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A method is developed for the estimation of source location and sound speed in the water column

relying on linearization. The Jacobian matrix, necessary for the proposed linearization approach,

includes derivatives with respect to empirical orthogonal function coefficients instead of sound

speed directly. First, the inversion technique is tested on synthetic arrival times, using Gaussian

distributions for the errors in the considered arrival times. The approach is efficient, requiring a few

iterations, and produces accurate results. Probability densities of the estimates are calculated

for different levels of noise in the arrival times. Subsequently, particle filtering is employed for the

estimation of arrival times from signals recorded during the Shallow Water 06 experiment. It

has been shown in the past that particle filtering can be employed for the successful estimation of

multipath arrival times from short-range data and, consequently, in geometry, bathymetry, and

sound speed inversion. Here probability density functions of arrival times computed via particle

filtering are propagated backward through the proposed inversion process. Inversion estimates are

consistent with values reported in the literature for the same quantities. Last it is shown that results

are consistent with estimates resulting from fast simulated annealing applied to the same data.
VC 2014 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4864787]
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I. INTRODUCTION

Estimating the location of an underwater sound source

is an important practical problem with well known and long

standing applications in defense. More recently applications

in environmental studies have been made imperative and are

of serious concern. Beyond source location there is a rich set

of environmental information available in the traditional

data source. The time-series data recorded at arrays of

hydrophones contain information on properties of the ocean

through which the sound has traveled. Extracting this infor-

mation from the noise contaminated data is a broader objec-

tive of active defense and environmental sciences research

programs. Inverse theory is a critical modeling component

of those programs, central to both estimation goals. Open

problems are considerable with computational efficiency

being of particular concern. We propose a novel lineariza-

tion procedure that directly addresses the computational bur-

den while retaining estimation fidelity.

A popular approach for inversion is matched-field proc-

essing (MFP).1 This requires a combination of wave propa-

gation modeling for the generation of replica fields at

receiving phones and a decision rule that estimates model

parameters entering the replica calculation. Inversion is per-

formed by identifying those values of the model parameters

that maximize a similarity measure between replica and

true acoustic fields. Although MFP was originally used for

source localization, it was subsequently applied to estima-

tion of environmental parameters as well.2–8 MFP, when

applied for the estimation of environmental parameters, is

often referred to as matched-field inversion (MFI).

MFP/MFI has been applied with excellent results both

to synthetic and real data. However, as a full-field matching

approach, this method requires that the full acoustic field is

calculated at a set of receiving phones and compared through

the selected measure of similarity to the received acoustic

data. Many parameters affect sound propagation and, thus,

enter the replica field calculation and estimation process. As

a result, although we may only be interested in estimating

the source location and a limited set of environment-related

parameters, more factors need to be considered. Such factors

are the properties of the bottom sediment because those

affect the full field: Uncertainty regarding these parameters

has to be incorporated in the estimation process for accurate

inversion. Therefore the computational load of MFI methods

can be substantial, especially when the number of unknown

or uncertain parameters is large and the signal carries broad-

band information. Global optimization techniques have been

successfully developed and applied for the acceleration of

matched field methods,5–7,9,10 but, even with such

approaches, the issue of expensive computations remains.

As an alternative, to avoid multiple replica field calcula-

tion, many attempts have been made to investigate the poten-

tial for matching only select features of the acoustic field to

corresponding replica features. Knowledge of arrival times

of distinct paths that the sound follows from source to

receivers rather than the full field can facilitate both source

localization and ocean property estimation. Different inver-

sion methods have been implemented in this direction.11–16

Also fast linearization schemes have been successfully

implemented in several aspects of inversion in underwater

acoustics and seismic studies.14–19
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In this paper, a linearization inversion method is devel-

oped that employs select ray paths [direct (D), first surface

reflection (SR), and first bottom reflection (BR)] for source

localization and estimation of bottom depth and sound speed

profile. Previously, such methods have been employed for

the estimation of bias in sound speed14 or for isovelocity

profile estimation but not for complete sound velocity profile

estimation in general situations. In our case, the linearization

process inverts for complete profiles, bypassing the difficult

incorporation of such profiles in the Jacobian matrix by cal-

culating derivatives with respect to empirical orthogonal

function (EOF) coefficients.20

Before applying the linearization estimation method, it

is important to have accurate multipath arrival times that

will be used as input to the inversion process. A particle

filtering method for the estimation of such arrivals was

presented in Ref. 21 and was demonstrated to provide more

reliable results than conventional approaches. In the same

reference, successful localization with real data was demon-

strated using arrival times and corresponding probability

density functions (PDFs) extracted via particle filtering.

