
                                                             1 

Monitoring Software Technology Evolution, One Trend at a Time 
Yanzhi Bai and Ali Mili 

College of Computer Science 
New Jersey Institute of Technology 

Newark NJ 07102-1982 
yb8@njit.edu, mili@cis.njit.edu 

Abstract 

The ability to model the evolution of software technology trends is valuable to many stakeholders in industry, 

academia, and government.  Yet we often depend exclusively on the opinions of alleged experts to make 

predictions on trend evolution.  In this paper we discuss an ongoing long term effort at bringing a measure of 

quantitative analysis to this discipline.  We see our contributions as complementing expert opinions, not 

substituting for them. 

Keywords: software evolution, trend, programming languages, operating systems, middleware, statistical analysis. 

1. INTRODUCTION 

The ability to understand the evolution of software technology trends carries great stakes for a broad variety of stakeholders, 

ranging from corporate decision makers to government officials to academic planners to technology consultants to mere 

individuals. Yet this ability remains rather elusive, as it eludes meaningful modelling.  We recognize two broad families of 

approaches to this problem, which we can simplistically and summarily characterize as follows1: 

 Top Down/ Analytical Approaches, which attempt to apprehend software trends by specializing general theories of 

scientific/ technical evolution to software technologies.  These deductive approaches analyze epistemological theories 

pertaining to the evolution and dissemination of knowledge, distil their wisdom into a set of simple principles, which 

they then apply in the context of modern software technology. 

 Bottom Up/ Empirical Approaches,  which attempt to collect data on sample trends, then attempt to generalize sample 

observations to derive more general evolution laws.  These inductive approaches collect empirical data on specific 

trends, derive specific evolutionary laws without pretending to explain them/ understand them, then attempt to 

synthesize these specific empirical laws into general, more broadly applicable laws. 

                                                           
1 This distinction is simplistic, but we adopt it for the sake of argument. 



Monitoring Software Technology Evolution, One Trend at a Time 

                                                            2 

2. BACKGROUND 

In this paper, we briefly discuss our experience exploring the second approach.  We have applied this approach to two families of 

software technology artefacts, namely programming languages and operating systems, and are currently applying it to a new 

family, namely middleware systems.  Broadly speaking, our approach proceeds as follows: 

 Identify a Trend.  In this step, we identify a family of artefacts that present the following characteristics:  the members 

of the family offer a unity of purpose and function;  the members of the family can be viewed as competing for the same 

market, by virtue of delivering similar services; the members of the family can be characterized by a common set of 

attributes; the members of the family have a well documented evolutionary history over a number of years. 

 Intrinsic Characterization.  In this step, we introduce intrinsic attributes that characterize members of the selected 

family in a meaningful way, i.e. in a way that could conceivably affect their evolution.  These attributes are selected 

according to the following characteristics:  they must be orthogonal; they must be of general significance (apply equally 

to all members of the family); and they must be quantifiable.   

 Extrinsic Characterization.  A cursory analysis of software technology trends reveals easily that the fate of a trend has 

rather little to do with the intrinsic merits (as reflected by intrinsic factors).  Hence we also introduce extrinsic factors, 

that reflect the environmental conditions in which the trend evolved, and the  level of support that the trend has received 

from various quarters during its evolution.  Generally, we consider institutional support (from academic institutions), 

governmental support (from governmental organizations), corporate support (from corporations), organizational support 

(from professional organizations and standards bodies), and grassroots supports (from practitioners at large).   Hence we 

have a combination of planned/ centralized/ politicized support, and unplanned / distributed/ spontaneous support. 

 Quantification and Data Collection.  In this step, we quantify the intrinsic and extrinsic attributes, then collect data on 

them.  Intrinsic attributes are typically trend-specific and time-independent; we quantify them and assess them using 

textbook references, or sometimes survey data.  Extrinsic attributes are typically time-dependent; we quantify them and 

collect data about their quantitative values over a number of years, at specific time intervals (3 years or 5 years, 

depending on the length of their common history).  We use historical records or, most typically, survey data, to collect 

data on extrinsic factors. 

