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ABSTRACT

Sequential Bayesian techniques enable tracking of evolving
geophysical parameters via sequential observations. They pro-
vide a formulation in which the geophysical parameters that
characterize dynamic, nonstationary processes are continuously
estimated as new data become available. This is done by using
prediction from previous estimates of geophysical parameters,
updates stemming from physical and statistical models
that relate seismic measurements to the unknown geophysical
parameters. In addition, these techniques provide the evolving
uncertainty in the estimates in the form of posterior probability
density functions. In addition to the particle filters (PFs), ex-
tended, unscented, and ensemble Kalman filters (EnKFs) were
evaluated. The filters were compared via reflector and nonvol-

canic tremor tracking examples. Because there are numerous
geophysical problems in which the environmental model itself
is not known or evolves with time, the concept of model selec-
tion and its filtering implementation were introduced. A multi-
ple model PF was then used to track an unknown number of
reflectors from seismic interferometry data. We found that when
the equations that define the geophysical problem are strongly
nonlinear, a PF was needed. The PF outperformed all Kalman
filter variants, especially in low signal-to-noise ratio tremor
cases. However, PFs are computationally expensive. The EnKF
is most appropriate when the number of parameters is large. Be-
cause each technique is ideal under different conditions, they
complement each other and provide a useful set of techniques
for solving sequential geophysical inversion problems.

INTRODUCTION

There have been significant developments in sequential Bayesian
techniques in the past decade due to advances in theoretical signal
processing and a rapid increase in computational power. Sequential
Bayesian filtering combines information on parameter evolution, a
function that relates geophysical measurements to unknown quan-
tities, and a statistical model for the random perturbations in the
measurements.
These methods can roughly be classified as fast analytical meth-

ods using a Kalman framework that incorporates certain Gaussian
and/or linearity assumptions and numerical sequential Monte Carlo
(MC) methods commonly known as “particle filters” (PFs) used
when the linear/Gaussian system restrictions of a Kalman filter
(KF) are too restrictive for the problem (Ristic et al., 2004). In ad-
dition, there are hybrid methods such as the ensemble KF (EnKF)
(Evensen, 2009) and its application in Gaussian mixtures (Dovera

and Della Rossa, 2011) that incorporate different aspects of KFs
and PFs.
The sequential estimation framework can be applied tomany time-

evolving geophysical observations such as microseismic activity or
reservoir monitoring. Some geophysical applications that adopt a se-
quential approach are geodesy, in which a KF is used (Segall and
Matthews, 1997), seismic strains (Llenos and McGuire, 2011) using
an extended KF (EKF), and passive seismic monitoring (Baziw,
2005), in which PFs are used. Additionally, many problems in geoa-
coustics have been addressed mainly with the PF (Yardim et al.,
2009, 2010, 2012). A good review of PFs and ensemble methods
for meteorology data assimilation problems is given in van Leeuwen
(2009). Reflector tracking can also be modeled as a sequential esti-
mation problem by using range as the evolving index (Nicoli et al.,
2002). An interesting application is earthquake forecasting based on
data assimilation, in which sequential MC methods have been used
for the renewal processes (Werner et al., 2011).
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We demonstrate the application of EKFs, unscented KFs (UKFs),
and PFs to nonvolcanic tremor (NVT) tracking (Obara, 2002;
Rogers and Dragert, 2003; Peng and Gomberg, 2010) and multiple
model PFs (MMPFs) to tracking reflectors in a seismic record sec-
tion constructed using seismic interferometry (Curtis et al., 2006;
Gerstoft et al., 2008; Wapenaar et al., 2008; Schuster, 2009; Side-
rius et al., 2010).
First observed a decade ago by Obara (2002) and Rogers and

Dragert (2003), NVTs are characterized by low amplitudes, lack
of high frequencies, emerging onsets, and duration of minutes to
days. NVTs are mostly observed near megathrust earthquake source
areas, suggesting that a detailed understanding of these may help
characterize catastrophic events. The lack of strong impulsive
phases across the array makes classic seismic methods less fruitful,
but a frequency-domain approach with longer observation times
combined with sequential estimation is a good alternative. Here
we will track the NVT location using the 72-element Big Skidder
seismic array located in Cascadia, WA.
In the second example, seismic interferometry constructs a seis-

mic reflection sequence by interferometric processing of active or
passive seismic data (Curtis et al., 2006; Wapenaar et al., 2008;
Schuster, 2009). In the example used here, ambient noise on a ver-
tical drifting array is used to build the reflection sequence of seabed
reflectors (Gerstoft et al., 2008; Siderius et al., 2010). The interface
depths and the reflection amplitudes are unknown and changing as
the array drifts in the ocean. In addition, the number of interfaces is
unknown and changes with time as well, as new reflectors emerge
and old ones disappear. This requires MMPF implementation with a
varying order of interfaces.
In this paper, the basics of sequential filters are summarized,

starting from the KF and its variants and proceeding with PFs and
multiple model formulations. First, the basic state-space, sequential
Bayesian formulation, and Kalman framework are introduced. We
then proceed with PFs, introducing sequential importance resam-
pling (SIR). We examine and compare filters and present examples,
illustrating practical challenges and solutions. Detailed descriptions
of individual methods with full theoretical derivations can be found
in signal-processing papers (Arulampalam et al., 2002; Gustafsson
et al., 2002; Candy, 2007; Cappé et al., 2007; Djurić and Bugallo,
2010; Yardim et al., 2011) and texts on sequential Bayesian meth-
ods (Doucet et al., 2001a; Ristic et al., 2004; Candy, 2009; Evensen,
2009). These methods are subsequently used for NVTand interfero-
metric tracking.

SEQUENTIAL BAYESIAN FORMULATION

Let yt be the measurement vector (for example, a response along
a seismic array) at step t, and let xt represent the state vector
(for example, the time-varying location of the source of the seismic
signal yt), where t ¼ 1; : : : ; T. The state vector dimension nx could
be known and fixed or unknown and varying with t. A major goal is
to estimate parameters in xt that evolve sequentially with time or
space. As data yt become available, the unknown parameters form-
ing the state vector are estimated sequentially using the collective
data history and prior knowledge on evolution of the state. Two
equations define a state-space model:

xt ¼ f tðxt−1; vtÞ; (1)

yt ¼ htðxt;wtÞ. (2)

