Catalog Description: ME 403 (2-1-3)

Lectures and projects covering problem solving methodology in the design, analysis, and synthesis of mechanical and thermal systems. The student’s academic background combines with engineering principles and topics to serve as a foundation for broad engineering projects. Emphasis on creative thinking and the engineering design process in projects involving optimal conversion of resources.

Prerequisites: ME 304 Fluid mechanics, ME 305 Introduction to system dynamics,
 ME 312 Thermodynamics II, 316 Machine design
 ME 407 Heat Transfer (Corequisite)

Textbook(s) Materials Required:
Lab manuals: SDRC IDEAS Series student guide Quickstart
Reference: Handouts prepared by instructor

Coordinator: Raj Sodhi, Ph.D., P.E., Professor ME

Prerequisites by Topic:
1. Understanding of engineering systems that utilize fluids (from ME 304 Fluid mechanics)
2. Understanding of modeling of mechanical systems (from ME 305 Introduction to system dynamics)
3. Understanding of working of thermal systems (ME 312 Thermodynamics)
4. Understanding of design process and design of machine elements (ME 316 Machine design)

Course Objectives 1:
Objective 1:
To teach students the fundamentals of mechanical engineering design theory to design, create and select components of complete mechanical systems from the recognition of need and definition of design objectives, design innovation.

Objective 2:
To illustrate to students the setting up and solving of structured and unstructured design problems, stages of design.

Objective 3:
To teach students how to apply computer based techniques in the analysis, design/selection of mechanical systems and to enhance student’s communication skills.

Topics 2:
1. Engineering design process Chapter 1
2. Creativity and Innovation Chapter 1, handouts

3. Stages of design Chapter 2, handouts

4. Structured and Unstructured Problems Chapter 2, handouts

5. Mathematical Models Relevant to Design Synthesis Chapters 3 and 5, handouts

6. Decision Support: Selection Chapter 4, handouts

7. Optimization in Design Chapter 6, handouts

8. Safety and Environmental protection Chapter 9, handouts

9. Project planning: Communications Chapter 11, handouts

10. Project planning: Team related Chapter 11, IDEAS Guide

11. Stress analysis (FEA) IDEAS Guide

12. Codes of ethics, and legal issues in engineering Chapter 10, handouts

Evaluation Methods:
1. Quizzes
2. Homework
3. Exams
4. Reports
5. Computer Assignments
6. Mini projects

Schedule: Lecture 3 hours and Lab 2 hours per week

Professional Component: Engineering Design

Programs Objectives Addressed: A, B, C, D, E

Course Outcomes

Prepared by: Raj Sodhi
Date: September 2006.

1 Capital Letters in parenthesis refer to the Program Objectives of the Mechanical Engineering Department. Listed in Sec 2d Tables B-2-9, B-2-12. Table B-2-8 links Program Objectives with the ABET a-k Criterion.

2 Topic numbers in parenthesis refer to lecture hours. (three hours is equivalent to 1 week)

3 Outcome numbers in parenthesis refer to evaluation methods used to assess the student performance. Lower case letters in parenthesis refer to ABET a-k outcomes.