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Dispersion curves in ocean environments are accurately estimated from received signals through

the extraction of instantaneous modal frequencies and corresponding arrival times for long-range

propagation. The ultimate goal is to estimate sediment sound speed using the extracted dispersion

pattern. The approach extends work previously conducted in dispersion tracking with sequential fil-

tering, improving on the latter technique. The sequential state-space method that is developed for

the extraction of time-frequency information from specific time instances relies on a representation

of those as a sum of elemental pulses, resulting from analysis of the received field. The method is

tested on synthetic noisy data with different noise levels. After dispersion probability density func-

tions are estimated via a particle filter, they are subsequently employed for sound speed inversion.

Correct mode identification is a challenge impacting inversion; this is demonstrated through two

examples and a way to remedy the problem is discussed. VC 2014 Acoustical Society of America.

[http://dx.doi.org/10.1121/1.4897400]

PACS number(s): 43.60.Hj, 43.60.Jn, 43.30.Pc [PJL] Pages: 2665–2674

I. INTRODUCTION

As discussed in Ref. 1, evolution of acoustic signal in-

formation in the time-frequency domain contains critical in-

formation to be explored by inversion methods for the

estimation of parameters that affect sound propagation in the

ocean. Among other papers, work in Refs. 2–9 demonstrates

the potential of dispersion analysis—the way modal frequen-

cies change with time—for such estimation.

More specifically, for a single frequency, the acoustic field

can be decomposed in a set of normal modes. When a broadband

source emits sound, normal modes can be calculated for each

source signal frequency. Modal frequencies travel with different

group velocities and different modes travel with distinct veloc-

ities as well. It is these differences, which are environment-

dependent, that generate the dispersion patterns that are

exploited toward inversion for properties of the medium.

Using dispersion curves for inversion requires the

extraction of accurate modal frequencies and their arrival

times. Such a task has in the past been approached with short

time Fourier transforms (STFTs) and spectrograms or wave-

let techniques; warping techniques have also been applied

with success even with short range data.7,8 In this work, we

propose an approach that extends previous efforts,1 combin-

ing sequential Bayesian filtering (specifically, particle filter-

ing), spectrograms, and mathematical models describing

them, to accurately extract frequency arrival information

from time-frequency representations and quantify the uncer-

tainty in the estimation process. Additionally, we estimate

the number of modes present, amplitudes of arriving modal

frequencies, and noise variance. Particle filtering has been

employed in multiple applications in ocean acoustics with

significant success.10–13 Particle filtering for tracking time-

frequency signal information attracted a lot of attention in

recent years in a number of problems.14–18 The advantages

of particle filtering handling non-linear relations between

observations and unknown parameters, complex noise mech-

anisms, and unknown and varying model order as well as the

concept of mode identification with state-space models in

ocean acoustics presented in Refs. 1 and 19 motivate our

choice of such an approach for time-frequency tracking in an

underwater sound propagation problem.

In summary, we first compute spectrograms from acous-

tic time-series at one hydrophone and describe time “slices”

of the spectrogram with a mathematical model of sound

propagation in the ocean. Using particle filtering, we then

track dispersion of distinct modal frequencies with time with

the assistance of the spectrogram model. At the output of the

filter, probability density functions (PDFs) of modal frequen-

cies at arrival times are available which are then propagated

backward through a normal modes model for sediment com-

pressional sound speed estimation. Because the input to the

inverse process consists of PDFs, we obtain at the end of the

process complete PDFs of compressional sound speed,

allowing us to calculate point estimates as well as quantify

the uncertainty in the estimation process. An outline of the

process is illustrated schematically in Fig. 1.

The paper is organized as follows. Section II discusses

the acoustic model that is employed for describing spectro-

gram slices. Section III presents the foundations of particle

filtering necessary for our work. Section IV demonstrates

how the acoustic model and particle filter (PF) can be com-

bined to track dispersion curves for a signal propagating in

an ocean waveguide. Modal tracking results are demon-

strated in this section along with sediment sound speed esti-

mation results obtained using the modal trajectories.