The state equation, equation 1, describes the evolution or transi-
tion of xt with t. Function f t is known and relates the state vector at
step t to that at step t − 1. Variable vt is the process or state noise
and has a known probability density function (PDF) pðvtÞ.
The measurement equation (or observation), equation 2, relates

measurements yt to state vector xt through a known function ht.
Quantity wt is the measurement noise with a PDF pðwtÞ.
The states follow a first-order Markov process in which xt is only

dependent on state parameters at the previous time step, resulting in a
probability pðxtjxt−1Þ. In addition, measurement yt only depends on
xt and is independent of the state at other time steps for a given xt.
The state and measurement noise terms vt and wt can be additive,

multiplicative, or incorporated in the state and measurement
through complex functions of f t and ht, respectively. The formula-
tion includes fully dynamic, nonstationary cases, in which, in ad-
dition to the state vector xt and data yt, functions f t and ht and noise
components vt and wt can all change with t.
The objective of a sequential Bayesian technique is to track the

evolution of the multidimensional (nx-D) posterior PDF of xt. This
enables any desired statistical quantity (such as mean, covariance,
mode, maximum a posteriori estimate, credible intervals, and mar-
ginal posterior PDFs of any desired parameter) to be computed at
will. In cases with non-Gaussian, high-dimensional PDFs, this com-
putation is not easy and requires more advanced methods, as we will
see. Assume data have been collected sequentially at t ¼ 1∶T. De-
fining y1∶t ¼ ½y1; y2; : : : ; yt% as the set of data observed at the first t
steps and x1∶t ¼ ½x1; x2; : : : ; xt% as the sequence of unknown state
vectors, the desired posterior PDF is given by pðxtjy1∶tÞ. Filtering
enables all the previous and current measurements to be used in
estimating xt. Compare this to a classical geophysical inversion pro-
blem in which the output is given as pðxtjytÞ. The estimate of xt
does not use information from previous or future measurements. In
a sequential problem, it is computationally inefficient to perform
each inversion independently with t. Moreover, the estimates can
fluctuate significantly from step to step, when all the information
available at t is not used.
A complementary step to filtering is smoothing, where the

desired output PDF is given by pðxtjy1∶TÞ, T ≥ t. A smoother is
appropriate in applications in which future data have already been
observed and are readily available. Therefore, past and future mea-
surements can be exploited for the calculation of pðxtjy1∶TÞ.
Smoothing adds a computational overhead to traditional forward
filtering. Although inclusion of future data improves estimation
in comparison to a one-way filtering approach, the increase in com-
putational cost sometimes makes smoothing prohibitive. There are
two main classes of smoothers: forward-backward and two-filter
algorithms. The forward-backward method runs a normal filter
and performs a correction starting from T and going backward
in time. The two-filter method runs two independent filters, one nor-
mal filter and one starting from T and going backward. Then the
results of these two filters are merged to obtain the smoothing den-
sity. Previous geophysical smoothing examples include lithology/
fluid prediction (Larsen et al., 2006; Ulvmoen and Hammer,
2010; Rimstad and Omre, 2013), in which a forward-backward
smoother is used in addition to a hidden Markov model that corre-
sponds to the state-space formulation described by equations 1 and
2 (Scott, 2002). Forward-backward and two-filter smoothers are
also used in NVT tracking (Yardim and Gerstoft, 2012). This paper
focuses on the implementation of filtering approaches.
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Using the Bayes theorem and the Markov property results in

pðxtjy1∶tÞ ∝ pðytjxtÞpðxtjy1∶t−1Þ; (3)

where the likelihood LðxtÞ ¼ pðytjxtÞ obtained from the new data
yt is combined with the prior knowledge pðxtjy1∶t−1Þ to provide an
estimate of xt. It is possible to compute pðxtjy1∶t−1Þ as a function of
xt−1 by starting from the joint PDF pðxt; xt−1jy1∶t−1Þ and integrating
out xt−1:

pðxtjy1∶t−1Þ ¼
Z

pðxt; xt−1jy1∶t−1Þdxt−1;

¼
Z

pðxtjxt−1; y1∶t−1Þpðxt−1jy1∶t−1Þdxt−1: (4)

Note that pðxtjxt−1; y1∶t−1Þ ¼ pðxtjxt−1Þ because, given xt−1, any
data from 1∶t − 1 become irrelevant. The posterior PDF
pðxtjy1∶tÞ is then expressed as a function of the posterior at the
previous step pðxt−1jy1∶t−1Þ by inserting the integral form of
pðxtjy1∶t−1Þ back into equation 3:

pðxtjy1∶tÞ ∝ pðytjxtÞ
Z

pðxtjxt−1Þpðxt−1jy1∶t−1Þdxt−1: (5)

Sequential Bayesian techniques use this formulation, through which
the evolving posterior PDF can be computed recursively as new
data yt become available.
When state and measurement equations 1 and 2 are linear and the

underlying PDFs are Gaussian, equation 5 can be computed analy-
tically. This optimum sequential estimator is the KF (Kalman,
1960). In this case, one only needs to propagate the mean x̂t
and covariance P̂t estimates at each step. The output of the filter is

pðxtjy1∶tÞ ¼ N ðx̂t; P̂tÞ. (6)

As long as the problem is not strongly nonlinear and/or non-Gaus-
sian, it might be possible to approximate the problem in a Kalman
framework and, hence, the output is approximately in the form of
equation 6. For example, if the problem is “mildly” nonlinear, then
equations 1 and 2 can be approximated by linear functions using
their Jacobians. Alternatively, statistical linearization with UKFs
(van der Merwe et al., 2001) may be considered. Those are shown
to provide improved results, as will be discussed later in more detail.
However, for strongly nonlinear/non-Gaussian problems, a PF is

needed. The non-Gaussian posterior PDFs are approximated by
creating a set of i ¼ 1; : : : Np particles xit, each with weight wi

t,
where

χt∶fxit; wi
tg

Np
i¼1 pðxtjy1∶tÞ ≅

XNp

i¼1

wi
tδðxt − xitÞ: (7)

The purpose of a PF is tracking in time t these particles and their
weights as they pass through nonlinear equations in equations 1 and
2. The posterior PDF can be constructed at any time from the cur-
rent locations and weights of the particles using equation 7. This
enables us to compute any desired quantity such as the minimum
mean square error estimate, variance, and marginal distributions by
taking the integral of the posterior

I ¼
Z

gðxtÞpðxtjy1∶tÞdxt; (8)

where gðxtÞ ¼ xt for the mean, gðxtÞ ¼ ðxt − μxÞ2 for the variance,
and gðxtÞ ¼ δðxt − xtðiÞÞ for the ith element marginal distribution.

KALMAN FILTERS

Kalman (1960) realized that the sequential Bayesian problem can
be solved analytically if the evolving PDF is Gaussian. He came up
with his famous KF, which is shown to be an optimal estimator in
the minimum mean squared error sense. Having a Gaussian poster-
ior for all steps t implies that state vt and measurement wt noise
components are additive and Gaussian, f t and ht are known linear
functions of the state and measurement vectors, and the prior pðx0Þ
is Gaussian. This reduces the system in equations 1 and 2 to

xt ¼ Ftxt−1 þ vt; (9)

yt ¼ Htxt þ wt; (10)

where Ft and Ht are, respectively, the matrices associated to the
linear operators f t and ht, with state and measurement noise covar-
iances denoted as Qt and Rt. Because a Gaussian density is un-
iquely and completely defined in equation 6 by its first two
moments, mean and covariance, the KF only needs to recompute
fx̂t; P̂tg from x̂t−1, P̂t−1 and take into account the new data yt. This
gives us the two-step procedure that forms the KF given in Table 1,
which is repeated at each t:

1) Predict: This stage predicts the current value of the state given
its previous value using equation 9. This is represented by x̂tjt−1
and P̂tjt−1.

