B., & Kopell, N. (1990). Oscillator death in sys-
tems of coupled neural oscillators. SIAM Journal on Applied
Mathematics, 50, 125–146.

Ermentrout, G. B., & Kopell, N. (1991). Multiple pulse interac-
tions and averaging in systems of coupled neural oscillators.
Journal of Mathematical Biology, 29, 195–217.

Glass, L., Guevara, M. R., Belair, J., & Shrier, A. (1984). Global
bifurcations of a periodically forced biological oscillator.
Physical Review, A 29, 1348–1357.

Goel, P., & Ermentrout, G. B. (2002). Synchrony, stability, and
firing patterns in pulse-coupled oscillators. Physica D, 163,
191–216.

Golubitsky, M., Stewart, I., Buono, P. L., & Collins, J. J. (1999).
Symmetry in locomotor central pattern generators and ani-
mal gaits. Nature, 401, 693–695.

Golubitsky, M., Josic, K., & Shea-Brown, E. (2006). Winding
numbers and average frequencies in phase oscillator net-
works. Journal of Nonlinear Science, 16, 201–231.

Hansel, D., Mato, G., & Meunier, C. (1995). Synchrony in excita-
tory neural networks. Neural Computation, 7, 307–337.

Hoppensteadt, F. C., & Izhikevich, E. M. (1997). Weakly
connected neural networks. New York: Springer.

Izhikevich, E. M. (2000). Phase equations for relaxation oscil-
lators. SIAM Journal on Applied Mathematics, 60, 1789–
1805.

Izhikevich, E. M. (2006). Dynamics systems in neuroscience: The
geometry of excitability and bursting. Chapter 10: Synchro-
nization. Cambridge: MIT.

Izhikevich, E. M., & Kuramoto, Y. (2006). Weakly coupled os-
cillators. Encyclopedia of Mathematical Physics, Elsevier, 5,
448.

Jones, S. R., Pinto, D., Kaper, T., & Kopell, N. (2000).
Alpha-frequency rhythms desynchronize over long cortical
distances: A modelling study. Journal Computational Neu-
roscience, 9, 271–291.

Kopell, N. (1988). Toward a theory of modeling central pattern
generators. In A. H. Cohen, S. Rossignol, & S. Grillner
(Eds.), Neural control of rhythms. New York: Wiley.

Kopell, N., Ermentrout, G. B., Whittington, M., & Traub,
R. D. (2000). Gamma rhythms and beta rhythms have
different synchronization properties. Proceedings of the
National Academy of Sciences of United States America, 97,
1867–1872.

Kopell, N., & Ermentrout, G. B. (2002). Mechanisms of phase-
locking and frequency control in pairs of coupled neural

oscillators. In B. Fiedler (Ed.), Handbook on Dynamical
Systems: Toward Applications. New York: Elsevier.

Kuramoto, Y. (1984). Chemical oscillations, waves, and turbu-
lence. Berlin: Springer.

Maran, S. K., & Canavier, C. C. (2008). Using phase resetting to
predict 1:1 and 2:2 locking in two neuron networks in which
firing order is not always preserved. Journal of Computa-
tional Neroscience, 24, 37–55.

Mirollo, R. E., & Strogatz, S. H. (1990). Synchronization of pulse-
coupled biological oscillators. SIAM Journal of Applied
Mathemaics, 50, 1645–1662.

Morris, C., & Lecar, H. (1981). Voltage oscillations in the barna-
cle giant muscle fiber. Biophysical Journal, 35, 193–213.

Netoff, T. I., Banks, M. I., Dorval, A. D., Acker, C. D., Haas, J. S.,
Kopell, N., et al. (2005). Synchronization in hybrid neuronal
networks of the hippocampal formation. Journal of Neuro-
physiology, 93, 1197–1208.

Oprisan, S. A., & Canavier, C. C. (2001). Stability analysis of rings
of pulse-coupled oscillators: The effect of phase resetting in
the second cycle after the pulse is important at synchrony
and for long pulses. Journal of Difference. Equations and
Dynamical Systems, 9, 243–258.

Oprisan, S. A., & Canavier, C. C. (2002). The influence of limit
cycle topology on the phase resetting curve. Neural Compu-
tation, 14, 1027–1057.

Oprisan, S. A., Prinz, A. A., & Canavier, C. C. (2004). Phase
resetting and phase locking in hybrid circuits of one model
and one biological neuron. Biophysical Journal, 87, 2283–
2298.

Peskin, C. S. (1975). Mathematical aspects of heart physiol-
ogy. New York: New York University Courant Institute of
Mathematical Sciences.

Rinzel, J., & Ermentrout, B. (1998). Analysis of neural excitabil-
ity and oscillations. In C. Koch & I. Segev (Eds.), Methods
in neuronal modeling: From ions to networks (2nd edn).
Cambridge: MIT.

Rubin, J., & Terman, D. (2000). Geometric analysis of population
rhythms in synaptically coupled neuronal networks. Neural
Computation, 12, 597–645

Sato, Y. D., & Shiino, M. (2007). Generalization of coupled spik-
ing models and effects of the width of an action potential on
synchronization phenomena. Physical Review E, 75, 011909.

Somers, D., & Kopell, N. (1993). Rapid synchronization through
fast threshold modulation. Biological Cybernetics, 68, 393–
407.

van Vreeswijk, C., Abbott, L. F., & Ermentrout, B. (1994). When
inhibition not excitation synchronizes neural firing. Journal
of Computational Neuroscience, 1, 313–321.

Wang, X. J., Buzsáki, G. (1996). Gamma oscillation by synaptic
inhibition in a hippocampal interneuronal network model.
Journal of Neuroscience, 16, 6402–6413.

White, J. A., Chow, C. C., Ritt, J., Soto-Trevino, C., & Kopell, N.
(1998). Dynamics in heterogeneous, mutually inhibited neu-
rons. Journal of Computational Neuroscience, 5, 5–16.

Winfree, A. T. (2001). The geometry of biological time (2nd edn).
New York: Springer.


	Loss of phase-locking in non-weakly coupled inhibitory networks of type-I model neurons  
	Abstract
	Introduction
	Model
	Results
	Network activity states
	Destabilization of phase-locked firing: comparison of excitation and inhibition
	Phase-reduced descriptions
	Analysis of existence and stability of periodic alternating-order firing
	Second-order STRC
	Effect of variation in coupling strength
	Alternating-order spiking in a pulse-coupled network
	Effect of increasing synaptic decay time
	Three-cell network

	Discussion
	Appendix
	Derivation of the alternating-order phase map with second-order phase resetting

	References




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


