1 Chapter 4.2: Logarithmic Functions

The Logarithmic Function

For x > 0, a > 0 and $a \neq 1$

$$y = \log_a (x)$$
 if and only if $x = a^y$ (1)

The function $f(x) = \log_a(x)$ is called the <u>logarithmic function with base a</u>. Its domain is $(0, \infty)$ and its range is $(-\infty, \infty)$.

Example 4.2.1: Write in logarithmic form:

$$4^3 = 64,$$
 $\left(\frac{1}{2}\right)^4 = \frac{1}{16}$

Solution: Notice that by Eq. (1), the base in these examples is 4 and 1/2 respectively. Hence we can rearrange these as

$$3 = \log_4 64, \qquad 4 = \log_{\frac{1}{2}} \left(\frac{1}{16}\right)$$

Basic Properties of Logs

For any base a > 0, with $a \neq 1$:

- 1. $\log_a(a) = 1$
- 2. $\log_a(1) = 0$
- 3. $\log_a(a^x) = x$ for any real number x
- 4. $a^{\log_a(x)} = x$ for any x > 0

Example 4.2.2: Evaluate:

$$9^{\log_9(6)} + \log_4(4^{-3}), \qquad \log_5(5^7) - 6^{\log_6(3)}$$

Solution: The two expressions can be evaluated by applying properties 3 and 4 to find:

 $9^{\log_9(6)} + \log_4(4^{-3}) = 6 + (-3) = 3,$ $\log_5(5^7) - 6^{\log_6(3)} = 7 - 3 = 4$

Inverting the Exponential

Swap x and y in the equation for an exponential and take the logarithm of both sides to find:

$$y = a^x \to x = a^y \implies \log_a(x) = \log_a(a^y) = y \log_a(a) = y \tag{2}$$

That is, the inverse of the exponential function is $y = \log_a (x)$, which is the logarithmic function.

Graphing a Logarithm

Let $y = f(x) = \log_a x$. Then

- 1. The domain is $(0,\infty)$ and the range is $(-\infty,\infty)$
- 2. The x-intercept is 1 and there is no y-intercept
- 3. The y-axis is the vertical asymptote
- 4. The function is one-to-one
- 5. If a > 1
 - The function is increasing
 - as $x \to \infty$, we have $y \to \infty$
 - $x \to 0^+$, we have $y \to -\infty$

6. If 0 < a < 1

- The function is decreasing
- as $x \to \infty$, we have $y \to -\infty$
- $x \to 0^+$, we have $y \to \infty$

7. The graph of $y = \log_a x$ always contains the points (1/a, -1), (1, 0), and (a, 1)

Transformation	Appearance in Equation	Effect on (x, y)
Horizontal Shift	$y = \log_a \left(x \pm c \right)$	$(x \mp c, y)$
Horizontal Stretch/Compression	$y = \log_a\left(cx\right)$	(x/c, y)
Reflection about x -axis	$y = -\log_a\left(x\right)$	(x, -y)
Reflection about y -axis	$y = \log_a\left(-x\right)$	(-x,y)
Vertical Stretch/Compression	$y = c \log_a \left(x \right)$	(x, cy)
Vertical Shift	$y = \log_a\left(x\right) \pm c$	$(x, y \pm c)$

Table 1: This table gives all the transformations that can be used to plot exponential functions from the parent function $y = \log_a (x)$. The transformations can be applied in the order with which they are given.

Common and Natural Logarithms

• The logarithm with base 10 is called the common logarithm and is denoted by omitting the base:

$$\log_{10}\left(x\right) = \log\left(x\right)$$

• The logarithm with base e is called the natural logarithm and is denoted by:

$$\log_{e}\left(x\right) = \ln\left(x\right)$$

Note how the basic properties translate when a = 10 or a = e: Continuous Compound Interest

$\log_a \left(a \right) = 1$	$\log\left(10\right) = 1$	$\ln\left(e\right) = 1$
$\log_a\left(1\right) = 0$	$\log\left(1\right) = 0$	$\ln\left(1\right) = 0$
$\log_a \left(a^x \right) = x$	$\log\left(10^x\right) = x$	$\ln\left(e^x\right) = x$
$a^{\log_a(x)} = x$	$10^{\log\left(x\right)} = x$	$e^{\ln\left(x\right)} = x$

Recall the formula for continuous compound interest is given by

$$A = Pe^{rt} \tag{3}$$

where A is the compound interest, P is the principal, r is the annual interest rate, and t is the number of years. We can use the logarithmic function to rearrange this to solve for the variables in the exponent as follows:

$$A = Pe^{rt},$$

$$\frac{A}{P} = e^{rt},$$

$$\ln\left(\frac{A}{P}\right) = \ln\left(e^{rt}\right) = rt$$
(4)

The following example illustrates when this is useful.

Example 4.2.3: (a) How long will it take to double your money if it earns 6.5% compounded continuously? (b) At what rate of return, compounded continuously, would your money double in 5 years? Solution: (a) In this example, we are given r = .065, P, A = 2P. Hence our equation reads

$$\ln\left(\frac{2P}{P}\right) = .065t \implies t = \frac{\ln 2}{.065} \approx 10.66 \text{ years}$$

(b) In this example, we have t = 5, P, A = 2P. Hence our equation reads

$$\ln\left(\frac{2P}{P}\right) = 5r \implies r = \frac{\ln 2}{5} \approx .1386 = 13.86 \%$$

Example 4.2.4: Find the domain of the following functions

$$f(x) = \frac{\ln (x-1)}{\ln (2-x)}, \qquad g(x) = \ln (x-3) + \ln (2-x)$$

Solution: The argument of the logarithmic function must be positive. Hence to find the domain of f(x) we need to take the intersection of x - 1 > 0 and 2 - x > 0. Thus we find that the domain of f(x) is

$$(1,\infty) \cap (-\infty,2) = (1,2)$$

Similarly to find the domain of g(x) we need to take the intersection of x - 3 > 0 and 2 - x > 0. Thus we find that the domain of g(x) is

$$(3,\infty)\cap(-\infty,2)=\emptyset$$