2) Update: This stage updates the estimate by checking how well
the predicted value fits with the new data yt and correcting if
there is any difference. This is done by computing the error term
yt −Htx̂tjt−1, called the innovation. Then the KF corrects the
predicted state vector by this error multiplied by the Kalman
gain Kt, as shown in Table 1. This provides the final posterior
PDF represented by x̂tjt and P̂tjt.

Table 1. Kalman and extended Kalman filters.

Predict:
x̂tjt−1 ¼ f tðx̂t−1jt−1Þ
P̂tjt−1 ¼ FtP̂t−1jt−1FT

t þQt

Update:
x̂tjt ¼ x̂tjt−1 þKtðyt − htðx̂tjt−1ÞÞ
P̂tjt ¼ ðI −KtHtÞP̂tjt−1

Kalman gain:
Kt ¼ P̂tjt−1HT

t ðRt þHtP̂tjt−1HT
t Þ−1

For KF:
f t ¼ Ft, ht ¼ Ht

For EKF:
Ft ¼ ∂f t

∂xt−1
j
x̂t−1jt−1

, Ht ¼ ∂ht
∂xt

j
x̂tjt−1

Sequential Bayesian techniques V89
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The KF algorithm is described in Table 1. Although it is easy to
implement, the KF has strict linearity and Gaussian PDF require-
ments that make it unsuitable for many dynamic systems.
An obvious way to extend the KF framework is by linearizing

functions f t and ht. Another filter, the EKF (Cox, 1964), locally
linearizes the state and measurement equations using the first terms
in the Taylor series expansions (Table 1). For the EKF to perform
well, nonlinearities should be small and the underlying densities
should be close to Gaussian. Unlike the KF, the EKF is no longer
an optimal sequential estimator due to the linearization approxima-
tions. Nevertheless, the EKF has been implemented successfully in
a large number of applications in areas such as radar and sonar
target tracking, among others.

Unscented Kalman filter

The elegance of the Kalman framework rests on its Gaussian
assumption, where the entire information content of xt can be
captured by propagating the mean and covariance through time.
A nonlinear system disrupts the flow of evolving Gaussian PDFs
because a Gaussian random variable passing through a nonlinear
transformation loses its Gaussian form. Hence, the Kalman frame-
work will still work properly if we use a filter that enforces a Gaus-
sian distribution. This leads to the derivative-free UKF (Wan and
van der Merwe, 2001), which uses sigma points coupled with un-
scented transforms (UTs) (Julier et al., 2000) to propagate means
and covariances through nonlinear functions.
The UT algorithm uses a deterministic algorithm to select a set of

samples called sigma points around the mean of the xt. These sigma
points and weights are used to obtain the mean and covariance of
the random variable xt. When the random variable undergoes a non-
linear transformation, the sigma points are propagated through this
nonlinear function and are used to reconstruct the new mean and
covariance using the UT weights (Julier et al., 2000). Unlike the
EKF, the nonlinearity is maintained and, hence, the mean and cov-
ariance estimates can be computed accurately to at least the second
order of the nonlinearity (third, if the initial PDF is Gaussian).
Whereas the EKF enforces linearity through analytic lineariza-

tion, the UKF enforces a Gaussian distribution while keeping the
functional nonlinearity. Because, under this assumption, a Gaussian
input to a nonlinear transformation results in a Gaussian output, the
system is effectively linearized in a statistical rather than analytical
sense. This still enables the filter to carry all necessary information
by propagating only the mean and covariance as required by the KF.
The UKFs have two disadvantages. First, if nonlinearity is severe,

the UKF cannot accurately compute the mean and covariance.
Second, the densities may be strongly non-Gaussian, in which case
just two moments are inadequate in describing them, even if those
can be calculated correctly.

Ensemble Kalman filter

One of the most commonly used filters in geophysics is the
EnKF (Evensen, 1994). These have been explicitly designed for
high-dimensional problems and are of interest here exactly because
of that. Many inversion problems are high dimensional, particu-
larly the ones frequently encountered in geophysical and hydrologi-
cal fields, ocean and atmospheric modeling, and data analysis
(Houtekamer and Mitchell, 2005; Evensen, 2009; Myrseth and
Omre, 2010; Seiler et al., 2010).
As discussed in van Leeuwen (2009), the PF (which will be

analytically introduced in the next section) is cost-prohibitive in
high-dimensional problems and using insufficient number of parti-
cles to mitigate cost degrades the PF performance. Thus, it should
be reserved for problems nonlinear and non-Gaussian enough in
which a KF and its extension fail. The EnKF is a Kalman variant
for systems in which the state is composed of a large number of
variables. It is possible to argue that the EnKF is a hybrid between
a KF and a PF, but it relies on fewer assumptions than the former
and is less computationally onerous than the latter. The EnKF still
assumes that the updated PDFs are Gaussian, hence, the problem
can be based on a Kalman framework. However, the EnKF still
can be considered as an approximate sequential MC method be-
cause the ensemble members are exactly forwarded and approxi-
mately updated.
Working with a large covariance matrix in a high-dimensional

system is computationally inefficient for the classical KF. This
drawback is addressed by using an ensemble of points, similar
to the particle set in a PF, to replace the covariance matrix with
the ensemble covariance matrix using MC sampling.
When the problems are high dimensional and non-Gaussian, an

EnKF using a Gaussian mixture (Grana and Della Rossa, 2010)
model can be used. Gaussian mixture models represent a non-
Gaussian PDF as a sum of numerous Gaussian PDFs, enabling the
implementation of a KF.
Because the EnKF is a widely used method in geophysics, we

focus in this paper on sequential Bayesian techniques that have
not been extensively used to date but are powerful in inversion pro-
blems in geophysics. For detailed theory and practical implementa-
tion of EnKFs, we refer the readers to Evensen (2003, 2009).

PARTICLE FILTERS

An alternative to the restrictive Kalman frame-
work is to use sequential MC techniques also
known as PFs. The basic PF recursively computes
integral equation 5 using importance sampling (IS)
(Ó Ruanaidh and Fitzgerald, 1996). The fundamen-
tal working principles of IS are given in Figure 1.
The IS method is used to compute integrals by

using random samples drawn from a density re-
ferred to as the proposal or sampling density
qðxÞ. To numerically estimate an integral of
pðxÞ, we select an appropriate qðxÞ easy to
sample from, draw Np samples fxitg

Np
i¼1, and

Figure 1. Basic philosophy of IS and derivation of sequential IS (SIS) starting from
equation 5.

V90 Yardim et al.

D
ow

nl
oa

de
d 

04
/2

0/
13

 to
 1

37
.1

10
.8

.3
1.