The new method is first tested on synthetically gener-

ated arrival times by assuming that the extracted times fol-

low a Gaussian distribution. The approach is then applied to

arrival times extracted via particle filtering on Shallow

Water 06 (SW06) data. Inversion for source location, array

tilt, water column depth, and EOF coefficients with SW06

data and global optimization methods has been discussed in

Refs. 22 and 23. Results presented in those references are

used here for comparison.

The paper is organized as follows: Sec. II discusses the

linearization scheme introduced in this paper. Emphasis is

placed on sound speed inversion with EOFs. Section III

presents results by applying the proposed method to

synthetic data. Section IV discusses the SW06 data and the

particle filter that extracts distinct path arrival times and

also presents inversion results from the SW06 time series.

Simulated annealing results are also presented for compari-

son. Conclusions follow in Sec. V.

II. INVERSION WITH LINEARIZATION

A. The linear system

Equation (1) in the following text reflects the fact that

the arrival time t of each path is a function of the source

location (range r and source depth zs), water column depth

WD, sound speed c(z), and transmission instant t0 for the

underwater problem of interest,14,16

t ¼ s s; zs;WD; c zð Þð Þ þ t0; (1)

where s represents the ray travel time.

Generalizing, we can write

t ¼ f qð Þ; (2)

where t is the vector of measured/estimated travel times; f

represents the forward or acoustic model that relates the

measurements to a set of parameters; q represents the vector

containing the parameters to be estimated,

q ¼ r; zs;WD; c zð Þ; t0½ �: (3)

Other parameters such as sound speed and thickness of sedi-

ments enter Eq. (1) when rays that have interacted with the

sediments are considered.

For our problem, the signal is received at N hydro-

phones of a vertical line array (VLA). If three characteristic

ray paths (D, SR, and BR, here) are employed, that is, K¼ 3,

where K is the number of paths, there will be a total of

KN¼ 3N arrival time measurements, which serve as our

data.

For our acoustic inverse problem, vector q is estimated

using the measured travel times and forward model f, relying

on ray theory. Because of the nature of our data (time) and

its relationship to the geometry of the problem and also

water column sound speed, the inverse process in our case is

quasi-linear: Linearizing the problem locally has been shown

to lead to accurate solutions in an efficient manner.14,16

A linear approximation to Eq. (2) can be obtained

as14,16,18,19

t ¼ f q0ð Þ þ Jdq; (4)

where q0 is a vector of initial conditions for q, dq is the

model perturbation that provides a “correction” to the initial

model parameters as will be explained in the following text,

and J is the Jacobian matrix that contains the partial deriva-

tives of time with respect to the unknown parameters for

each path. That is,

J ¼

@t1
@q1

@t1

@q2

� � � @t1

@qM

@t2
@q1

@t2

@q2

� � � @t2

@qM

� � � � � � � � � � � �
@tKN

@q1

@tKN

@q2

� � � @tKN

@qM

0
BBBBBBBBBB@

1
CCCCCCCCCCA
: (5)

Vector q consists of M variables.

By introducing dt¼ t � f(q0), Eq. (4) leads to

Jdq ¼ dt: (6)

Equation (6) reflects a linear relationship between arrival

time differences and perturbations of parameters q.

More specifically, quantities dt of Eq. (6) represent the

differences between path arrivals in the real signals and syn-

thetic arrivals generated for a set of initial values for the

unknown parameters. Through Eq. (6), corrections dq for the

unknown parameters are obtained that provide a better match

between real and replica times. The system needs to be

solved iteratively until it converges. At every step, the results

from the previous iteration are employed as the new initial

conditions.

Equation (6) generally leads to an overdetermined linear

system (for our data we consider N¼ 14 hydrophones and

K¼ 3 arrival times for each phone; we are inverting for

seven parameters—source range and depth, water depth,

three EOF coefficients, and time instant for synthetic data
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and we also include tilt for the real data inversion). Least

squares can be used for the solution of the system; more

details will follow in Sec. II C.