 Empirical Laws:  Trend Specific.  We analyze the empirical data we have collected in the previous step using 

statistical methods.  In particular, we are interested to explore laws that capture the evolution of a trend (as reflected by 

its vector of extrinsic factors) as a function of its intrinsic attributes and its support history.  To this effect, we perform 



Monitoring Software Technology Evolution, One Trend at a Time 

                                                            3 

regression analysis and correlation analysis, using the current extrinsic factors as dependent variables and the past 

extrinsic factors and the intrinsic factors as dependent variables.  Such models can then be used to predict the future of 

the trends in question:  by feeding information about the past and present of extrinsic factors, we can now predict the 

future of extrinsic factors (in terms of institutional support, governmental support, organizational support, corporate 

support, grassroots support, etc), three or five years in advance, depending on the step of our data collection. 

 Empirical Laws:  Attribute Specific.   All the predictions we can make may fall by the wayside if an event happens in 

the near future (within the period of our prediction) and alters the landscape pertaining to the trend of interest.  To 

maintain the relevance of our findings against such discontinuities, we may focus, not on specific trends, but on trend 

attributes.  To do so, we revise our statistical data, making our dependent attributes, not the level of support of individual 

trends, but rather trend characteristics.   In other words, we do not quantify the level of support of a specific trend, but 

rather the level of support of a specific attribute, which we determine by analyzing to what extent the level of success of 

a trend is correlated to that trend featuring the selected attribute.  Consequently, our prediction does not say:  trend X 

will have such level of support 3 (5) years from now, but rather, attribute Y will be prominent, to a specified level in 

trends that are successful, to a specified level, in terms of some extrinsic factor.  As a result, we do not characterize 

successful trends by name, but provide the profile of successful trends, regardless of their name, indeed regardless of 

whether these are existing trends or future trends. 

We conducted two studies according to the pattern just described:  one study dealing with programming languages [1]; and one 

study dealing with Operating Systems [2].  Currently, we are conducting a similar study on middleware systems. We will briefly 

present them below. 

3. PROGRAMMING LANGUAGES 

We have chosen programming languages as the object of this first experiment for a number of diverse reasons: First, they are 

important artefacts in the history of software engineering. Second, they represent a unity of purpose and general characteristics, 

across several decades of evolution. Third, they offer a wide diversity of features and a long historical context, thereby affording us 

precise analysis. Fourth, their history is relatively well documented, and their important characteristics relatively well understood. 

We have selected a set of 17 third generation languages as our sample, chosen for their diversity and their technical or historical 

interest:  ADA, ALGOL, APL, BASIC, C, C++, COBOL, EIFFEL, FORTRAN, JAVA, LISP, ML, MODULA, PASCAL, 



Monitoring Software Technology Evolution, One Trend at a Time 

                                                            4 

PROLOG, SCHEME, SMALLTALK.  In order to model the evolution of these languages, we have resolved to represent each 

language by a set of factors, which we divide into two categories: intrinsic factors and extrinsic factors.  

3.1. Intrinsic factors:  

Intrinsic factors are the factors that can be used to describe the general design criteria of programming languages. We have 

identified eleven such factors [3][4]. We claim is that it is sufficiently rich to enable us to capture meaningful aspects of 

programming language evolution.  Due to space constraints, we do not present detailed definitions of these factors, relying on the 

reader’s understanding of these concepts, and referring the interested reader to [5].  These factors are:  Generality, Orthogonality, 

Reliability, Maintainability, Efficiency, Simplicity, Machine Independence, Implementability, Extensibility, Expressiveness, and 

Influence/ Impact. 

3.2. Extrinsic factors:  

Whereas intrinsic factors reflect properties of the language itself, extrinsic factors characterize the historical context in which the 

language has emerged and evolved; these factors evolve with time, and will be represented by chronological sequences of values, 

rather than single values. We have identified six extrinsic factors for the purposes of our study:  Institutional support; Industrial 

support; Governmental support; Organizational support; Grassroots support; Technology support.  For example, the factor 

grassroots support reflects the amount of support that the language is getting from practitioners, regardless of institutional/ 

organizational/ governmental pressures.  We decompose and define the other extrinsic factor in a similar manner, using 

quantitative questions. 