 R
ed

ist
rib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s o

f U
se

 a
t h

ttp
://

lib
ra

ry
.se

g.
or

g/



add the results together, after weighting the result of each particle
according to its calculated weight as given in Figure 1.
As a numerical method, the IS introduces a certain amount of

error in the integral estimation. The variance in the estimate is mini-
mum if qðxÞ is proportional to pðxÞ and increases as qðxÞ deviates
from the latter. This means that the sampling density should be se-
lected as close as possible to the integrand. If it is possible to sample
from the integrand itself pðxÞ ¼ qðxÞ, each particle will have a unit
weight (Figure 1) and the error introduced by IS is minimum. On
the other extreme, where qðxÞ does not even intersect with pðxÞ, all
the particles sampled from qðxÞ will have zero weights and the IS
will fail. In nonlinear/non-Gaussian problems, it is rarely easy to
sample from pðxÞ and simpler PDFs such as Gaussian are typically
used as densities qðxÞ. In summary, a good sampling density qðxÞ
must be easy to sample from and, at the same time, have enough
particles with nonzero weights intersecting pðxÞ.
Bayesian filtering requires performing successive IS runs to com-

pute the integral in equation 5 sequentially with t. The output of
each IS run forms the prior for the next one. This process is referred
to as SIS. The relationship between IS and SIS can be seen in
Figure 1. Just as in IS, the integration starts with the selection of a
suitable sampling density. It can be shown (Doucet et al., 2000;
Ristic et al., 2004) that the selection of a sampling density in
the form of qðxtjxit−1; ytÞ enables recursive evaluation of the impor-
tance weights in time. Note that this sampling density ideally uses
all the information we currently have: the value of a particle at the
previous step xit−1 and current data yt. For each particle, the weight
is given as the ratio of the integrand to the sampling density com-
puted at xit. The integral is then a weighted sum of these particles.
Starting with a set of particles and weights fxit−1; wi

t−1g
Np
i¼1 and

using equation 7, we can approximate the posterior density at t − 1
as pðxt−1jy1∶t−1Þ ¼

PNp
i¼1 w

i
t−1δðxt−1 − xit−1Þ. Hence, the term

pðxit−1jy1∶t−1Þ in the weight wi
t in Figure 1 is equal to wi

t−1. The
new weights become

wi
t ∝

pðytjxitÞpðxitjxit−1Þ
qðxitjxit−1; ytÞ

wi
t−1: (11)

To represent a true PDF,
P

iw
i
t needs to add up to one. Hence, all the

weights are normalized once they are computed using equation 11.
A formal derivation is provided in Appendix A.
As in IS, a key issue in SIS design is choosing a good proposal

density. The optimal choice that allows minimum IS error is
qðxtjxt−1; ytÞ ¼ pðxtjxt−1; ytÞ (see Doucet et al. [2000] for proof).
However, this is not easy to implement in most cases. A simple
choice is

qðxtjxt−1; ytÞ ¼ pðxtjxt−1Þ: (12)

Note that this suboptimal IS proposal density only depends on the
state equation and does not take into account data yt. Hence, it is
referred to as a blind proposal by Pitt and Shephard (1999). This
selection reduces equation 11 to

wi
t ∝ pðytjxitÞwi

t−1: (13)

Although SIS provides a complete framework for performing
sequential Bayesian estimation, its implementation quickly runs
into the problem of sampling degeneracy. After a few iterations

of successive SIS cycles, the process leads to a cloud containing
few particles with large weights and numerous particles with neg-
ligible weights. In the extreme case, there is only one particle left
with large wi

t, resulting in poor filter performance.

Sequential importance resampling

A second sampling stage is proposed by Gordon et al. (1993) at
the end of the integral calculation at each t to mitigate degeneracy.
The purpose of this resampling stage (Smith and Gelfand, 1992) is
to create more high-weight particles from the original set of parti-
cles fxitg

Np
i¼1. The modified filter is called SIR (Gordon et al., 1993;

Gilks and Berzuini, 2001) and is the most popular PF implementa-
tion. Resampling is either performed at the end of each time step or
when the effective number of particles Neff

p needed to prevent the
degeneracy problem encountered in SIS drops below a threshold
Neff

p ¼ 1∕
PNp

i¼1 ðwi
tÞ2 (Kong et al., 1994).

The resampling process takes the posterior filtering PDF
pðxtjy1∶tÞ represented by the particle set fxit; wi

tg
Np
i¼1 of SIS at

the end of each step and redistributes samples so that all weights
of the new particles are the same; that is, fxjt ; wj

t ¼ 1∕Npg
Np
j¼1. This

results in a larger number of particles in the high likelihood regions,
preventing degeneracy.
The process at step t is summarized in Table 2. At the SIS pre-

diction stage, new particles are created from the particles represent-
ing the PDF of the previous step, pðxt−1jy1∶t−1Þ. This first stage
starts with the cloud of equal-weight particles from the previous
step fxit−1g

Np
i¼1 and creates a new set of predictions for the current

step fxitg
Np
i¼1 by sampling from the transitional density pðxtjxt−1Þ.

This is done by propagating each xit−1 through the state equation 1
together with a random realization from vt. The weight of each
particle is evaluated through the likelihood and normalized, where
pðytjxitÞ is the likelihood function defined by the measurement

Table 2. Sequential importance resampling PF (Gordon
et al., 1993).

Predict:
Sample new Np particles at t
fxitg

Np
i¼1 ∼ pðxtjxt−1Þ given fxit−1g

Np
i¼1

using xit ¼ f tðxit−1; vitÞ i ¼ 1; : : : ; Np

where vit are samples from the state noise PDF.
Update:
• Compute the likelihood pðytjxitÞ for each xit.
• Normalize the weights:

wi
t ¼

pðyt jxitÞPNp
i¼1 pðytjx

i
tÞ

• The posterior PDF is approximated by
pðxtjy1∶tÞ ≈

PNp
i¼1 w

i
tδðxt − xitÞ

Resample:
Resample Np particles xjt with equal weights

fxit; wi
tg

Np
i¼1 ↦ fxjt ; 1

Np
gNp

j¼1
s.t.

pðxtjy1∶tÞ ≈ 1
Np

PNp
j¼1 δðxt − xjt Þ
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equation, equation 2. The newly computed particles and weights are
used for expressing the posterior PDF pðxtjy1∶tÞ. Resampling fol-
lows this update stage, in which a new set of particles is formed
from the previous one. The larger the weight of a particle, the more
new particles it generates during resampling (Doucet et al., 2001a).
These new particles fxjt ; wj

k ¼ 1∕Npg
Np
j¼1 will now have equal

weights. The filter is initiated by a prior probability density
pðx0Þ. The prior can be an initial guess or it can be obtained from
an independent inversion if data y0 are available.
A potential drawback of resampling is the generation of multiple

copies of high-likelihood particles. In the extreme case, in which the
state noise is very small, the particle diversity is lost with all par-
ticles being identical. This is called sample impoverishment (Ristic
et al., 2004). Although SIR provides robust tracking performance in
many nonlinear/non-Gaussian tracking problems, it has certain dis-
advantages such as sample impoverishment, blind proposal density
in the prediction step that does not depend on data, and sensitivity to
outliers. To address these problems, appropriate PF variants have
been developed (Gustafsson et al., 2002; Ristic et al., 2004; Cappé
et al., 2007). This paper uses the basic SIR algorithm to compare the
PF with KFs.