Conclusions follow in Sec. V.
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II. MODELING THE ACOUSTIC FIELD IN THE
FREQUENCY DOMAIN

We consider a broadband acoustic signal received at a

hydrophone in the ocean. As discussed in Ref. 20, the sound

pressure vs time can be written as

p r; z; zr; tð Þ ¼
1

2p

X
n

ðþ1
�1

l x0ð ÞGn r; z; zr;x
0ð Þ

� exp i x0t� knr � p
4

� �� �
dx0: (1)

Quantity r represents the distance between source and re-

ceiver, z and zr are the source and receiver depths, respec-

tively, kn is the modal wave number, l is the source

spectrum, x ¼ 2pf , where f is frequency. Also

Gn r; z; zr;xð Þ ¼
i
ffiffiffi
p
p

q zrð Þ
ffiffiffiffiffiffiffiffiffi
2knr
p !n zð Þ!n zrð Þ; (2)

where !n are normal modes and qðzrÞ is density. Although

our signals are multimodal, we initially focus on a single

mode for simplicity. This restriction will be relaxed later.

The frequency spectrum of a finite time segment of the

signal is provided in Refs. 20 and 21 and can be expressed as

follows:

Pnðx; tÞ ¼
ðtþDt=2

t�Dt=2

pnðr; z; zr; tÞe�ixsds; (3)

where the segment starts and ends at t� Dt=2 and tþ Dt=2,

respectively. Substituting the nth term of pðr; z; zr; tÞ into the

previous equation, interchanging the order within the inte-

gral, and integrating over time, we obtain

Pn x; tð Þ¼
e�ixt

p

ð1
1

l x0ð ÞGn r;z;zr;x
0ð Þ

� sin x0 �xð ÞDt

x0 �x
exp i x0t�knr�p

4

� �� �
dx0:

(4)

By applying the stationary phase approximation and

squaring Pn, we obtain

jPn x; tð Þj2 ¼
p

jk00n j
2
jl xnð ÞGn r; z; zr;xnð Þj2

�
����� sin x� xnð ÞDt

x� xn

�����
2

; (5)

for jx� xnj < p=Dt:
From the stationary phase condition we can also derive

an important relation between group velocity of mode n as a

function of frequency xn and range and time. Using Vgn as

the symbol for group velocity of mode n, it can be shown

that Vgn(xn)¼ r/t, where r is the distance that the mode has

traveled and t is the time it took for this propagation. This

shows how group velocity, frequency, and time are tightly

related, a concept that will be exploited below using spectro-

grams that connect all three.

From the analysis that led to Eq. (5), it appears that the

squared magnitude of the Fourier transform (FT) can be

approximated by a squared sinc pulse, weighted by the

squared amplitude of the modal arrival. Moreover, the super-

position of these pulses provides an approximation of the

squared spectrum of a multiple-mode signal. Although this

assumption ignores cross-terms resulting from the squaring

operation, it leads to a valid representation of the acoustic

field for the part of the spectrum that we will be considering.

Specifically, the absence of the cross terms implies a zero

inner product between the spectra for the single modes. With

the central mode frequencies being well separated for the

most part and a suitable window length for the spectrogram

calculation, this condition is met.

Instead of Eq. (5), we could work with Eq. (4) and Pn

instead, where we would still obtain a model involving sincs,

which would now not be squared. The motivation for the squar-

ing operation stems from the fact that spectrograms have been

conventionally used for inversion using dispersion curves.2,7,8,20

The squared spectrum expressed in Eq. (5) has a peak at

the modal frequency xn. There is a correspondence between

xn and mode n; that is, at a given time, there should be a

unique “central frequency” xn for a particular mode. We can

trace the peaks of the instantaneous power spectra to identify

the modal frequencies of the acoustic signal. Instead of x, in

order to follow conventional notation for instantaneous fre-

quency estimation, we will be using from now on symbol f
for frequency.

One more assumption enters our model at this point.

The FT of Eq. (3) is valid for a rectangular window. In our

work, we will be employing a Hamming window for its

smoothing effect. The Hamming process applied in the time

domain will create a transformed sinc2 pulse (very similar to

FIG. 1. (Color online) A diagram of the tracking and inversion process.
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the original one). We will refer to this wavelet as u2, which

will be illustrated in Sec. IV A.

III. PARTICLE FILTERING FOR DISPERSION
EXTRACTION

Working in a Bayesian sequential filtering framework,

we apply PFs for tracking the evolution of modal frequencies

with time. We cannot apply simple Kalman filters to our

case, because of a nonlinearity in the relationship between

data and unknowns and the fact that the number of the actual

unknowns (the model order, as will be discussed) is uncer-

tain and varies with time.