3.3. Quantifying factors 

Most of the intrinsic factors we have introduced above are factors for which we have a good intuitive understanding, but no 

accepted quantitative formula.  In order to quantify these factors, we have chosen, for each, a set of discrete features that are 

usually associated with this factor.  Then we rank these features from 1 (lowest) to N (highest), where N is the number of features.  

The score of a language is then derived as the sum of all the scores that correspond to the features it has.  For example, to quantify 

generality, we consider ten features, ranging from offering constant literals (score: 1) to offering generic ADT’s (score: 10). A 

detailed explanation of how all other intrinsic factors are computed is given in [5].   

3.4  Model prototype 

Before we present our summary statistical model, we consider the following premises:  1) We adopt intrinsic factors as 

independent variables of our model, as they influence the fate of a language but are themselves constant (time independent);  2)  

Because many extrinsic factors feed unto themselves and may influence others, we adopt past values of extrinsic factors as 



Monitoring Software Technology Evolution, One Trend at a Time 

                                                            5 

independent variables; 3) We adopt (present or future values of) extrinsic factors as dependent variables of our model; 4) We do 

not represent the status of a language by the simple binary premise of successful/ unsuccessful, as this would be arbitrarily 

judgmental.  Rather, we represent the status of a language by the vector of all its current extrinsic factors. 

 

 

 

 

 

 

 

To show the evolutionary law of a language, we construct the following multivariate regression models by using the independent 

intrinsic and extrinsic factors. The multivariate regression equation has the form:  

Y = A + B1X1 + B2X2 + ... + BkXk + E  

where:  Y is the predicted value on the dependent variable, A is the Y intercept, X is the various independent variables, B is the 

various coefficients for regression, and E is an error term.  Overall, the independent variables of our model include the intrinsic 

factors and the past history of extrinsic factors, and the dependent variables include the current (or future) values of the extrinsic 

factors; see Figure 3.1.   To evaluate intrinsic factors, we use the quantification procedures discussed in section 3.3. To this effect, 

we refer to the original language manual and determine whether each relevant feature is or is not offered by the language.   To 

collect information about extrinsic factors, we have set up a web-based survey. We have publicized our survey very widely through 

professional channels (for example, google, yahoo, and other computer professional newsgroups) to maximize participation. The 

information we request from participants pertains to their knowledge/familiarity/practice of relevant languages, as well as levels of 

organizational commitment to specific languages. 

3.5. Main Empirical Conclusion 

In this project, factor analysis is used to investigate the latent factors in intrinsic and extrinsic factor groups. Canonical analysis is 

used as an advanced stage of factor analysis.   According to the data we collected, the 5 most popular languages (most people 

consider them as their primary programming languages) in 1993 are: C (22.47%), PASCAL (17.81%), BASIC (16.19%), 

FORTRAN (9.51%), C++ (6.88%). The 5 most popular languages in 1998 are: C (22.03%), C++ (18.31%), SMALLTALK 

(8.64%), FORTRAN (8.47%), PASCAL (7.79%). The 5 most popular languages in 2003 are: C++ (19.12%), JAVA (16.26%), 

 
 
 

MODEL 
 
 

F ( I1, .., In,  
E1,…, Ek ) 

 

I1 

Im 

ek
* 

Ek 

E1 

E2 

e1
* 

I1,…, Im:  Intrinsic factors 

e1
*,…,ek

*: Sequence of past extrinsic factors 

E1,…, Ek: Current extrinsic factors 

Figure 3.1 Statistical Model for Programming Language Trends 



Monitoring Software Technology Evolution, One Trend at a Time 

                                                            6 

SMALLTALK (13.32%), ADA (10.38%), FORTRAN (9.34%).  Figure 3.2 shows the trends of most popular programming 

languages from 1993 to 2003. This figure presents a sample factor for grassroots support. 

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

1993 1998 2003

ADA

BASIC

C

C++

FORTRAN

JAVA

PASCAL  

 

 

The analysis also shows the meaningful relationships between the intrinsic factors of a language and the value of its dependent 

variables.  As an example, we consider the impact of intrinsic factors on the number of developers who consider the language as 

their primary development language. The results are summarized in Table 3.1. It shows that machine independence, extensibility 

and generality have the greatest impact on this extrinsic factor. By analyzing the tables for all factors, we find that the most 

important intrinsic factors are generality, reliability, machine independence, and extensibility.    