The multiple model particle filter

In dynamic problems, the model may be unknown or uncertain
for each step. Therefore, the model connecting the unknown para-
meters and the data may need to be corrected or updated as new data
become available. Examples include a variation in the measurement
equation at different regimes (e.g., near-field versus far-field calcu-
lations, planar versus curved wavefront beamforming), variation in
nonstationary noise statistics, or a varying number of parameters to
be estimated with state. This problem is typically referred to as the
varying model and is often the case in seismic applications, such as
tracking an unknown number of reflectors using interferometry.
Successful tracking under such circumstances requires sequential
filtering algorithms that are capable of jumping or switching
between models (Musso et al., 2001; Vermaak et al., 2005). These
filters are called multiple model PFs (MMPFs) (Ristic et al., 2004).
The classical PF assumes a fixed and known model and tracks a

constant number of model parameters. On the contrary, the MMPF
includes an extra parameter in the state vector that denotes which
model each particle uses. The filter tracks not only the model
parameters but also the most suitable model itself. A critical element
in MMPF is the selection of a model transition matrix Πm. The en-
tries ofΠm are probabilities, determining how particles belonging to
a model at time t − 1 can transition to a different model at time t.
Therefore, an MMPF SIR has a transitioning stage preceding the
prediction.
The classical MMPF is based on SIR (Ristic et al., 2004). More

advanced MMPFs use a technique called reversible jump Markov
chain MC (Doucet et al., 2001b; Khan et al., 2005). A typical
MMPF step involves the following:

• Model switching: Start with fmi
t−1; x

i
t−1g

Np
i¼1, where particle i

follows model mi
t−1. Predict the models of new particles mi

t
at t using the model transition matrix Πm. This implies that
some state variables xk can exit or more state variables can be
“born,” with the model number decreasing or increasing,
respectively. The dimension of the state vector is, thus,
appropriately modified.

• Model-conditioned SIR: Using the newly predicted model
mi

t for each particle, implement a model-conditioned SIR
exactly as described for the single model PFs. It should
be noted here that, in problems in which higher order models
represent increasing model complexity such as an increased
number of interfaces, the model with the highest order is fa-
vored. This is because it is natural that a more complicated
model with a larger number of parameters provides a better
fit to the data. However, a better fit may imply that we are
overfitting the data rather than introducing a better underly-
ing model. The MMPF tries to achieve a good balance
between overfitting and oversimplification. This is done
by penalizing the higher order models. Within the Bayesian
framework, the prior distributions on the unknown param-
eters serve as “penalizing” terms, similar to the penalization
in the Akaike and Schwarz-Rissanen criteria (Schwarz,
1978), which appropriately weigh each model number.

EXAMPLES

Two geophysical examples are illustrated below for comparison
of KF variants and PFs. In the first example, NVT is used to com-
pare the EKF, UKF, and PF under different tremor signal-to-noise
ratios (S/Ns). The NVT is usually of low strength, and that means
the filters have to operate under rapidly fluctuating, low S/Ns. This
significantly amplifies the penalty for using the linear/Gaussian ap-
proximation used in a Kalman framework. The NVT is tracked first
as an angle of arrival, and then the NVT source location on the
North American Plate boundary is tracked through an alternate for-
mulation. The source location tracking process is used to compare
sequential and nonsequential Bayesian inversion methods used to
show the advantages of sequential Bayesian techniques.
The second example is the spatial tracking of seabed sedimentary

reflectors in shallow water using active and passive measurements.
The active method uses synthetic acoustic data from a ship-towed
array and an active source. This example explores the effects of state
noise on KFs and PFs. The passive method uses a vertical array
along the water column drifting with the current. Here time step
t is effectively a spatial step depending on the speed of the water
current. As the array drifts, it records ambient noise, which provides
information about the seabed properties under it. This allows us to
construct a range-dependent seabed profile with multiple reflectors
and use sequential methods to track the spatial variation. This
example demonstrates the advantages of using a MMPF.

Example I: Seismic tremor tracking

Seismic NVT is continuous noise appearing at regular intervals
(about 14 months in Cascadia, WA) (Obara, 2002; Rogers and
Dragert, 2003; Peng and Gomberg, 2010). In Cascadia, the Juan
de Fuca Plate is underthrusting below the North American Plate.
Near the surface, the two plates are locked and as the Juan de Fuca
Plate moves east, the North American Plate is also dragged in the
same direction. At regular intervals, a seismic tremor is observed
and, simultaneously, it can be observed with a global positioning
system that the North American Plate is moving west. It is believed
that the tremor originates from the plate boundary some 30 km be-
low surface, where the plates are not strongly locked.
We demonstrate particle filtering on 2D beamforming with a tem-

porary array given in Figure 2a and 2b installed in the Cascadia
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subduction zone, WA (Figure 2c), to detect seismic tremors (Ghosh
et al., 2009, 2012; Zhang et al., 2011). The results are shown in the
slowness domain (slowness is here the horizontal phase slowness or
inverse phase speed) and in source location on the plate boundary.
At the Cascadia array, tremors typically travel with horizontal phase
velocities of 10 km∕s (slowness 0.1 s∕km). The array is quite
dense, with 72 sensors placed within a 1.2 km2 area.

Tremor state-space model

The NVT state and measurement equations are given by

xt ¼ xt−1 þ vt; (14)

ytðfjÞ ¼ atðfjÞdðxt; fjÞ þ wtðfjÞ; (15)

where wtðfjÞ is a vector of additive nonstationary complex-valued
Gaussian noise processes along the seismic array, each with a
variance of νtðfjÞ for each frequency fj and step t, atðfjÞ is the
complex-valued source strength, and dðxt; fjÞ is the function relat-
ing the state parameters to the measurement.
There are two possible state vector selections depending on the

required output. In the first one, we are interested in tracking the

direction of the tremor signal that arrives at the array. Hence,
dðxt; fjÞ is a beamformer composed of plane wave phase delays
eiωΔrxt , where xt ¼ ½sxsy%Tt is the horizontal slowness and Δr de-
scribes the coordinates of the array sensors relative to the mean co-
ordinates. This formulation will be referred to as tremor arrival
angle tracking.
For tracking the NVT location on the slab, the state vector is

xt ¼ ½lon lat%Tt , the longitude and latitude of the moving source.
In this case, dðxt; fjÞ incorporates a ray tracer code that propagates
the seismic signal from any particle (prospective source location on
the slab) to the seismic sensors, effectively using back propagation.
This process will be referred to as tremor source location tracking.
Beamforming can be done either in time domain by time-delay-

ing and stacking the time series recorded by the seismic sensors or
in the frequency domain, where the time delays are replaced with
appropriate phase shifts. One advantage of frequency-domain
beamforming is the ability to use only the desired frequencies.
For example, this enables us to take out the frequencies with sig-
nificant anthropogenic noise. It also reduces the computation time
because only a small subset of frequencies representative of the fre-
quency band is used in the inversion. An initial analysis shows that
there is little difference between using 8 or 80 frequencies for a