Summarizing, the aim of this section is the estimation of

the multiple modal frequencies within a received acoustic time-

series using the model of Sec. II, as these frequencies evolve

with time. Concurrently, we estimate the amplitudes of each

mode and the number of dispersion tracks at a given time. To

estimate those quantities, we need to calculate the joint PDF of

the frequencies and all other unknowns for each time step.

To construct the state-space representation, necessary for

our tracking problem, let xk;rk
be the vector containing all

unknown frequencies at time k, where rk is the number of

modes (model order) at slice k mentioned earlier. Also ak;rk
is

the vector of amplitudes corresponding to the modal frequen-

cies. The particle filter we are building in our work is based on

sequential importance resampling (SIR).22 The filter combines

three steps: (i) prediction, (ii) update, and (iii) resampling.

Omitting the subscript rk for simplicity, the state or tran-

sition equations for frequencies on which the “predict” step

of a PF is based, are as follows:

xk ¼ xk�1 þ _xk�1dtþ v1k�1 (6)

and

_xk ¼ _xk�1 þ v2k�1; (7)

where xk is a vector containing modal frequencies as previ-

ously stated.

The first and third terms at the right hand side of Eq. (6)

are the standard components in a conventional state/transi-

tion equation in sequential filtering and predicts frequencies

at a particular time given a cloud of particles (samples)

available from the previous time instance. The cloud forms

an estimate of the frequency PDFs at that time. We here con-

sider a third component, _xk�1dt, which is equivalent to ve-

locity estimation in tracking a moving source. Considering

all components of Eq. (6), the frequency particles are per-

turbed by a component that relates to velocity or, more

appropriately for our case, frequency gradient _xk and a small

additive quantity v1k, which is drawn from a zero-mean

Gaussian density with an empirically selected variance; the

variance is here constant with k. Quantity dt is the time

between consecutive spectrogram slices.

Equation (7) predicts _xk. Similarly to v1k, v2k takes val-

ues from a zero mean Gaussian density. The reasoning

behind using gradient in Eqs. (6) and (7) is as follows.

Component v1k�1 in Eq. (6) is empirically selected. If gradi-

ent is not used and v1k�1 is small, there is a possibility that

the interval at state k may not contain the true frequency

location in time. If, to avoid that, v1k�1 is selected to be

large, particles are generated in a broad range, increasing the

uncertainty in the process, which is evidenced via a spread

in the PDF. Adding a gradient component increases the

width of the particle generation only as needed, determining

it in a more structured way through Eq. (6). The impact of

using gradient information with its significant advantage in

tracking is discussed in more detail in Ref. 13.

The dimension of both xk and _xk is rk. Since rk is also

unknown, an additional state equation is required. The state

equation for rk makes use of a transition probability matrix,23

which contains the probabilities of order changes (or not); that

is, trajectories could enter or exit at each state k and the transi-

tion probabilities describe stochastically such changes.

These probabilities describe the possible movement

from a current state to the one following. In our case

rkþ1 ¼
rk; with probability p
rk þ 1; with probability ð1� pÞ=2

rk � 1; with probability ð1� pÞ=2;

8<
: (8)

where p < 1. We have chosen p ¼ 0:6. If rðkÞ ¼ Rmin, where

Rmin is the minimum allowed order, we have rkþ1 staying the

same with probability p or increasing with probability 1 – p.
Similarly, when rðkÞ ¼ Rmax, where Rmax is the maximum

considered order, rkþ1 remains the same with probability p
or decreases with probability 1� p. There could be addi-

tional state equations for the unknown amplitudes and var-

iance. This issue will be discussed later.

The particles resulting from the state equations need to be

refined/updated given the new data at time k. The updating step

relies on the relationship between the received data (here, the

spectrogram) and the unknown parameters. This relationship is

termed the measurement or observation equation. This equation

along with a model for the noise contaminating the data allows

us to formulate the likelihood for the parameters to be esti-

mated. The discussion of Sec. II provides us with the measure-

ment equation necessary for the likelihood formulation:

yk ¼
Xrk

j¼1

akj½sincðf � xkjÞ�2 þ wk: (9)