B. Arrival time derivatives with respect to inversion
parameters

The linearization approach requires the computation of

ray travel time derivatives with respect to the unknown pa-

rameters q. Differentiation of time with respect to source

and receiver locations for the direct ray path is presented

analytically in Refs. 14 and 24; bottom depth is also consid-

ered in the latter reference. The time derivatives with respect

to source range r, source depth zs, and water column depth

WD are as follows.24

First dealing with the direct path, we recognize that

@t

@WD
¼ 0 (7)

because there is no interaction with the water-sediment inter-

face. From ray theory, the derivatives for range and source

depth can be shown to be

@t

@r
¼ p; (8)

@t

@zs
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� p2c2 zsð Þ

q
c zsð Þ

; (9)

where ray parameter p, as defined by Snell’s Law, character-

izes eigenrays—rays connecting source and receiver. Also

c(z) is the sound speed at depth z.
For the SR, we have

@t

@WD
¼ 0; (10)

@t

@r
¼ p; (11)

@t

@zs
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� p2c2 zsð Þ

q
c zsð Þ

: (12)

For the bottom reflected path, the derivatives are

@t

@WD
¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� p2c2 WDð Þ

p
c WDð Þ ; (13)

@t

@r
¼ p; (14)

@t

@zs
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� p2c2 zsð Þ

q
c zsð Þ

: (15)

Derivatives for all paths with respect to time instant t0 are 1.

The time derivatives require the calculation of p. For

most paths, p is computed using Newton’s method.14,15,24,25

For direct, turning rays, a turning point zm exists. In such

cases, it becomes difficult to approximate the derivatives

required for Newton’s method, and a basic first order

approximation can produce p for which 1�p2c2(zm)< 0; this

causes
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� p2c2 zmð Þ

q
to become imaginary. To handle this

problem, we use the bisection method24,26 for estimating the

turning point zm and the ray parameter p. To ensure thatffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� p2c2

p
is always real, the bisection method solves for p

by focusing on a small bounded region that contains the

solution p and iteratively narrows the region by half until a

desired tolerance is reached.

The arrival time derivatives with respect to EOF coeffi-

cients can be derived in the following way. The sound speed

profile is described as

c ¼ cm þ
XNe

i¼1

livi; (16)

where cm is the mean sound speed profile vector obtained

from CTD measurements, vi, i¼ 1,…, Ne, are the eigenvec-

tors of the sound speed covariance matrix, and li, i¼ 1,…,

Ne are the eigenvector coefficients. Quantity Ne is the num-

ber of EOFs included in the system. In our case, Ne¼ 3

because of prior information. Linear interpolation is used on

these vectors to obtain the full profile

c zð Þ ¼ cm zð Þ þ
XNe

i¼1

livi zð Þ: (17)

Next we derive @t=@li for i¼ 1, 2,…Ne. We can write

t ¼
ðzr

zs

1

c zð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� p2c2 zð Þ

p dz: (18)

Note that t is dependent on both sound speed c and the ray

parameter p. Differentiating t with respect to li by applying

the chain rule on Eq. (18) and with @c=@li¼ vi given by

Eq. (17), we obtain

@t

@li

¼ @t

@c

@c

@li

þ @t

@p

@p

@li

¼
ðzr

zs

2p2c2 zð Þ � 1
� �

vi zð Þ
c2 zð Þ 1� p2c2 zð Þ

� �3=2
dz

þ @p

@li

ðzr

zs

pc zð Þ
ð1� p2c2 zð Þ3=2Þ

dz: (19)

To simplify Eq. (19), we need to know @p=@li. We can

use the following expression for range:

r ¼
ðzr

zs

pc zð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� p2c2 zð Þ

p dz: (20)

We also employ the fact that range does not depend on the

eigenvector coefficients li. It follows that

@r

@li

¼ 0¼ @r

@c

@c

@li

þ @r

@p

@p

@li

¼
ðzr

zs

pvi zð Þ
1�p2c2 zð Þ
� �3=2

dzþ @p

@li

ðzr

zs

c zð Þ
1�p2c2 zð Þ
� �3=2

dz:

(21)
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Using Eq. (21) to cancel out the @p=@li term in Eq. (19), we

obtain

@t

@li

¼
ðzr

zs

�vi zð Þ
c2 zð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� p2c2 zð Þ

p dz: (22)

These derivatives are included in the Jacobian matrix.

C. Solving the linear system

For the linear system of Eq. (6), a simple least-squares

method minimizes quantity v2, where

v2 ¼ jJdq� dtj2: (23)

Quantity v2 is the “lack of fit” between data and arrival times

generated under our model assumptions. The smaller the

value, the better the fit. The solution to Eq. (23) is obtained

by setting up a system of normal equations,

JTJdq ¼ JTdt; (24)

leading to

dq ¼ JTJð Þ�1
JTdt: (25)

This approach provides the least squares solution for

the parameter corrections (dq). If matrix JTJ is well-

conditioned, its inverse can be reliably obtained, and dq can

be easily calculated using the system of Eq. (25). However,

matrix JTJ is typically ill-conditioned.