How many developers consider this language as primary language? 
Generality         0.6913 Implementability -0.3390 
Orthoganality      0.0199 Machine Independence 0.8876 
Reliability        0.3199 Extensibility      0.7625 
Maintainability    0.0470 Expressiveness    0.3024 
Efficiency         0.0703 Influence/Impact 0.0552 
Simplicity        -0.4703   

Table 3.1 Sample Correlation Results for Intrinsic Factors Only 
 

3.6. Validation   

We construct this derivative model by using 12 languages and will use 5 languages to validate it. We consider the extrinsic factor 

of “What percentage of people know this programming language in 2003” and compare the actual value collected from our survey 

against the predicted value produced by our regression model. The results are shown in Table 3.2.  F-Statistic, which is a standard 

Figure 3.2 Trends of “How many people consider this language as their primary programming 
language” from 1993 to 2006 



Monitoring Software Technology Evolution, One Trend at a Time 

                                                            7 

statistical method to check if there are significant differences between 2 groups, is used to validate the prediction. In the F-table, 

for a=0.05, F must be greater than 4.49 to reject the hypothesis of statistical correlation. Because our F value is 0.235, which is 

much less, the hypothesis is validated.  Same here:  

 Languages Actual Value Predictive Value
ADA 5.19% 6.94% 

EIFFEL 5.90% 7.16% 
LISP 7.68% 7.74% 

PASCAL 54.29% 48.81% 
SMALLTALK 10.06% 8.48% 

Table 3.2 Difference between Actual & Predictive Value 
 
3.7  Predictive Model 

We build a regressive model of our data by instantiating  the equation of section 3.4 for the factors that are relevant to our study.  

Specifically, we posit a linear equation that formulates the extrinsic factors as of 2003 as a function of the intrinsic factors and the 

extrinsic factors for the years 1998 and 1993, and we let the regression methods derive the linear coefficients and error term.  We 

find: 

E2003 = A * I + B * E1998 + C * E1993 + D 

where: E2003 is the vector of extrinsic factors in 2003 , I is Value of intrinsic factors, A is the Parameter matrix for intrinsic factors, 

E1998 is vector of extrinsic factors in 1998; B is the parameter matrix for extrinsic factors in 1998, E1993  is the vector of extrinsic 

factors in 1993, C  is the Parameter matrix for extrinsic factors in 1993, and D is a Constant value. We generalize this model to 

obtain a predictive model, by letting the year be a parameter, based on the assumption that the evolution of extrinsic factors will 

continue to follow the same linear law.  To predict the value of each extrinsic factor in 2008, use data from 1998 and 2003 in lieu 

of 1993 and 1998 in the equation above. The results are shown in Figure 3.3.  

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

1993 1998 2003 2008

ADA C
C++ FORTRAN
JAVA PASCAL
SMALLTALK

 



Monitoring Software Technology Evolution, One Trend at a Time 

                                                            8 

Figure 3.3 Trends of most popular languages from 1993 to 2008. 

4. OPERATING SYSTEM TREND ANALYSIS  

4.1.  Experimental Setup 
 
We conducted a similar study of the evolution of operating systems.  The operating systems we have chosen to this effect are:  

Unix, Solaris, Sun/OS, BSD, Windows, MS-DOS, MAC OS, Linux, Netware, HP_UX, GNU Hurd, IBM AIX, Compaq/ DEC 

VMS, OS/2.  We have used the same extrinsic (environmental) factors as for programming languages, but we have, of course, 

chosen different, OS-specific, intrinsic factors.  However, in preparation for a possible merger with results from other trends, we 

have divided the set of factors into seven broad classes, which we briefly introduce below: 

• Resource Management Factors.  This category includes scalability (ability to make use of added hardware);  CPU 

management; memory management;  I/O Management. 

• Usability.   This category includes ease of learning; ease of use; and consistency of interaction protocols. 

• Usefulness:  Functional.  Whereas usability reflects ease of use/ congeniality to the user, usefulness reflects the level of 

service provided to the user.  Functional usefulness includes:  Range of services; Range of programming language 

support;  distributed computing; network services; and deadlock management. 

• Usefulness:  Operational.   Operational attributes of usefulness include reliability, and security and protection. 