As mentioned, yk is a spectrogram slice (squared magnitude of

the FT) of the acoustic time series at time k. Quantity wk is

considered to be additive Gaussian noise in the data:

wk �Nð0;w2
kÞ where wk varies with time as will be demon-

strated later. In reality, the noise is Gaussian in the time do-

main, creating complex Gaussian noise components after the

FT calculation. Squaring the spectrum for the spectrogram cal-

culation results in a non-additive v2 noise effect. Despite this

analysis, a Gaussian noise model has been selected in the past

for instantaneous frequency tracking.1,18,24 This selection facili-

tates the filter implementation, creating convenient density

functions for efficient sampling. Although suboptimal, it will

be shown below that the employed model does not compromise

the effective extraction of the parameters of interest: A replica

signal calculated with extracted frequencies, amplitudes, and

order via the PF matches very closely the true signal.
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Because of the Hamming window employed in the FT

calculation, we rewrite the observation equation as follows:

yk ¼
Xrk

j¼1

akj½uðf � xkjÞ�2 þ wk; (10)

where u has been previously defined.

The likelihood for the center frequencies xkj along with

amplitudes, number of modal frequencies, and variance, is then

l xk; ak; rk;w
2
k ; yk

� 	
¼ 1

wL
k

1

2pð ÞL=2
exp � 1

2w2
k





yk

(

�
Xrk

j¼1

akj u f � xkjð Þ½ �2




2

)
; (11)

where L is the length of each spectrogram slice at a given

time.

In order to understand the importance of order rðkÞ in

the frequency estimation process, we experimented by fixing

the number of modes to a maximum value rather than treat-

ing it as an unknown. The result was that some noisy peaks

were reported by the processor as additional arriving fre-

quencies. In other words, we overfitted the data (that is, we

fitted the noise in addition to the true modes). As expected,

setting the order to a small value had as a result the estima-

tion of fewer modes than those present.

Amplitudes ak are unknown as well and here are esti-

mated within the PF following the approach of Refs. 13, 23,

and 25. Specifically, since amplitudes are elements of the

state vector, they could be treated similarly to the unknown

frequencies xk and perturbed and updated at each time using

a transition equation. This would generate additional state

equations, significantly increasing the number of necessary

particles for achieving a specific accuracy than when only

frequencies are estimated (there is approximately a linear

relation between the number of unknowns and the number of

particles required). As discussed in Refs. 13, 23, and 25, for

a more efficient scheme, a maximum likelihood (ML) or a

maximum a posteriori (MAP) estimator can be used for

amplitudes rather than a sampling procedure at each state.

This is possible because of the assumption that the noise in

the measurement equation [Eq. (10)] is considered to be

additive white Gaussian. Then the conditional PDFs of

amplitudes on modal frequencies can be shown to be

Gaussian as well; drawing samples from such densities is

simple and circumvents prediction and update of amplitudes

using the standard PF process. Similarly to Refs. 13, 23, and

25, we compute amplitude ML/MAP estimates conditional

on the modal frequency particles. The covariance matrix of

these conditional probability densities can also be computed.

With the available means (equivalent to MAP values here)

and covariance, the normal densities are fully described, pro-

viding us with enough information for drawing samples.

These samples form the marginal posterior PDFs of the

amplitudes at each state. The PDFs are used at the next state

for the prediction of the new set of frequencies at a specific

arrival time and, consequently, of corresponding amplitudes.

Repeating the procedure followed in Ref. 13 for com-

pleteness, for a modal frequency particle xi ¼ ½xi
1;…; xi

rk
� at

the kth time, the MAP estimate Ai
MAP;k, a vector consisting of

the amplitude MAP estimates from the amplitude PDF condi-

tional on that frequency particle vector, can be calculated as

Ai
MAP;k ¼ K�1

k wk; (12)

where

wk ¼
XL

f¼1

sðf � xi
krk
Þykðf Þ: (13)

Vector ykðf Þ is the spectrogram slice that we are considering

and sðf Þ is the considered u2 wavelet in the measurement

equation. Also,

Kk ¼

kk11 kk12 � � � kk1rk

kk21 kk22 � � � kk2rk

� � � � � � � � � � � �
kkrk1 kkrk2 � � � kkrkrk

0
BB@

1
CCA; (14)

where

kkir jr ¼
XL

f¼1

sðf � xi
kir
Þsðf � xi

kjr
Þ; ir; jr ¼ 1;…; rk: (15)

To form the joint PDF of all unknown parameters, using

Bayes theorem we need to multiply the likelihood of Eq.

(11) and the priors for all unknown parameters. Prior den-

sities for arriving frequencies, amplitudes, and model order

are assumed to be uniform. We have

p frkð Þ ¼
1

L
(16)

for each modal frequency,

pðark
Þ ¼ M (17)

for each amplitude, and

p rkð Þ ¼
1

Rmax � Rmin þ 1
(18)

for the order, where Rmax and Rmin are maximum and minimum

order values, respectively. These values here are 12 and six.

