Introduction to ME Measurements

1. Course Structure and Requirement
 ➢ (See “ME 618 assignment” and “ME618 rules”)

2. Lab Report Format (General Requirement)
 ● Cover page (one page)
 ➢ Experimental title
 ➢ Author’s name
 ➢ Group #; teammate names, underline leader’s name
 ➢ Date performed; date submitted
 ➢ Instructor’s name; course #

 ● Table of content (one page)
 ➢ Sequential order of content
 ➢ Page # (starts from “introduction”)

 ● abstract (one page)
 ➢ 100~250 words
 ➢ Objectives (what performed)
 ➢ Methodology (how performed)
 ➢ Conclusive findings and remarks

 ● Introduction (less than one page)
 ➢ Application background (examples)
 ➢ Experimental objectives
 ➢ Brief summary of methodology of experiment

 ● Theoretical Principles (Equations/brief explanation)
 ➢ Theory of experimental method
 ➢ Theory of data analysis method
 ➢ No sample calculations!
• Experimental Methodology
 ✓ Experimental system
 ◆ Schematic diagram (with photos of actual system)
 ◆ Brief description of system operation
 ✓ Major measurement system
 ◆ Schematic diagram (with photos)
 ◆ Brief description
 ✓ Maker and model # of major components

• Sample Analysis (one complete set)
 ✓ Step by step example calculation:
 ◆ Use actual data for illustration
 ◆ From original to final (in Table or Fig)
 ✓ Identify software resources if used

• Results and Discussion
 ✓ Itemized presentation
 ◆ Measurement based, or
 ◆ Phenomena or objective based
 ✓ Table or Figure based discussion
 ◆ Figure based (preferred)
 ◆ Complete data (tables) in Appendix
 ◆ Comparison with theory
 ◆ Physical interpretation
 ✓ Error Analysis
 ◆ Error resources identification
 ◆ Quantify error margin (if possible)
 ✓ Suggestions for measurement improvement
 (not required)

• Conclusion
 ✓ Major findings
 ◆ Range of experimental data and error margin
3. Sensor Characteristics

- Resolution (readability)
- Response time or frequency

\[f = \frac{1}{\tau} \]
Repeatibility
(Statistical probability) (see lecture-2)

Linearity

Signal-to-Noise Ratio (S/N)
Simple R-C Filter characteristics
Low-pass RC Filter

\[\frac{C}{R} \frac{de_0}{dt} + \frac{1}{R} e_0 = \frac{e_i}{R} \]

High-pass RC Filter

\[C \frac{de_0}{dt} + \frac{1}{R} e_0 = C \frac{e_i}{R} \]

\[\left(\frac{V_0}{V_i} \right)_{LP} = \frac{1}{\sqrt{1 + (f / f_c)^2}} \]

\[\phi_{LP} = -\tan^{-1}(f / f_c) \]

\[f_c = \frac{1}{2\pi RC} \quad \text{cut-off frequency} \]
\[
\left(\frac{V_0}{V_i}\right)_{HP} = \frac{RC2\pi f}{\sqrt{1 + (RC2\pi f)^2}} = \frac{f / f_c}{\sqrt{1 + (f / f_c)^2}}
\]

\[
\phi_{LP} = \frac{\pi}{2} - r = \frac{\pi}{2} - \tan^{-1}(f / f_c) = \frac{\pi}{2} + \phi_{LP}
\]

Define \(\frac{V_0}{V_i} (dB) = 20 \log \left(\frac{V_0}{V_i} \right) \)
Monotonic / Non-monotonic Response