• Versatility.  Versatility of an operating system is its ability to run on a wide range of  platforms, under a wide range of 

distinct operating conditions.  We have identified three dimensions of versatility:  Portability, Compatibility; and 

Openness. 

• Design.  This factor reflects design qualities of the operating system, such as integrity, economy of concept, orthogonality, 

and adherence to design principles. 

• Cost.   This factor considers acquisition costs, maintenance costs, and operating costs of an operating. 

Due to data collection constraints and shorter time spans where accurate data could be collected, we have resolved to let the step of 

our time-dependent data be 3 years rather than 5 years (as we had for programming languages).  Also, as we discussed earlier, in 

the study of operating systems we went beyond modelling the evolution of individual operating systems, to model the evolution of 

operating systems attributes, which we represent by the intrinsic factors.  In other words, we are not content with identifying 

successful operating systems; rather we also want to identify the attributes that successful operating systems have in common.  

This allows us to make predictions that are immune to discontinuities in the evolution of trends: while we may not know what 



Monitoring Software Technology Evolution, One Trend at a Time 

                                                            9 

operating system will be most successful three years from now (by whatever extrinsic metric we choose), we may know what 

features will characterize a successful operating system. 

4.2.  Experimental Results 

The factor analysis shows that six extracted components are sufficient to account for more than 95.903% of the variance of the 

dependent variables (intrinsic factors and past extrinsic factors). From the factor analysis, we find that intrinsic variables do 

represent important features of the operating system.  The multivariate regression model is a useful approach to predict evolving  

trends based on existing data.   We use canonical correlation (specifically, Pearson’s correlation) as an additional procedure for 

assessing the relationships between dependent variables and independent variables. Different intrinsic factors of an operating 

system do have different impacts on the overall performance by using this model. Table 4.1 shows, as an example,  the results of 

correlation analysis of government support and intrinsic factors.   Figures 4.1 and 4.2 show the evolution of operating systems from 

1997 to 2006 with respect to organizational support and grassroots support.  

 

Intrinsic Factor Governmental Support Intrinsic Factor Governmental Support
Security Protection 0.883 Compatibility 0.589 

Scalability 0.789 Consistency of Interaction Protocol 0.578 
Design 0.750 Ease of Learning 0.553 

Network Service 0.747 Reliability 0.455 
Deadlock 0.709 Openness 0.426 

IO 0.666 Ease of Use 0.425 
CPU 0.643 Distributed Computing 0.408 

Range Of Programming Languages 0.612 System Services 0.291 
Memory 0.589   

Table 4.1: Correlation Analysis 

 

 

 

 

 

 

 

 

Figure 4.1 Evolution of Organizational Support  
from 1997 to 2006

Figure 4.2 Trends of grassroots support from 1997 to 
2006.

Grassroot
0

0.5

1

1.5

2

2.5

3

3.5

1997 2000 2003 2006

UNIX          

Solaris/Sun OS

BSDs          

OS/2          

Window s       

MAC OS        

Linux         

NetWare       

HP-UX         

GNU Hurd      

IBM AIX       

Compaq/DEC VMS

 

-50

0

50

100

150

200

250

300

350

400

450

Organization 1997 Organization 2000 Organization 2003 Organization 2006

UNIX          

Solaris/Sun OS

BSDs          

OS/2          

Window s       

MAC OS        

Linux         

NetWare       

HP-UX         

GNU Hurd      

IBM AIX       

Compaq/DEC VMS



Monitoring Software Technology Evolution, One Trend at a Time 

                                                            10 

 
 
 
 

4.3.  Statistical Validation 

The method that we have used for statistical validation is empirical, and it consists of applying the predictive model on past data, to 

predict current (as of 2006) data, then comparing the data produced by the predictive model against actual data.  Table 4.2 provides 

this data for the extrinsic factor of government support. 

