1. Flow Regime Classification
 - Newtonian vs Non-Newtonian

\[\tau_w = \mu \left(\frac{\partial u}{\partial y} \right) \]

- Viscosity Measurement
 - Co-cylinder viscometer

- Density Measurement
• Compressible vs Incompressible

\[M \equiv \frac{u}{a} \]

\[a^2 \equiv \left(\frac{\partial p}{\partial \rho} \right)_s = \begin{cases} \gamma RT & \text{ideal gas} \\ \frac{E}{\rho} & \text{liquid} \end{cases} \]

\[M \leq 0.2 - 0.3 \quad \text{Incompressible} \]
\[M > 0.3 \quad \text{Compressible} \]

• Laminar vs Turbulent
 o Critical \(R_{cr} \)
 o Turbulent “eddy” transport

• Flow Separation and Reverse flow

2. Flow Pattern Measurement

• Tracer & Flow representation
 o Tracers:
 - Aerosols
 - Bubbles (in liquid)
 - Solid Particles (in liquid)
 - Radioactive solids
 o Slip velocity (error margin in velocity)
 - By gravity (terminal velocity)
 - By inter-particle or wall collisions

\[F_D = C_D \frac{1}{2} \rho A (u - u_i) |u - u_i| \]

\[C_D \]

\[R_c \]
Optical Image
 - Optical reflection and deflection

Parallel window

Spatial resolution (by pixel numbers)
Time resolution
 - Refreshment frequency
 - D/A sampling frequency

Trajectory vs Streamline
 - “Laminar & Steady state”
 - “Turbulent & unsteady state”; time averaged

Effect of diffusion
 - Brownian diffusion
 - Turbulent diffusion

3. Flow Rate Measurement
 - Absolute method
 - Weigh tank

For incompressible and inviscid fluids
 - Venturi
Orifice

\[Q_{th} = \frac{A_2}{\sqrt{1 - \left(\frac{A_2}{A_1}\right)^2}} \sqrt{\frac{2\Delta p}{\rho}} \]

\[\dot{Q} = C \cdot Q_{th} \]

Where, C: Discharge coefficient

- For Viscous fluid
 - Rotameter
$F_D - F_p = mg$

- Representative probe in fully-developed flow

- Viscous friction in pipe flow

Moody Chart
Laminar:

\[Q = \frac{\pi D^4 \Delta p}{128 \mu L} \]

4. Flow Velocity Measurement

- Incompressible and invicid fluid
 - Pitot tube
 \[\Delta P = P_T - P \]
 \[P_T - P = \frac{1}{2} \rho u^2 \]

- Hot-wire anemometer

- Laser – Doppler anemometer

- PIV (Particle Image Velocimetro) (double exposure)
5. Flow Friction in Pipes

- \[\left(\frac{p + \frac{u^2}{2} + qz}{\rho} \right)_1 = \left(\frac{p + \frac{u^2}{2} + qz}{\rho} \right)_2 + W + gl_f \]

- Total pressure \(p_o = p + \frac{1}{2} \rho u^2 \)

\[\Rightarrow \frac{\Delta p_o}{\rho g} + \Delta z = \frac{W}{g} + l_f \]

Special case: \(\Delta z = 0, \ W = 0 \)

\[l_f = f \frac{L u^2}{D g} \quad \quad \bar{u} = \frac{\dot{Q}}{A} \]

OR \[\rho g \bar{u}^2 l_f = f \left(\frac{L}{D} \right) \left(\frac{1}{2} \rho u^2 \right) \]

In general,

\[l_f = \sum l_{fi} \]

Including valves, bends, connections….