To obtain stable and physically meaningful solutions to

the inverse problem of interest, regularization can be

employed making use of prior information. This method, a

generalization of Tikhonov regularization, combines prior

information on the unknown parameters including uncer-

tainty and the least squares objective function.

To integrate prior information, a slight rearrangement

of our system is necessary. Because the linear system of

Eq. (25) is formulated in terms of parameter perturbations

instead of the parameters themselves, a priori information

for the latter cannot be incorporated directly into the system.

For this information to be included, the system can be rear-

ranged. By introducing vector q0 as the vector of initial con-

ditions for the unknown parameters, manipulating Eq. (6)

leads to

Jq ¼ t ¼ Jq0 þ dt: (26)

Solutions to the linear system of Eq. (26) are direct estimates

of the parameters.

To implement regularization, a new objective function

U, now based on Eq. (26), is minimized. The objective func-

tion is defined as15

U ¼ jG Jq� tð Þj2 þ k2jHðq� qpÞj
2; (27)

where H is the regularization weighting matrix, including

uncertainties on those parameters for which a priori infor-

mation is available, and qp is the vector containing prior

information of the components of vector q. We also use qp

as the vector of initial values for the iterative regularization

method. Parameter k2 is a Lagrange multiplier, selection of

the value of which will be addressed later. Assuming that the

noise for measured data (arrival times) follows a zero mean

Gaussian distribution with standard deviation ri and assum-

ing no correlations, G is a diagonal matrix defined as

G ¼ diag 1=r1; 1=r2;…; 1=rKN½ �: (28)

In our case, r1¼r2¼ � � � ¼ rKN.

The regularized solution is obtained as

q¼ JTGTGJþk2HTHð Þ�1ðJTGTGtþk2HTHqpÞ: (29)

Quantity k2HTH of Eq. (29) stabilizes the inversion

solution, remedying the ill-conditioning. A search is con-

ducted for an “optimal” value of k2 that will balance the two

components of the objective function. The first is the v2 error

(here, v2¼ jG(f(q)� t)j2), which should approach KN for

best fit; the second expresses the deviation from prior

information.

The uncertainty matrix H that we use is selected as

H ¼ diag 1=hq1; 1=hq2;…; 1=hqM

� �
; (30)

where hqi represents the uncertainty for the ith parameter of

vector q. For those parameters without a priori information,

the corresponding term in H can be set to zero.

To implement regularization, we start with the initial

model qp and then solve Eq. (27) iteratively until conver-

gence is achieved. Convergence is indicated when the v2

error approaches KN.

III. RESULTS FROM SYNTHETIC DATA

To carry out a performance evaluation of the new

method, we conducted Monte Carlo simulations with syn-

thetic data. Arrival times were generated for the three paths

FIG. 1. The L-curve, based on which the regularization coefficient k2 is

selected. The error in the arrival times was Gaussian-distributed with zero

mean and a standard deviation of 200 ms.
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of interest, considering a VLA and an environment similar to

that of the SW06 experiment.22,23,27 We generated 200 noisy

realizations of the arrival times for the three paths; the noise

was additive, Gaussian, and zero mean with a standard devi-

ation of 200 ls.

The coefficient k2 of Eq. (27) was selected by forming

the L-curve (Ref. 16) of Fig. 1. We selected a value of k2

that helps us attain a balance between prior information

(regularization term) and minimization of the simple least

squares error. It has been recommended that a value of k2

that lies to the right of the corner of the curve is

selected,28 although there is no way to find a unique

optimum value.

Figure 2 demonstrates results for a single realization vs

iteration number for the linearization approach. It can be

seen that only four iterations are required for convergence.

PDFs from Monte Carlo runs with 200 realizations are

shown in Fig. 3.

We also selected a smaller value for k2, which means

that the least squares part of the function that is minimized is

weighted more now (with the prior information impacting

the solution less). Results are shown in Fig. 4. Table I

presents the true values of the parameters that we estimate

and the maximum a posteriori (MAP) estimates obtained

from the estimation with the two values of k2 by maximizing

the computed PDFs of Figs. 3 and 4. It is interesting to

observe how the two values of k2 provide slightly different

results for the EOF coefficients (the results for source range

and depth and bottom depth are almost identical). The results

from using a small value for k2 are very close to the true val-

ues for the coefficients. Slight discrepancies between true

values and estimates are observed when a larger k2 is used.

On the other hand, a small k2 results in higher uncertainty/

spread in the estimation process as shown from the PDFs of

Fig. 4 and their comparison to those of Fig. 3. This is the

well known interplay between variability in the results

FIG. 2. (Color online) Linearization

estimates vs iteration: (a) source range,

(b) source depth, (c) water depth, (d)

l1, (e) l2, (f) l3.