Because we have rk arrivals, rk uniform priors 1=L are

multiplied, providing a complete prior of 1=LrðkÞ for the

arriving frequencies. Prior 1=LrðkÞ, which obtains small val-

ues when r(k) is large, serves as a penalization factor that

prevents the process from favoring a large order (similar to

the Schwartz criterion).26

Since noise variance w2
k is also unknown, we need to esti-

mate it at every state k. Variance can also be included in the

state equations drawing particles at each time slice and fol-

lowing the predict and update steps. Alternatively, the condi-

tional posterior PDF for the variance on all other unknowns

can be traced and variance samples can be drawn from there

at every state. To form the posterior, a prior density is needed.

A typical prior PDF for an unknown variance is27
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p w2
k

� 	
¼ 1

w2
k

; (19)

which is what we use here. Such a selection creates a condi-

tional inverse v2 density with L degrees of freedom for the

variance, from which it is straightforward to sample for each

set of frequency and amplitude particles. Variance estimation

plays an important role in the frequency and amplitude esti-

mation process. Assuming that the variance is known but has

a smaller value than the true one typically leads to overestima-

tion, since data peaks are interpreted as parts of the true trajec-

tories (because the noise level is assumed to be lower than the

actual one). On the other hand, assumption of a higher var-

iance value than the true one results in underestimation.

Combining the likelihood and priors, the joint PDF of

all unknowns (frequencies, amplitudes, number of modes,

and variance) given the observed data is as follows:

p xk; ak; rk;w
2
k jyk

� 	
/ 1

wLþ2
k

1

2pð ÞL=2

1

Lrk
exp � 1

2w2
k





yk

(

�
Xrk

j¼1

akj u f � xkjð Þ½ �2




2

)
:

(20)

Evaluation of this joint density for distinct particles pro-

vides weights for each particle within a cloud representing

how important these are, given the available data. The calcu-

lation of the posterior PDF for the unknown parameters is

the foundation for the “update” step of the PF.

The prediction and update steps are two of the three

building blocks of an SIR PF, where, in our case, frequency,

amplitude, order, and variance values are predicted using

samples from the previous state and are updated based on

how they fit in the PDF calculation, given new data entering

in the current state. The joint PDF resulting from the two

steps could present us with the problem of degeneracy,

where only a few particles obtained from the filtering pro-

cess have large weights, with most particles having negligi-

ble values. A resampling step after the update can be

employed (the third within SIR) to address this complica-

tion.22 The cumulative density function (CDF) correspond-

ing to the calculated PDF is computed. Via the CDF,

particles are resampled, replacing those obtained after the

update step; the particle weights/probabilities determine the

frequency of each new particle. That is, the particles with

larger weights may be chosen multiple times and samples

with low weights may not be selected at all. The new set of

particles forms a better representation of the posterior PDF.

IV. TRACKING DISPERSION CURVES AND SOUND
SPEED ESTIMATION

A. Estimating dispersion tracks

We consider a source that transmits a broadband signal

with frequency content between 200 and 600 Hz which propa-

gates in the ocean and is received at a hydrophone located

20 km away from the source. The ocean depth is 111 m and we

consider a thin sandy sediment of 3.5 m over limestone. The

sediment sound speed is 1670 m/s. The environment is similar

to that of the Gulf of Mexico experiment28 and the sampling

rate is 2000 Hz. The synthetic signal is shown in Fig. 2.

Before implementing the PF, it is important to deter-

mine the width of the wavelet function in Eq. (10). This

width depends on the length Dt (or length L) of the FT which

leads to the spread of the modal arrival. The corresponding

squared sinc pulse is shown in Fig. 3(a) and the resulting

wavelet u2 is illustrated in Fig. 3(b).

The spectrogram of the received signal obtained via an

STFT calculation is shown in Fig. 4(a). We identify dispersion

patterns, showing how the frequencies of distinct modes arrive

at the receiver and also how different frequencies within a

mode arrive. From the arrival times on the horizontal axis we

can see that some frequencies/modes arrive faster than others.

Also frequencies within modes arrive at different times. The

whole dispersion pattern characterizes the properties of the

waveguide. It is these intermodal and intramodal dispersion

effects that we want to exploit for inversion, and, toward this

goal, we want to identify the dispersion pattern as accurately

as possible. We should ideally extract the numerically

FIG. 2. (Color online) Synthetic time-series generated for the Gulf of

Mexico experiment environment.