Figure 2. NVT: (a) location and (b) details of the array deployed in Cascadia along with (c) the structure of the Cascadia subduction zone. The
PF tracking results of peak slowness (sx, sy) for 1 h. Two-dimensional objective function, equation 19, with PF particles (×) superimposed at
time step (d) t ¼ 300 and (e) t ¼ 500, indicated by vertical lines in panels (f)-(h). Time-evolving posterior PDF of (f) sx and (g) sy obtained
from PF. Each vertical slice corresponds to a normalized histogram of particles at that time, effectively giving the posterior PDF. The PDF is
sharper for t ¼ 500. (h) Maximum beamformer power.
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4–17 Hz beamformer. Here a frequency-domain beamformer is
selected with eight frequencies.
The classical Bartlett power objective function is obtained from

the assumption of additive complex-valued Gaussian noise wtðfjÞ
independent for each frequency fj and step t, which is written as
wtðfjÞ ¼ ytðfjÞ − atðfjÞdðxt; fjÞ following equation 15, with a
corresponding Bartlett processor based, multifrequency likelihood
function composed of nf multiplicative complex Gaussian PDFs
(Gerstoft and Mecklenbräuker, 1998):

LðxtÞ ¼
Ynf

j¼1

1

ðπνjÞnh
exp

!
−
kytðfjÞ − atðfjÞdðxt; fjÞk2

νj

"
;

(16)

where nh and nf are the numbers of seismic sensors and the frequen-
cies used in tracking and νj is the noise variance at frequency fj.
Note that the noise variance and the source strength evolve with
time and frequency. We are not interested in the values of these
parameters (nuisance parameters), but to track the source, these
parameters need to be known. A straightforward way is to incorpo-
rate these into the state equation and track them together with the
parameters of interest. However, this significantly expands the
state-space dimension and can degrade the track performance. In
a Bayesian seismic inversion, an alternative is to first estimate the
unknown source term atðfjÞ for all frequencies at each time step
using a maximum likelihood (ML) estimator and get rid of the
nuisance parameter by replacing it with its ML estimate in the like-
lihood formulation.
The unknown source is estimated analytically via an ML calcu-

lation by solving ∂L∕∂at ¼ 0;

âtðfjÞ ¼
dðxt; fjÞHytðfjÞ
kdðxt; fjÞk2

: (17)

Inserting the source estimate back into equation 16, the likelihood
becomes (Huang et al., 2006)

LðxtÞ ¼
Ynf

j¼1

1

ðπνtðfjÞÞnh
exp

!
−
ϕjðxtÞ
νtðfjÞ

"
; (18)

ϕjðxtÞ ¼ yHt ðfjÞytðfjÞ −
dðxt; fjÞHytðfjÞytðfjÞHdðxt; fjÞ

dðxt; fjÞHdðxt; fjÞ
;

(19)

where ϕj is the Bartlett objective function. The first term in ϕj is the
total seismic signal power and is a constant (not a function of xt).
The second term in ϕj is a normalized beamformer output because a
classical frequency-domain beamformer is given by yHt dðxtÞ. Hence
the likelihood formulation in equations 18 and 19 enables the con-
version of the beamformer output into a PDF capable of providing
the uncertainty in the estimates.
As for the noise variance term νtðfjÞ, one way to estimate it is

from the data (Zhang et al., 2011). It can then be inserted into
equation 18. An alternative way is to treat the unknown νtðfjÞ
as a nuisance parameter, as mentioned before. We can then use
an ML estimator, similar to the one for source estimation. Solving
∂L∕∂νtðfjÞ ¼ 0 results in

ν̂tðfjÞ ¼
ϕjðxtÞ
nh

; (20)

LðxtÞ ¼
Ynf

j¼1

#
nh

eπϕjðxtÞ

$
nh
: (21)

Observed tremor

A simple tracking result is shown in Figure 2, where we are track-
ing peak slowness sx and sy across the array for 1 h starting at 0:00
Coordinated Universal Time (UTC) on 7 May 2008. Each snapshot
is 5 s, providing 720 observations in an hour. From the data, we
extract the 2D slowness vector (sx, sy) based on total beam power
at eight frequencies from 3.9 to 17.6 Hz. The PF is initialized
(t ¼ 0) with 400 uniformly distributed particles across (sx, sy).
For each time step t, we first predict the values based on time step
t − 1 using the measurement equation, equation 14. Then we update
the values based on the observed data, that is, based on the likeli-
hood function given in equation 21.
The beamformer outputs for sx and sy are given in Figure 2a and

2b along with the set of particles fxitg400i¼1 obtained by the PF at t ¼
300 and 500. From these particles, the PDFs for sx and sy are es-
timated at each time step as indicated in Figure 2c and 2d. Note that
around t ¼ 500, the beamformer output in Figure 2e becomes
stronger and, hence, the estimates have low uncertainty with a small
particle spread (Figure 2b).
Filter comparison is performed by running the EKF, UKF, and

the SIR PF with the same initial settings, state-space equations with
identical noise characteristics, and the same starting prior PDFs. Be-
cause the EKF and UKF can only operate in a Gaussian environ-
ment, initial PDF pðx0Þ is selected as a Gaussian density for the PF
as well. The results are given in Figures 3 and 4. The mean for the
EKF and UKF is plotted in Figure 3 on top of the evolving PDF of
slowness parameters from the PF. The EKF and UKF can generally
track the changing parameter. However, starting at t ¼ 180, the sy
rapidly drops, followed by a sudden increase at t ¼ 250. Notice
how both KFs were too slow to adapt to the rapid changes in para-
meters (an issue called slow convergence, which will be explored in
the next example). The UKF performs better than the EKF due to its
ability to handle the nonlinearities more effectively. For example,
the UKF is capable of tracking sx for t ¼ 620 − 720, resulting in
a pattern similar to that of the PF. On the other hand, the EKF
is unable to adapt to the changing values of the slowness parameter.
Slowness-azimuth plots for the filters are also provided at three

different time steps in Figure 4. The EKF and UKF have Gaussian
outputs and are represented by covariance ellipsoids, in which the
major axes correspond to multiples of standard deviation for sx and
sy. This is compared to the spread of the resampled (equal weight)
particles of the PF at the corresponding time steps. The density of
the particles does not need to be Gaussian. These results demon-
strate:

• The EKF ellipsoids fail to capture the correlation between sx
and sy, whereas the UKF ellipsoids generally correspond
well to the particle plot.

• The EKF and UKF mean values are relatively biased
(particularly sy in Figure 3b) with respect to the particles
for t ¼ 150–380 due to the slow convergence (Figure 4a).
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• As shown in Figure 4a, the spread of the particles and the
standard deviation of the KFs are largest at t ¼ 300. The dis-
tributions get tight with reduced uncertainty and similar
mean values in all three filters when the tremor signal is
strong (Figure 4b).

• For t ¼ 620–680, the EKF is unable to track sx (Figure 3a),
whereas the UKF follows the PF results closely, as can also
be seen in Figure 4c.

• There are times (e.g., t ¼ 20–90 in Figure 3a for the UKF
and t ¼ 30–100 in Figure 3b for EKF) when the EKF or
UKF diverges from the other two filters.