FIG. 3. (Color online) PDFs of (a)

source range, (b) source depth, (c)

water column depth, (d) l1, (e) l2, (f)

l3.
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(when a small amount of regularization is applied) and bias

(when regularization favors the prior information). When the

latter happens, the solution is biased toward the prior values,

although this is evident only for l1 and l2 in our results.

We should point out here that the diagonal elements of

matrix H are 1/30, 1/10, 1/40, 1/30, 1/20, 1/10, and 0 for

source range, source depth, water depth, l1, l2, l3, and time

instant, respectively, reflecting a significant amount of

uncertainty regarding the available prior information: That

is, the processor was not restricted within search intervals

tightly surrounding the true parameter values.

Because we cannot express the quality of the complete

sound speed profile through a PDF, we show in Fig. 5(a) the

true sound speed profile of the water column in the synthetic

environment (squares) and the MAP profile calculated from

the 200 estimates we obtained (circles) for the larger value

of k2. This estimate was calculated by using the MAP esti-

mates for coefficients l1, l2, and l3. Figure 5(b) demon-

strates the same two profiles, but now a few estimates

obtained from distinct realizations (solid curves) are super-

imposed. Although these results from different realizations

do not represent a full PDF, they provide an idea of the

spread of the sound speed profiles around the MAP estimate

and they complement Fig. 3.

To determine how “local” our method is, that is, how

sensitive it is to initial conditions or prior information, we

performed estimation using a different prior model (matrix

H remained the same). The new prior assumptions are shown

in Table II. Results are demonstrated in Fig. 6 and Table II

and show robustness of the method: Two very different sets

of prior values produced practically the same results. The

PDFs are very similar to those of Fig. 3 and the MAP esti-

mates of Table II are excellent. We should mention that the

method does not always converge. For example when we

use 100, 90, as 80 as prior values for the EOF coefficients,

the method diverged. However, such a choice reflects a com-

plete lack of information on the involved parameters, which

is very rarely the case.

Last, to test our method in more challenging circumstan-

ces, we performed estimation employing arrival times with

higher uncertainty (the standard deviation was 300 ls). The

PDFs, shown in Fig. 7, demonstrate a larger spread than

those of Fig. 3; this is expected because of the increased

uncertainty. However, the modes of the densities are very

close to the true parameter values.

FIG. 4. (Color online) PDFs of (a)

source range, (b) source depth, (c)

water column depth, (d) l1, (e) l2, (f)

l3 for a smaller value of k2.

FIG. 5. (Color online) (a) The sound speed profile used for the simulations

(curve with squares) and the sound speed profile constructed with the MAP

estimates obtained from 200 realizations. (b) The profiles of (a) with super-

imposed sound speed profiles estimated from a few realizations (solid

curves).

TABLE I. True, prior, and estimated values for the unknown parameters for

two k2.

Parameter True Prior Estimated Estimated small k2

r (m) 223 230 221.5 221.6

zs (m) 26 30 25.9 25.7

WD (m) 73 80 73.0 72.9

l1 �35 �70 �40 �35

l2 �10 �30 �8 �11

l3 2 �1 0 1
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IV. PARTICLE FILTERING FOR ARRIVAL TIME
ESTIMATION FROM SW06 DATA AND INVERSION
RESULTS

The data we are processing in this work were collected

at 16 vertically separated hydrophones that were equally

spaced with a spacing of 3.75 m. The shallowest hydrophone

was at roughly 20 m from the surface. The source transmitted

linear frequency modulated (LFM) signals in low and mid

frequencies. We investigate a case where the frequency was

between 100 and 900 Hz. The time series that we are using

for the inversion are the result of match-filtering the received

time series with the transmitted signal. Only the 14 deepest

hydrophones are used because the signal-to-noise ratio at the

top two was very low. The time series are shown in Fig. 8.

The data were collected at short range (approximately

230 m) in a range-independent environment in terms of

water column depth, which was reported to be around 78 m.

The mean sound speed profile calculated from CTD meas-

urements will be illustrated later in the paper.