FIG. 3. (Color online) The source wavelet function employed in (a) Eq. (9)

and (b) Eq. (10). The latter is used in our observation equation.
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calculated dispersion curves for the considered waveguide

that we have superimposed on the spectrogram (solid-line

curves); these have been computed using a normal modes

model.29 Noise and FT artifacts are problems that often hinder

accurate dispersion curve estimation.

Using the sequential method of Sec. III, where state and

observation equations are derived, we estimate modal trajecto-

ries present in the spectrogram. We only process the spectro-

gram after the first 0.28 s [indicated by the solid line in Fig.

4(a)], because in this segment a downward trend of the disper-

sion curves is evident, facilitating the tracking process. Also,

the modes are better separated in frequency after the first few

ms of the FT, during which the modes can overlap and cross

at some frequencies. This violates the assumption of the ab-

sence of cross-terms made in Sec. II. Additionally, we are

interested in modes that have interacted with the bottom sedi-

ment, which may not be present in the early part of the spec-

trogram. Point estimates of elements of frequency vector xk
j

present in modal trajectory j at time k are calculated as

x̂kij ¼ MAPðxkijÞ; j ¼ 1; 2;…; rk; (21)

where MAPðxkijÞ is the most frequent value of xkij for mode j
at time k among all particles i.

The MAP trajectory estimates obtained for the PDFs

calculated by the PF are shown in Fig. 4(b) with dots that are

superimposed on the spectrogram. The considered signal is

the same as the one used for the calculation of the spectro-

gram of Fig. 4(a), but now white Gaussian noise has been

added to the time-series before the STFT and spectrogram

computation. The results demonstrate a much higher resolu-

tion than the resolution of the results presented in Ref. 1,

which were already superior to simple spectrogram maximi-

zation. Figure 5 demonstrates the estimated model order

(number of modal frequencies). In the beginning of the con-

sidered segment, because of noise and FT effects, 12 modes

appear present. As we move along in the tracking, the PF

identifies seven to eight modes. Noisy peaks in the spectro-

gram cause the PF to occasionally add more trajectories

which exit rapidly, as there is no data to further support the

new tracks. It is interesting to observe that mode seven is

detected although it is very faint. The same applies to mode

16, which is extracted for many of the time slices. Although

some dispersion curves (or parts of those) are “crisply” iden-

tified, other estimates appear poor. For example, mode 9,

which is indicated in the figure, becomes “wavy” (and inter-

rupted) toward its end, because is it distorted by noise. Also

several modes are not detected, because they are not excited

or are very weak.

To further investigate the validity of our model, we

demonstrate in Fig. 6 a slice of the spectrogram at a particu-

lar time (solid line) and the corresponding squared spectrum

we obtain using MAP estimates for arriving frequencies and

amplitudes at the same time (“stars”). Although assumptions

have been made both in terms of the noise model and the

mathematical model describing arriving modes, the match is

excellent with the MAP spectrum almost coinciding with the

squared FT magnitude of the data.

Tracking results are fairly robust with respect to noise.

The noise level cannot be expressed here in terms of a single

signal-to-noise ratio (SNR) value. As the time progresses,

we can see in Fig. 4 that the spectrogram becomes weaker,

because the signal attenuates with time. We calculate the

SNR as a function of time, taking into account this effect.

FIG. 4. (Color online) (a) The spectrogram of an acoustic signal that has

propagated 20 km away from the source with the numerically calculated dis-

persion curves superimposed. (b) Frequency tracks as estimated by the PF.

FIG. 5. (Color online) The probability mass function (PMF) of the number

of modes.
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The SNRs vs time for the two noise levels are shown in

Fig. 7. Figure 8 shows two spectrograms with the superim-

posed frequency MAP estimates for the SNRs of Fig. 7

[Fig. 8(a) demonstrates the same results as those in Fig. 4(b);

the results are reproduced for an easier comparison]. In terms

of MAP estimates, the frequency trajectories follow well the

dispersion curves when the noise is increased. The quality is

maintained even for the times when the signal is weak. For

the noisier circumstances [Fig. 7(b)], however, there is

higher uncertainty in the frequency estimation—albeit, very

small. This is demonstrated in Fig. 9, where frequency PDFs

are shown for the same mode for the two cases. The spread

increase when the noise level is raised is small but evident.

