Sports Car loses road contact at A

a) \(\epsilon = \text{radius of curvature at A} \)

b) \(F \) on driver = 160 lbf
 by the seat of a
driver car = 3100 lbf
 \(\epsilon \) constant \(V = 50 \text{ mph} \)

(c) Car at pt. A.

\[V = 100 \text{ mi/h} \times \frac{88 \text{ ft/sec}}{60 \text{ mi/h}} = 146.67 \text{ ft/sec} \]

\[F_x = 0 \quad F_y = 0 \]

\[N = 0 \quad W = 2400 \text{ lbf} \]

\[A_x = 0 \quad A_y = \frac{V^2}{\epsilon} \]

\[F_{f_{\text{m,car}}} = m_{\text{car}} \ddot{a} \]

Tangential: \[\dot{X} = ma_x \]

Normal: \[\dot{X} = ma_y = \frac{W[V^2]}{q} \]

\[2400 \text{ lbf} = \frac{2400 \text{ lbf}}{32.2 \text{ ft/sec}^2} \left(\frac{(146.67 \text{ ft/sec})^2}{\epsilon} \right) \]

\[\epsilon = \frac{(146.67 \text{ ft/sec})^2}{32.2 \left(\frac{668.077}{32.2} \right)^2} = 668.077 \]

\[\epsilon = 668 \text{ ft} \]

(b) \(a_x = 0 \)

\[V = 50 \text{ mi/h} [88 \frac{3}{5} \text{ ft/sec}] = 73.33 \text{ ft/sec} \]

\[X = ma_x \]

Normal: \[F_{f_{\text{man}}} = m_{\text{man}} a_y = \frac{W V^2}{q} \]

\[160 \text{ lbf} - N = \frac{160 \text{ lbf}}{32.2 \left(\frac{668}{32.2} \right)^2} \]

\[\text{Force on man} = N = 120 \text{ lbf} \]

Check your algebra!