In an alternative formulation, the longitude and latitude of the
tremor source on the slab (∼30 km deep) are tracked as state param-
eters instead of slowness. An important aspect of the 2D beamfor-
mer is that it provides an angle of arrival at the array location and an
undetermined range. Determining the source range requires an ad-
ditional piece of information. This is provided by the assumption
that the tremor originates on the plate interface. This enables map-
ping of the angle of arrival by back projection onto the slab, and this
produces an estimate for range. This results in good angle of arrival
tracking but poor localization because the radial uncertainty is large,
creating a long-tailed nonsymmetric PDF in a Bayesian beamformer
inversion.
The PF also has its largest uncertainty radially because the

beamformer and the PF use the same beamformer-based likelihood
function (equations 18 and 21). However, the state equation,
equation 14, used by the PF mitigates the degradation in range
at a low S/N. The state equation forces the PF to ignore the rapid
range fluctuations due to the poor likelihood function of the low S/N
data. The PF will only “believe” the new range inferred from the
current data when the S/N increases or when the likelihood
function consistently keeps pointing to the new range at consecutive
steps, indicating that the range change is likely not a random
fluctuation.
Sequential (PF) and beamformer methods are compared using the

2D PDF for the back-projected tremor location on the slab in
Figure 5 for low, medium, and high S/N values. Both methods
use the exact same likelihood formulation. Data are from the same
day as before, starting at 11:40 UTC. Notice that the PF location
PDF is sharper than beamformer PDF at all S/N levels. Also note
that the radial uncertainty is significantly less in PF.

Example II: Reflector tracking

The first part of this example demonstrates
how the KF and PF differ in a nonlinear geophy-
sical problem. It also examines the effects of
state noise vt on the estimated track quality.
Assume that we use acoustic data from a towed
array to invert for the sediment parameters below
the seafloor. The state vector is composed of the
ocean, sediment, and bottom sound speed
profiles, sediment thickness, attenuation, and
density. Through an acoustic propagation code,
it is possible to compute the acoustic field across
the array for a given environment. Along the
array trajectory, the sediment is stable with a
fixed thickness and slowly decreasing sound
speed. However, at t ¼ 140 min, a geologic for-

mation with a sudden increase in thickness and drop in sound speed
appears. The environment is tracked using a PF and an EKF.
As shown in Figure 6a, the environment changes slowly at the

beginning of the track and both filters are able to track the sediment
parameters correctly. However, at the sudden jump, the EKF fails
and diverges, whereas the particles in the PF successfully follow the
trajectory. The state noise vt alters significantly the filter behavior.
When vt is reduced in the state equation, equation 1, the filter trusts
the state equation more than the measurement. When vt is in-
creased, the filter assumes that the state equation is less reliable.
For an infinite vt, the filter ignores entirely the state equation
and becomes a set of successive independent inversions in time.
Because a filter with high noise vt trusts less the previous sedi-

ment values, it can easily adapt to the sudden jump at t ¼ 140 min
in Figure 6a. On the contrary, the track is less noisy with smaller vt
but there is a risk of track divergence if the state equation fails. This

Figure 4. Slowness-azimuth filter outputs at (a) t ¼ 300 (b) t ¼ 500, and (c) t ¼ 790.
The symbols (×) represent the particles in the PF. Ellipses represent σ and 2σ covariance
ellipsoids (corresponding to 39% and 86% of the total probability mass, respectively) for
the EKF (red) and the UKF (black).

Figure 3. One-dimensional PDF of slowness for 1 hour corre-
sponding to 720 filter time steps in the form of normalized
(maximum at 1) histograms of particles. The background image
is the PDF of the PF for (a) sx and (b) sy. Solid and dashed lines
represent the EKF and UKF estimates, respectively. Rectangles
show the features discussed in the text.
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can be seen at t ¼ 140 min in Figure 6b. It is possible to entirely
lose the track (sediment thickness) or have slow convergence (sedi-
ment sound speed). The selection of good state noise is referred to
as filter tuning.
The second part of this example demonstrates the feasibility of

seismic reflector (horizon) tracking using MMPFs. The experimen-
tal setup is changed from an active acoustic source setup to seabed
reflection tracking with noise interferometry (Curtis et al., 2006;
Wapenaar et al., 2008; Schuster, 2009) in the ocean (Gerstoft et al.,
2008; Siderius et al., 2010). The sea surface generated noise travels
downward, passing through the drifting array, and some of that
noise is reflected from the sea bottom and deeper reflectors. This
upward traveling reflected noise passes through the array again.
Hence, by steering the array looking direction upward first and then
downward by adjusting the beamformer weights (shading factor), it
is possible to capture the incident and reflected noise from which
the reflector depths and strengths can be inferred.
Reflection sequences are produced via noise crosscorrelation in-

terferometry and stacking the results (Siderius et al., 2010). In the
example used here, ambient noise 50–4000 Hz bandpass filtered on

a 32-element vertical drifting array is used to construct the seabed
reflection sequence (Gerstoft et al., 2008; Siderius et al., 2010).
Minimum variance distortionless response (MVDR) adaptive beam-
forming is used to steer the array. The fathometer output provides
strong correlation of upward and downward traveling noise at cer-
tain time delays, corresponding to reflections from sediment inter-
faces. An obtained seismic record section (Siderius et al., 2010) is
shown in Figure 7a. For the prior information, we assume equal
probability that there are six, seven, or eight reflectors in the seabed
structure. We select a transition matrix Πm:

Πm ¼

0

@
0.7 0.3 0.0
0.15 0.7 0.15
0.0 0.3 0.7

1

A: (22)

This 3 × 3 matrix allows the number of reflectors at the next time
step to remain the same or change by one for each particle. Each
particle retains its model number with probability of 0.7.
The state and measurement equations for fathometer tracking

(Michalopoulou et al., 2012) are given as

xt ¼ xt−1 þ vt; (23)

yt ¼ hðxtÞ þ wt; (24)

where vt and wt are state and measurement noise and hð·Þ is
the fathometer (either conventional or MVDR) processor. For the
PF, the state vector is composed of the reflector depths z and the
reflection amplitudes a at each reflector for a fixed number of
reflectors giving xt ¼ ½zTt aTt %T. For the MMPF, an extra model
parameter mt is also included with xt ¼ ½mtzTt aTt %T, where mt is

Figure 5. Tremor PDF from beamforming and PF on the map given
in the form of normalized (maximum at 1) histogram for the PF.
Two-dimensional PDFs for the source location on the slab for
(a) strong (12:03 UTC), (b) medium (11:51 UTC), and (c) weak
(12:12 UTC) NVT source strength. The symbol (⋄) shows the array
location. Dashed lines give the slab depth at that location.