As expected, as the noise rises further, so does the uncer-

tainty in the frequency estimation.

Finally, in Fig. 10 we show the spectrogram of the noisy

realization of the time-series in Fig. 2 when a rectangular

window is used in the FT computation, which is directly

comparable to that of Fig. 4(b). Although we can still see

most modes traced correctly in the new results, the estimated

tracks with the rectangular window appear to be inferior to

those obtained using a Hamming window.

B. Inversion for sediment sound speed

Frequency PDFs can be used for inversion for sound

speed in the sediment. Frequencies are associated with ar-

rival times, which are directly related to group velocities via

the propagation range. Specific group velocity values and

modal arrival times are the result of the properties of the

waveguide, and, thus, of sediment sound speed.

To solve the inverse problem of estimating environmen-

tal parameters of the propagation medium, matched field

processing (MFP) has often been employed.30 This method

uses search algorithms that navigate a large parameter space

to seek parameter values which generate synthetic fields

(replicas) that best fit the data. MFP requires a combination

of wave propagation modeling for the generation of replica

fields at receiving phones and a decision rule that estimates

model parameters entering the replica calculation. Inversion

FIG. 6. (Color online) A slice of the spectrogram for a particular time (solid

line) with the spectrum constructed using the MAP estimates for the PF

superimposed (“stars”).

FIG. 7. (Color online) The SNR for two different noise levels as a function

of time.

FIG. 8. (Color online) Tracking for two different noise levels.

FIG. 9. (Color online) The frequency PDFs for the same mode for two dif-

ferent SNRs.
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is performed by identifying those values of the model param-

eters that maximize a similarity measure between replica

and true acoustic fields. MFP was originally used for source

localization and was later adapted and applied to estimation

of environmental parameters.31

Here, we follow an approach similar to MFP. However,

instead of creating full-field replicas that we then match to

the acoustic signal, we only work with arrival times or,

equivalently, group velocities. To focus on the effect of dis-

persion tracking on compressional sound speed estimation,

all other parameters (source location, bathymetry, sediment

thickness, density, attenuation, and half-space properties) are

considered known and fixed in our calculations. Using a

sound propagation model,29 we first calculate the acoustic

field with normal modes for frequencies ranging between

200 and 600 Hz—with 1 Hz spacing—for different values of

compressional velocity cp. The step between considered cp

values is 1 m/s. The normal mode modeling allows us to cal-

culate modal wavenumbers kn; using those as well as fre-

quency information, we calculate group velocities,

Vg ¼
dx
dkn

; (22)

for each mode and for each value of cp. These are “replica”

group velocities which can be readily related to replica ar-

rival times because the range is known (20 000 m).

Here, we select a specific mode and the PDFs of its fre-

quencies at specific times as obtained by the PF. Since the

arrival time is different for the selected modal arrivals, the

corresponding frequencies have different group velocities.

We focus on mode 11 and we define arrival times t11;1 and

t11;2 as

t11;1 ¼ t0 þ 20 000=Vg11ðx11t1 ; cpÞ; (23)

t11;2 ¼ t0 þ 20 000=Vg11ðx11t2 ; cpÞ; (24)

where t0 is the transmission time, which is unknown, x11t1

and x11t2 are the arriving frequencies, and Vg11ðx11t1 ; cpÞ and

Vg11ðx11t2 ; cpÞ are the group velocities for frequencies x11t1

and x11t2 for the 11th mode.

Difference Dt ¼ t11;2 � t11;1 is 0.05 s, because we work

with times of 0.53 and 0.58 s as indicated by the solid lines

in Fig. 4(b); the unknown transmission time t0 is removed

because of the calculation of a time difference. We seek with

a grid search values of cp that minimize error e, where

e ¼ jDt� Dtrepj2: (25)

This is equivalent to selecting an MFP measure of similarity

between replica and true fields. To generate Dtrep, we com-

pute replica group velocity Vg11 using wavenumbers and fre-

quencies, as mentioned earlier, for x11i1 and x11i2, obtained

by the PF, for different values of cp within the selected

FIG. 10. (Color online) The spectrogram of an acoustic signal using a rec-

tangular window.