The problem we are examining is as follows. A source

is emitting a broadband pulse s(l) (in our case a sinc after the

matched-filtering process of the received signal and source

pulse). Signals resulting from the propagation of the pulse

through the ocean medium are received at N spatially sepa-

rated hydrophones via several paths. Because of the angles

of arrival of the different paths and the spatial separation of

the hydrophones, the arrival time of a specific path at a

receiving phone varies with phone location. The received

signal at the nth phone is modeled as a sum of delayed and

weighted replicas of the source signal s(l), corresponding to

paths that have undergone reflections (other than the direct

path, which has not been reflected off any boundaries).22,29

The sum is actually the superposition of K pulses corre-

sponding to K multipaths. Specifically,

yn lð Þ ¼
XK

k¼1

anks l� tnkð Þ þ cn lð Þ; (31)

where yn(l) are the data at phone n and time sample l, tnk is

the arrival time for path k (k¼ 1,…, K) at the nth receiver,

and noise component cn(l) � N(0, r2
c). Weights ank are the

amplitudes of the distinct arrivals, which are also unknown.

We refer to Eq. (31) as the observation or measurement

equation. This equation reveals that data yn(l) are related to

unknown arrival times tnk in a nonlinear fashion. Arrival

times tnk and amplitudes ank form the vector of unknown pa-

rameters, termed the state vector.

Arrival times at neighboring receivers will be in close

proximity, and they evolve in space across phones in a struc-

tured manner. Particle filtering or numerical sequential

Bayesian filtering is a suitable approach for exploiting such

evolution in estimation and has been shown to be successful

in addressing several problems in ocean acoustics.22,30–33

Carrière et al. performed inversion with a similar method

(ensemble Kalman filters) in Ref. 34. Working in a such a

framework, we apply particle filters to the problem of arrival

time estimation. We cannot apply simple Kalman filters to

our case because of the nonlinearity of Eq. (31); extended

and unscented Kalman filters35–42 will not resolve the nonli-

nearity adequately as discussed in Ref. 43.

The approach in more detail is as follows. Focusing on

arrival times for a moment, let tn be the state vector,

FIG. 6. (Color online) PDFs of (a)

source range, (b) source depth, (c)

water column depth, (d) l1, (e) l2, (f)

l3 for a different set of prior values.

TABLE II. True, prior, and estimated values for the unknown parameters

for different prior information.

Parameter True Prior Estimated

r (m) 223 180 221

zs (m) 26 30 26

WD (m) 73 80 72

l1 �35 10 �35

l2 �10 10 �8

l3 2 10 4
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consisting of these times at the nth receiver and tn¼ [tn1,…,

tnK]. Let yn be the received time series at receiver n and

Yn¼ {y1,…, yn�1, yn}. The goal is to estimate tn based on

the set of available measurements Yn. In our case, we want

to estimate p(tnjYn), which will enable us to obtain point

estimates for tn.

A particle filter consists of three steps. The first one,

termed the prediction step, relies on a transition equation

that predicts arrival times and amplitudes on a given hydro-

phone provided PDFs of those parameters estimated at the

previous phone. More specifically, particles (samples) form-

ing an arrival time PDF at state n� 1 predict via a small

perturbation arrival times at state n. The available collection

of these particles constitutes a cloud. A simple transition

equation for our problem reflecting this prediction is

tn ¼ tn�1 þ nn; (32)

where nn � N(0, R). R is a K�K diagonal matrix. Diagonal

elements rkk of R determine arrival time perturbations con-

sidered from the (n� 1)th to the nth receiver and are selected

empirically; in this work, they are the same for every state/r-

eceiver and for every arrival.

However, in Ref. 22, it was shown that including a

“velocity” in the transition improves estimation perform-

ance. This gradient reflects that the spatial evolution of the

arrivals varies for different paths. Using the gradient com-

ponent in the transition, the effective size of the perturbation

from state to state is determined individually for each path.

We, therefore, have a system of two state equations,

tn ¼ tn�1 þ _tn�1d þ nn;

_tn ¼ _tn�1 þ xn:
(33)

Similarly to nn, perturbation xn is distributed according

to N(0, Rx). Diagonal elements rx of Rx represent the

change in arrival time gradient from the (n� 1)th to the nth

receiver. Rx is a K�K matrix as well. Parameter d was

selected empirically.

The second step of a particle filter is the update process.

During that stage, the particles of the unknown parameters

resulting from the transition equation are updated employing

the observation equation and the corresponding likelihood

function

L xkjyn

� �
/ 1

rL
c s

exp � 1

2r2
c

XLs

n¼1

yn lð Þ �
XK

k¼1

anks l� tnkð Þ
 !2

0
@

1
A;

(34)

where Ls is the length of the time series. The update

stage provides a correction to the samples obtained from

the prediction step; this correction stems from the new

data.

FIG. 7. (Color online) PDFs of (a)

source range, (b) source depth, (c)

water column depth, (d) l1, (e) l2, (f)

l3 for an increased noise level.

