Chapter 5.3: Trigonometric Functions of Any Angle and The Unit 1 Circle

Trigonometric Functions of any Angle

Let P = (x, y) be any point on a terminal ray of an angle θ in standard position and let $r = \sqrt{x^2 + y^2}$. Then we have the following definitions

$$\tan \theta = \frac{g}{x}, \quad (x \neq 0) \qquad \qquad \cot \theta = \frac{x}{y}, \quad (y \neq 0) \tag{3}$$

Self-Check: Pick a point in quadrant I to confirm that the more narrow definitions from the last section agree with this more general form.

Example 5.3.1: Suppose θ is an angle whose terminal side contains P = (1,3). Find the exact values for the trigonometric functions of θ .

Solution: We have that x = 1, y = 3. We can then calculate $r = \sqrt{10}$. Using the definitions above, we have:

$$\sin \theta = \frac{3\sqrt{10}}{10}, \qquad \qquad \csc \theta = \frac{\sqrt{10}}{3},$$
$$\cos \theta = -\frac{\sqrt{10}}{10}, \qquad \qquad \sec \theta = -\sqrt{10},$$
$$\tan \theta = -3, \qquad \qquad \cot \theta = -\frac{1}{3},$$

Quadrantal Angles

• Notice that for these angles either x or y is 0. Hence some trig functions may be undefined for these angles.

Example 5.3.2: Find the values of the six trig functions for $\theta = \pi$, $(3\pi)/2$. Solution: For $\theta = \pi$, one such point we can use is P = (-1, 0). Hence we have

$\sin \pi = 0,$	$\csc \pi = \text{Und},$
$\cos\pi = -1,$	$\sec \pi = -1,$
$\tan \pi = 0,$	$\cot \pi = \text{Und},$

For $\theta = (3\pi)/2$, one such point we can use is P = (0, -1). Hence we have

ŝ

$$\sin \frac{3\pi}{2} = -1, \qquad \qquad \csc \frac{3\pi}{2} = -1,$$
$$\cos \frac{3\pi}{2} = 0, \qquad \qquad \sec \frac{3\pi}{2} = \text{Und},$$
$$\tan \frac{3\pi}{2} = \text{Und}, \qquad \qquad \cot \frac{3\pi}{2} = 0,$$

Coterminal Angles

- Because the value of each trig function of an angle in standard position is completely determined by the position of the terminal side, the following statements are true:
 - 1. Coterminal angles are assigned identical values by the six trig functions
 - 2. The signs of the values of the trig functions are determined by the quadrant containing the terminal side of the angle
 - 3. For any integer n, $\theta + 2\pi n$ are coterminal angles and hence:

 $\sin\theta = \sin\left(\theta + 2\pi n\right),\,$ $\csc \theta = \csc \left(\theta + 2\pi n\right),$ (4)

$$+2\pi n),$$
 $\cot \theta = \cot (\theta + 2\pi n)$ (0)

()

Example 5.3.3: Find exact values for $\cos 1830^{\circ}$ and $\sin (31\pi)/3$.

Solution: Our first idea should be to find the coterminal angles that lie in $[0, 2\pi]$ or $[0^{\circ}, 360^{\circ}]$ because we know some values in this range already. Subtracting 5 full revolutions off our first angle tells us that 1830° is a coterminal angle to 30° . Similarly, we can find that $(31\pi)/3$ is a coterminal angle to $\pi/3$. Hence:

$$\cos 1830^\circ = \cos 30^\circ = \frac{\sqrt{3}}{2}, \qquad \qquad \sin\left(\frac{31\pi}{3}\right) = \sin\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2}$$

where we have used our knowledge of the special 30-60-90 Triangle previously discussed.

Signs of the Trigonometric Functions

- In Quadrant I:
 - All trig functions are positive
- In Quadrant II:
 - Only sine and cosecant are positive
- In Quadrant III:
 - Only tangent and cotangent are positive
- In Quadrant IV:
 - Only cosine and secant are positive

Example 5.3.4: If $\sin \theta > 0$ and $\cos \theta < 0$, in which quadrant does θ lie? Solution: Note that r is always positive. Hence $\sin \theta > 0 \implies y > 0$, and $\cos \theta < 0 \implies x < 0$. Thus our angle must lie in Quadrant II.