FIG. 11. (Color online) The frequency

PDFs for mode 11 (a) at 0.53 s and (b)

at 0.58 s at the times slice indicated in

Fig. 4(b) with the solid lines. Particles

for these frequencies are used for

sound speed inversion. (c) The PDFs

of the sediment sound speed calculated

using the frequency densities of (a)

and (b).
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search interval; x11i1 and x11i2 are particles drawn for the

arriving modal frequencies. In short, the PDFs of frequencies

as estimated by the particle filter are propagated backward

through a sound propagation model, resulting in PDFs for

sediment velocity cp.

The PDFs estimated with the PF for the two frequencies

considered in the inversion are demonstrated in Figs. 11(a) and

11(b). The resulting density for sediment sound speed is shown

in Fig. 11(c). Prior information for the sound speed included

1590 and 1700 m/s as minimum and maximum for the search

limits. The MAP estimate of the PDF is 1670 m/s, the true

value. It is interesting that two secondary modes are present,

centered at 1609 and 1692 m/s. These are the result of inversion

using particles at the borders of the frequency PDFs. In spite of

their presence, which indicates a sensitivity of the method to

frequency variation, the PDF is centered at the correct sound

speed, with significant probability surrounding this value.

Results presented in Fig. 11 have been calculated based

on the assumption that mode 11 has been correctly identi-

fied. This is an important issue that has a large impact on the

quality and accuracy of the environmental parameter esti-

mates. Figure 12 shows results that are produced after mis-

identification of the mode for the case illustrated in Fig. 11.

Mode 11 is treated as if it is the tenth mode. The sound speed

PDF shown in Fig. 12 is peaked at 1692 m/s, which is very

close to the upper limit of the original search interval. The

relation of the estimate to the prior information, which is

fairly broad, indicates that there may be errors in the modal

recognition, suggesting that the estimation process should be

revisited. The sound velocity PDF when mode 11 is incor-

rectly labeled as mode 12 is illustrated in Fig. 13. The proba-

bility density is peaked again at cp¼ 1692 m/s with a smaller

mode at cp¼ 1609 m/s. The main mode peaks at the upper

limit of the search interval, again indicating that the search

should be repeated more carefully with emphasis on mode

recognition. More specifically, in addition to repeating the

mode identification, more modes and times can be used for

the inversion. This was performed here, with results

corroborating the estimation of 1670 m/s as the compres-

sional velocity in the sediment.

V. CONCLUSIONS

Modal dispersion curves are extracted combining a math-

ematical model for arriving modal frequencies at a given time

and an approach that tracks frequency behavior in time; this

approach relies on particle filtering. The process considers a

number of modes present in a signal that has propagated a

long distance from the source in a Gaussian noise environ-

ment. The number of modes, modal amplitudes, and noise

variance are unknown. The filter integrates all these parame-

ters in the frequency estimation process and produces PDFs in

addition to point estimates. The estimation process is success-

ful under different noise levels; however, the spread of the

PDFs increases with variance, as expected.

The particles that are produced at the output of the filter

forming the dispersion PDFs are used as input to an inverse

propagation model for the estimation of sediment sound

speed in the environment. Normal mode modeling is used

for calculating modal group velocities that are then matched

to estimated velocities and corresponding arrival times using

the dispersion analysis. When modes are correctly identified,

sediment sound speed is successfully estimated, with the

MAP estimate coinciding with the true value. Uncertainty is

expressed via the spread of the PDF and, especially, through

secondary modes. On the other hand, sound speed is not esti-

mated accurately when the modes are misidentified. In that

case, for the example that we show, the resulting sound

speed estimates are right at the border of the available prior

information, pointing to potential problems with mode selec-

tion and identification. The process can then be repeated

exploring different combinations of modes.

It should be noted here that the PF was applied to simple

spectrograms obtained via STFT calculations. It is conceiva-

ble that even better results may be attainable, if an improved

time-frequency representation is used before the application

of the tracking algorithm.

FIG. 12. (Color online) The PDFs for the sediment sound speed calculated

using the frequency densities of Figs. 11(a) and 11(b). Mode 11 has been

misidentified as mode 10.

FIG. 13. (Color online) The PDF for the sediment sound speed calculated

using the frequency densities of Figs. 11(a) and 11(b). Mode 11 has been

misidentified as mode 12.
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This approach was followed in Ref. 21 resulting in a

good match between data and replica spectra for static esti-

mation. The concern, however, with other time-frequency

representations that typically improve SNR is that a smooth-

ing factor may eliminate some modes. Although this issue

may not necessarily hinder inversion and may potentially

improve it, it is a challenge that should be carefully

addressed in the future.
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