Figure 6. Effects of state noise vt on a filter tracking sediment
thickness and sound speed using a moving acoustic array. The en-
vironment is slowly varying until t ¼ 140 min, at which point the
sediment rapidly thickens with a reduced sound speed. Distribution
of the particles of a PF for (a) large vt and (b) small vt together with
the mean EKF trajectory (dotted) and true environmental param-
eters (dashed). Each vertical slice is a normalized histogram. To
be able to compare all four cases, all subplots are scaled with
the same number.
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the model number that corresponds to models with an increasing
number of reflectors. The lengths of vectors zt and at are deter-
mined by mt. The MMPF implementation solves for at at each step
using ML estimation (Andrieu and Doucet, 1999; Larocque et al.,
2002), similar to the ML estimator given in equation 17 used in the
seismic tremor tracking example.
Using an MMPF, each reflector sequence is modeled as a sum of

weighted and shifted reflections and tracked the location of reflec-
tion peaks along with the number of reflectors (Jain and Michalo-
poulou, 2011). Thus, the ith particle in the PF uses a reflector model
corresponding to mi

t, which has 2 ×mi
t unknown environmental

parameters (depth and strength of each reflection) in addition to
mi

t. Posterior PDFs for reflector depths and model number were
calculated via the MMPF at each record t. The layer depths super-
imposed on the record of Figure 7b are mode values calculated from
the reflection location posterior PDFs in depth, identifying distinct
reflectors. The PF closely follows seabed tracks; it allows existing
ones to exit when the reflectors become weak and new ones to
emerge when new, consistent structure appears. Amplitudes at
are given in Figure 7c with significant reflections at 130–135
and 150–155 m.
Figure 8 illustrates the evolution of the probability mass function

(PMF) of the model number (number of reflectors) for the MVDR
results, demonstrating that the number of reflectors is consistently
estimated as seven or eight most of the time. The figure focuses on
records between 1 and 30. Note how the number of reflectors
changes between records 10 and 20. A large probability is assigned
for eight reflectors at record 10. As weak reflector tracks are lost,

the PMF of mt ¼ 7 is increased, and when the reflector appears
again, it decreases.
Using a standard PF with a fixed number of reflectors that is dif-

ferent than the true number of reflectors results in one of two pos-
sible scenarios: If the model used has fewer interfaces than the true
number, some reflectors are not tracked. If more interfaces are con-
sidered, the PF is forced to track reflectors that do not exist and will
include incorrect tracks. Even with the eight-reflector model, there

Figure 7. Multiple seismic reflector tracking results: (a) output of ocean interferometry (Siderius et al., 2010) and (b) MMPF reflector tracks
(squares) for an unknown number of reflectors as a function of record number, plotted on top of the interferometry results and (c) amplitude
tracks at. All interferometry outputs (Bn) are normalized.

Figure 8. Multiple seismic reflector tracking results: the PMF of the
number of reflectors for the MVDR results for records 1 through 30.
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are times when a short reflector (horizon) appears (which may or
may not be due to noise) and the filter jumps from the low amplitude
long reflectors at larger depths to the short reflector, creating arti-
ficial gaps in the long reflector. However, one must be careful with
the range of possible model numbers. As the model number in-
creases, so does the state dimension, and the track quality may
suffer.

CONCLUSIONS

Sequential Bayesian filters were introduced with an emphasis on
applications to geophysical problems. The theoretical background
for sequential Bayesian methods was summarized. Filters were
grouped into two main categories: those that use the Kalman phi-
losophy and those termed sequential MC techniques, also known
as PFs.
The first category assumed the underlying parameter statistics

were Gaussian and the nonlinearity was not strong enough to sig-
nificantly disrupt the Gaussian statistics. Four types of KF were dis-
cussed: the classical KF for strictly linear/Gaussian problems, the
EKF that can handle mild nonlinearities by locally linearizing the
equations, the UKF that keeps the nonlinearity while still assuming
a Gaussian density, and the EnKF designed for problems with large
state vectors using an ensemble of particles to compute means and
covariances using MC analysis. The second category consisted of
PFs, which can handle nonlinear/non-Gaussian cases. They use an
evolving set of particles, with each particle representing a possible
estimate for the set of parameters that are being tracked. The PF
equations were derived starting from classic IS, moving to the
SIS, and, finally, obtaining the most commonly used PF, the SIR
filter. Model order selection in a sequential Bayesian framework
was examined with the MMPF. Here the model was unknown or
uncertain and possibly changed for each step. Therefore, the model
connecting the unknown parameters and the data need to be updated
as new data became available. This was shown to be relevant in
many geophysical tracking problems such as tracking a varying
number of sedimentary reflectors.
The NVT tracking example with a nonlinear measurement equa-

tion showed that a PF is needed to successfully track the tremor.
Whereas the EKF had the worst tracking performance and the
UKF failed in the presence of low S/N NVT, the PF was able to
maintain a successful track through the entire time series. The track-
ing capabilities of the EKF and PF were compared in a reflector
tracking example. This showed that the PF was robust to sudden
jumps in state parameter values in nonlinear systems whereas
KFs diverged. The MMPF result showed with real data that it
was possible to track the sediment reflectors even when the number
of reflectors was unknown and changing. Sequential Bayesian fil-
tering is a good addition to the already existing inversion methods.
As the examples showed, they are suitable for a variety of geophys-
ical problems and there is a diverse set of KFs and PFs that can be
tailored according to each problem.
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APPENDIX A

SEQUENTIAL IMPORTANCE SAMPLING
DERIVATION

As a sequential Bayesian method, a formal PF derivation starts
with the full posterior density pðx1∶tjy1∶tÞ. To obtain the filtering
PDF pðxtjy1∶tÞ, we need to integrate the full posterior:

pðxtjy1∶tÞ ¼
Z

pðx1∶tjy1∶tÞdx1dx2 : : : dxt−1. (A-1)

This can be rewritten in a form similar to equation 8 and solved
using an IS as

pðxtjy1∶tÞ ¼
Z

δðxt − x 0
t Þpðx 0

1∶tjy1∶tÞdx 0
1∶t; (A-2)

≈
XNp

i¼1

wi
tδðxt − xitÞ; (A-3)

wi
t ∝

pðxi1∶tjy1∶tÞ
qðxi1∶tjy1∶tÞ

; (A-4)

for some sampling density qðx1∶tjy1∶tÞ. By itself, this formulation is
not in a sequential form. To sequentially implement IS, one needs to
express pðx1∶tjy1∶tÞ and wt as functions of their values at the pre-
vious step pðx1∶t−1jy1∶t−1Þ and wt, respectively. This allows us to
use the cloud of particles and their associated weights at the pre-
vious time step fxit−1; wi

t−1g
Np
i¼1 to compute fxit; wi

tg
Np
i¼1. This is done

first by selecting a sampling distribution qðx1∶tjy1∶tÞ of the form

qðx1∶tjy1∶tÞ ¼ qðxtjxt−1; y1∶tÞqðx1∶t−1jy1∶t−1Þ: (A-5)

Then the full posterior PDF is rewritten using the Bayes rule as
(Ristic et al., 2004)

pðx1∶tjy1∶tÞ ¼
pðytjxtÞpðxtjxt−1Þ

pðytjy1∶t−1Þ
pðx1∶t−1jy1∶t−1Þ: (A-6)

Inserting equations A-5 and A-6 into equation A-4 and dropping the
constant term pðytjy1∶t−1Þ,

wi
t ∝

pðytjxitÞpðxitjxit−1Þ
qðxitjxit−1; y1∶tÞ

×
pðxi1∶t−1jy1∶t−1Þ
qðxi1∶t−1jy1∶t−1Þ

; (A-7)

which simplifies to the recursive filter form in equation 11.
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