Example 5.3.5: Given that $\tan \theta = -4/5$ and $\cos \theta > 0$, find the exact values of $\sin \theta$ and $\sec \theta$. Solution: Note that $\cos \theta > 0 \implies x > 0$. Now from the value of $\tan \theta$ we can determine that x = 5, y = -4 and then use these to calculate $r = \sqrt{41}$. Finally we just use the definitions of the trig functions:

$$\sin \theta = \frac{y}{r} = -\frac{4\sqrt{41}}{41}, \qquad \qquad \sec \theta = \frac{r}{x} = \frac{\sqrt{41}}{5}$$

Reference Angle

- For any given angle θ there is a corresponding acute angle called its reference angle whose trig function values are all equal to those of θ except for possibly a sign difference
- Let θ be any angle in standard position that is not quadrantal. The reference angle for θ is the acute angle θ' formed by the terminal side of θ and the x-axis.

Example 5.3.6: Find reference angle θ' for each angle: 250°, $(3\pi)/5$, and 5.75.

Solution: Note that 250° is in quadrant III. Thus the angle between the terminal side and the *x*-axis is calculated as $\theta'_1 = 250^{\circ} - 180^{\circ} = 70^{\circ}$. Next we note $(3\pi)/5$ is in quadrant II. Thus the reference angle is calculated as $\theta'_2 = \pi - (3\pi)/5 = (2\pi)/5$. Finally, we have the angle 5.75. We note that this angle is in quadrant IV because $5.74 > 4.71 \approx (3pi)/2$. Thus the reference angle is calculated as $\theta'_3 = 2\pi - 5.75 \approx 0.53$.

Unit Circle

- Consider a circle of radius 1 centered at the origin as in Figure 1.
- Use the arclength formula with r = 1 to see that $s = r\theta = \theta$. Hence, for a unit circle we have

$$\sin s = \sin \theta = \sin \left(\frac{180^{\circ} \cdot \theta}{\pi}\right)$$

• In this case, our trig function definitions simplify as well

$$\tan \theta = \frac{y}{x}, \quad (x \neq 0) \qquad \qquad \cot \theta = \frac{x}{y}, \quad (y \neq 0) \tag{9}$$

• Any point in the (x, y) plane has an associated point P on the unit circle because similar triangles have equal trig function values.

Example 5.3.7: Find the exact value of sec $(59\pi/6)$.

Solution: We will follow the given procedure: (i) find coterminal angle in $[0, 2\pi]$; (ii) Find the reference angle; (iii) Calculate the trig function values for the reference angle; (iv) Check the signs based on quadrant of the angle.

Hence, we first find that $(59\pi/6)$ is coterminal to $(11\pi)/6$. This angle is in quadrant IV and so its reference angle is found via the formula $\theta' = 2\pi - (11\pi)/6 = \pi/6$. Again this is a value from the 30-60-90 Triangle and so we have $\sec(\pi/6) = \frac{1}{\cos(\pi/6)} = \frac{2}{\sqrt{3}} = \frac{2\sqrt{3}}{3}$. Finally, we check that in quadrant IV, the x coordinate is positive and the y coordinate is negative which implies cosine (and secant) are positive. Thus we are done and

$$\sec\left(\frac{59\pi}{6}\right)$$
 (10)

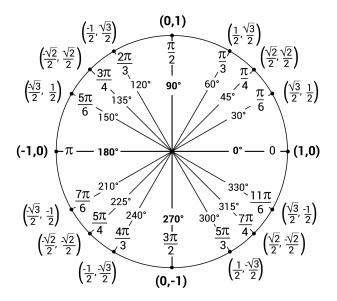


Figure 1: Shown is the unit circle. Identified are special angles, given in both degrees and radians, that give exact trigonometric values. The points on the unit circle associated with a given angle can be used to calculate the trigonometric values as $\cos \theta = x$ and $\sin \theta = y$ for an angle θ and point (x, y).