ME 432
Principles of Air Conditioning and Refrigeration


Prerequisites: Thermodynamics, Fluid Mechanics, and Heat Transfer


<table>
<thead>
<tr>
<th>Week</th>
<th>Content &amp; Chapter(s)</th>
<th>Assignments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction (Chaps 1&amp;2); Refrigeration cycles (Chap 15)</td>
<td>HW 1 (8 problems)</td>
</tr>
<tr>
<td>2</td>
<td>Refrigeration cycles (cont.); Psychrometrics (Chap 3)</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>Psychrometric processes (Chap 3)</td>
<td>HW 2 (8 problems)</td>
</tr>
<tr>
<td>4</td>
<td>Psychrometric cycles (Chap 3)</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>Indoor air quality (Chap 4)</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>Quiz 1; Heat transmission in buildings (Chap 5)</td>
<td>HW 3 (8 problems)</td>
</tr>
<tr>
<td>7</td>
<td>Solar radiation &amp; Windows (Chap 6)</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>Solar radiation &amp; Windows (cont.)</td>
<td>HW 4 (8 problems)</td>
</tr>
<tr>
<td>9</td>
<td>Space heating load (infiltration/exfiltration) (Chap 7)</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>Cooling loads (Chap 8)</td>
<td>-</td>
</tr>
<tr>
<td>11</td>
<td>Quiz 2; Energy calculation methods (Chap 9)</td>
<td>HW 5 (8 problems) Project due!</td>
</tr>
<tr>
<td>12</td>
<td>Fans, pump &amp; piping design (Chap 10, Chap 12)</td>
<td>-</td>
</tr>
<tr>
<td>13</td>
<td>Project Presentation</td>
<td>-</td>
</tr>
<tr>
<td>14</td>
<td>Review; Preparation of Final Exam</td>
<td>-</td>
</tr>
</tbody>
</table>
Term Project of ME432

Teamwork:

(1) Two (2) students per team or an individual student.
(2) Define each student's role in the project (about 50% each).
(3) Project grade is based on the overall quality of project and each student’s contribution to the project.

Detailed Requirements:

(1) Define your project (air-conditioning—cooling), including:
   i) background and conditions, such as room (location, wall and roof facing direction; window; door); vehicle (window; body material)
   ii) human (number, activity, human comfort condition)
   iii) environmental concern (particulate or gaseous pollutant control)

   (20% marks)

(2) Cooling load calculation, including:
   iv) Heat transmission through wall;
   v) Solar radiation through window;
   vi) Infiltration;
   vii) Heat generation, including human factors

   (40% marks)

(3) Minimum fresh air requirement based on environmental concern, including
   vii) by-pass factors;
   viii) filter efficiency and location;
   ix) selection of filters with pressure drop consideration

   (20% marks)

(4) Air-conditioning unit requirement, including:
   x) return air ratio (based on minimum fresh air required) and mass flow rate;
   xi) cooling coil capacity and SHR;
   xii) compressor capacity with a selected refrigerant (e.g., R134a)

   (20% marks)

(5) Energy cost (not required)

   (10% mark – bonus – No bonus if overall grade has already reached 100% marks)

F05; Zhu