FIG. 8. (Color online) Time series at 14 hydrophones; the data were

collected during the SW06 experiment.
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Having set up the two fundamental components for se-

quential filtering, a particle filter was implemented utilizing

the model of Eqs. (31) and (33) and was applied to SW06

time series with three prominent arrivals, D, SR, and BR. At

the end of the update step, the likelihood calculations

assigned a weight/probability to each particle. The particles

along with their associated weights formed an estimate of

the desired density p(tnjYn).

The PDF resulting from the two steps could present us

with the problem of degeneracy, where only a few samples/

particles obtained from the filtering process have large

weights, with most particles having negligible values. A

resampling step after the update can be employed to address

this complication.44 Particles are resampled with replacement

from the available cloud forming the PDF of interest, using the

calculated particle weights as probabilities. The particles with

larger weights may be chosen a number of times and samples

with small weights may not be selected at all. The new cloud

of particles forms a better representation of the posterior PDF.

The process consisting of a prediction, update, and resampling

step is known as Sequential Importance Resampling (SIR).

The main steps of our filtering process are as follows:

Arrival time samples/particles were drawn from a uniform

distribution for the first phone. Using the likelihood of

Eq. (34) and after the resampling step mentioned in the

preceding text, a set of particles with associated weights

described the PDFs of arrival times at the first phone.

These arrival time particles were propagated to the second

phone, were perturbed according to Eqs. (33), and were

updated via the likelihood for the calculation of the PDF of

arrival times at the second phone. Resampling followed.

The same process was repeated until the last phone. The

smoother of Ref. 45 was then implemented, which, moving

from the last state backward, provides “crisper” PDFs,

and, thus, estimates. The smoother employs the PDFs of

arrival times at phone nþ 1 to refine the PDFs of arrival

times at phone n. This process allows us to “correct” for

the availability of limited information at the first phones. It

should be noted that the smoother does not mandate draw-

ing more particles after the completion of the forward fil-

ter. The smoothing process just calibrates the probabilities

corresponding to already drawn particles. The number of

particles for the SIR filter was 5000. Only 500 particles

were used in the backward filter implementation.

As mentioned before, the amplitudes of the different

arrivals were also unknown. To ensure an efficient process,

amplitudes did not enter the vector of unknown parameters

with particles drawn and perturbed at every state but were

instead computed using a MAP estimator. Because the con-

ditional PDFs of amplitudes on arrival times follow a

Gaussian density, estimation is straightforward. We used the

approach found in Refs. 29, 46, and 47 to obtain amplitude

MAP estimates conditional on the arrival time particles.

Specifically, for an arrival time particle t
i¼ [ti

1,…, ti
K] at the

nth phone, the MAP estimate of Ai
M A P;n;, a vector consisting

of the amplitude estimates for that arrival time particle vec-

tor at state/phone n, can be calculated as46

Ai
MAP;n ¼ H�1

n /n; (35)

where /n¼
PLs

l¼1 s l� ti
nk

� �
yn lð Þ; k ¼ 1,…, K; yn(l) is the

received time series and s(l) is the transmitted pulse. Also,

Hn ¼

hn11 hn12 � � � hn1K

hn21 hn22 � � � hn2K

� � � � � � � � � � � �
hnK1 hnK2 � � � hnKK

0
BBBB@

1
CCCCA; (36)

where hnikjk ¼
PLs

l¼1 sðl� ti
nik
Þsðl� ti

njk
Þ; ik; jk ¼ 1;…;K:

Using SIR, MAP amplitude estimation, and smoothing

as just described, we obtained the PDFs for three path arriv-

als, which are shown in Fig. 9. The PDFs were constructed

from the 500 sampled particles and their associated probabil-

ities. These arrival time particles are used as input to the lin-

earized system of Eq. (26) (data t). For every set of three

arrival times within a particle, a solution is obtained for the

unknown parameters (vector q) using Eq. (29). These multi-

ple solutions/estimates form PDFs for the unknown parame-

ters. PDFs for source range and depth, water column depth,

and EOF coefficients l1, l2, l3 are shown in Fig. 10. Array

tilt was also set as an unknown quantity. MAP parameter

estimates along with the considered prior information are

listed in Table III. The diagonal elements of the uncertainty

matrix H were 1/3, 1/2, 1/3, 1/30, 1/20, 1/10, and 1/2 for

range, source depth, water column depth, l1, l2, l3, and tilt,

respectively.

Range and source depth and water column depth esti-

mates are very close to the true values provided to us with

the data. The estimates we obtained for l1 and l2 are very

similar to the ones obtained for the same coefficients in

Refs. 22 and 23. The estimate for l3 somewhat differs from

those in Ref. 23 but agrees with estimates reported in Ref.

22 (the values within those references vary among them-

selves as well). It should be noted that the data collection

sites differ for the different inversions.

In Fig. 11, we demonstrate the fit between the true time

series (solid lines) and the synthetic time series, generated

using the estimates shown in Table III (dotted lines). The

FIG. 9. (Color online) Posterior PDFs for multipath arrival times for the

time series of Fig. 8.
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arrival times tMAP of the synthetic time series were created

using ray tracing for the MAP parameter estimates of the

table. The fit appears to be very good, indicating that the

inversion was successful. A perfect match was not expected

because the linearization process provides an approximation.

The inversion was repeated with alternative prior infor-

mation to the one presented in Table III. Results from all

inversions were very close.

Figure 12(a) shows the mean sound speed profile of the

water column calculated from CTD measurements (squares)

and the MAP profile calculated from arrival time estimates

and linearization (circles). Figure 12(b) demonstrates the

same two profiles, but now sound speed profiles from dis-

tinct arrival time particles (solid curves) are superimposed.

To further validate the potential and accuracy of our lin-

earization method, we compared our results to estimates

obtained from a global optimization technique for the same

arrival time particles that were used for our inversion. For

global optimization, we used fast simulated annealing. The

process searched for the set of unknown parameters that

minimize the mean squared error between the true arrival

times (that is, the arrivals extracted from the SW06 time

series with the PF) and replica arrival times calculated with

ray tracing for that set of parameters, similarly to Ref. 11.

The search intervals were the same as those employed in

Ref. 22. Table IV presents inversion results for two sets of

arrival time estimates using linearization and simulated

annealing. There is a very good agreement between the

results for both cases, indicating that both methods are suc-

cessful (being consistent among themselves and with values

reported in our references). This was expected for the global

optimization-matching process because it relies on calculat-

ing the arrival times of a replica signal for multiple sets of

unknown parameter values, optimizing the search for identi-

fying the best set; no approximation to the forward model is

performed. It appears that the linearization process, although

it is based on an approximation and uses only a few calcula-

tions, performs equally well. Specifically, in terms of effi-

ciency, the linearization method required six iterations

(typically four to converge, but we continued to six),

whereas the annealing process in our case involved seven

ray tracing runs, one for each unknown parameter, for 1200

TABLE III. Prior information and MAP parameter estimates for source

range and depth, water column depth, EOF coefficients l1, l2, l3, and tilt.

Parameter Prior MAP Estimate

r (m) 230 230

zs (m) 25 26.8

WD (m) 79 76.9

l1 �85 �50

l2 �55 �7

l3 2 1.5

Tilt (�) 0 �0.2 FIG. 11. (Color online) Real data (solid lines) and synthetic time series (dot-

ted lines) generated using the linearization estimates.

FIG. 10. (Color online) PDFs of (a)

source range, (b) source depth, (c)

water column depth, (d) l1, (e) l2, (f)

l3 for real data.
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iterations. This significant difference demonstrates the effi-

ciency of our method, which does not come at the expense

of accuracy.

V. CONCLUSIONS

A new approach is proposed for the estimation of source

location parameters and array tilt, water depth, and water

column sound speed profile using multipath arrival times

and linearization. The process makes use of a Jacobian

matrix that includes arrival time derivatives with respect to

EOF coefficients in addition to those with respect to source

location, tilt, and water depth, which have been used in pre-

vious work. Simulations validated the new approach for two

noise levels and different prior information. Comparing

results we concluded that the method was robust with respect

to both noise and initial conditions/prior assumptions. We

also observed that the value of a Largrange multiplier neces-

sary for the implementation of the method played a role

in the estimation results: This value can reduce uncertainty

significantly (a substantial advantage of the method) but may

introduce a small bias.

The method was tested on real data with arrival times

extracted from SW06 time series using particle filtering.

PDFs of arrivals at a number of phones were smoothed

(filtered) to obtain the smallest variance estimates by relating

arrival times at neighboring phones.

These arrival time particles were then used as input for

the inverse problem. The solutions formed PDFs for the

unknown parameters from which MAP estimates were calcu-

lated. Comparison was made to ground-truth information,

estimates reported by other authors, and estimates from fast

simulated annealing. All results are similar. The new algo-

rithm has significant advantages of efficiency: Convergence

required only a few iterations per inversion, whereas simu-

lated annealing involved many more; accurate estimates are

obtained without the need for extensive prior information or

onerous computations.
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