Government Support Government Support 
OS Actual 

Data 
Predicted 

Data 
OS Actual 

Data 
Predicted 

Data 
UNIX 2.575 2.532 Linux 2.735 2.747 
Solaris 2.061 2.013 NetWare 1.052 1.020 
BSDs 1.561 1.449 HP-UX 2.262 2.204 
OS/2 0.515 0.483 GNU Hurd 0.492 0.432 

Windows 2.655 2.674 IBM AIX 2.316 2.268 

MAC OS 0.343 0.095 Compaq DEC 
VMS 1.493 1.426 

Table 4.2: Comparison of Actual Value and Predictive Value For Government Support 

4.4.  Predictive Model for Features of Operating System  
 

Space limitations preclude us from giving a detailed account of how we charted the evolution of operating systems features; the 

interested reader is referred to [6].  The overall idea is to represent operating systems attributes by intrinsic factors and to represent 

measures of success by extrinsic factors.   Then we quantify the preponderance of each particular attribute (for example: protection 

and security)  in successful (for example: with respect to grassroots support) operating systems by the correlation between the two 

events:  “an operating system has that attribute” and “an operating system is successful”.  By charting the evolution of this 

correlation from year to year, we get a sense of the importance of the selected attribute for the selected measure of success (in this 

example:  importance of protection and security for grassroots support); by extrapolating into the future, we get a sense of  the 

profile (represented by a vector of attributes) of successful operating systems of the future.  

Our investigation of operating systems attributes provide that the most important attributes that characterize operating systems of 

the future, ranked by order of decreasing importance, are as follows:  Range of services (functional usefulness); Ease of Learning 

(usability);  Ease of use (usability); Openness (family of versatility); and Reliability (family of operational usefulness). 

 



Monitoring Software Technology Evolution, One Trend at a Time 

                                                            11 

5. MIDDLEWARE 

In the computer industry, middleware is a general term for any programming that serves to "glue together" or mediate between two 

separate and often already existing programs. A common application of middleware is to allow programs written for access to a 

particular database to access other databases.  Typically, middleware programs provide messaging services so that different 

applications can communicate. The systematic tying together of disparate applications, often through the use of middleware, is 

known as enterprise application integration (EAI). 

 

5.1. Selecting Middleware Systems 

We have selected object middleware according to their chronology, diversity and technical interests. Below we list some 

middleware protocols and products 

1, ODBC/JDBC: connecting programming languages (Windows based languages and Java) to databases.   

2, JMS: java message service integrates with existing messaging systems.  

3, JavaBean is software component written in the Java programming language that allows programmers build re-useable 

applications blocks called components that can be deployed in a network on any major operating system platform. 

4, Enterprise Java Bean (EJB) is a managed, server-sided component for modular construction of enterprise applications. 

5, J2EE is an industrial standard/product initiated by Sun Microsystems. It specifies a programming platform for developing and 

running distributed multi-tier architecture Java applications, based largely on modular software components running on an 

application server. 

6, MSMQ is essentially a messaging protocol from Microsoft that allows applications running on disparate servers to communicate 

in a failsafe manner.  

7, MQSeries is an IBM software family whose components are used to tie together other software applications so that they can 

work together.  

8, COM/COM+/DCOM, which are promoted by Microsoft, provide heterogeneity across languages only on Windows operating 

system.  

9, MTS: Microsoft Transaction Server is a program that runs on an Internet or other network server and manages application and 

database transaction requests on behalf of a client computer user.  



Monitoring Software Technology Evolution, One Trend at a Time 

                                                            12 

10, MS dot NET, a Framework of software component which can be added to the Microsoft Windows operating system, providing 

a large body of pre-coded solutions to common program requirements, and manages the execution of programs written specifically 

for the framework. 

11, CORBA (Common Object Request Broker Architecture) is published by Object Management Group. It allows remote method 

invocations on objects. CORBA offers heterogeneity across programming language and vendor implementations. 

12, Jini is an architecture for distributed computing, especially unreliable mobile computing.  

13, Jboss, referred to JBoss Enterprise Middleware Suite (JEMS) is an extensible and scalable suite of products for creating and 

deploying e-business applications. Jboss Middleware simplifies J2EE. 

14, The BEA WebLogic Platform is the application platform suite for developers service-enabling their applications. It enables 

enterprises to achieve faster time-to-value for critical business applications using open standards, web services and a Service-

Oriented Architecture (SOA).  

15, IBM WebSphere as a brand refers to a group of IBM software products. From a technical perspective, WebSphere typically 

means the WebSphere Application Server (WAS). WAS provides a bunch of services-- J2EE that Java applications use such as 

database access, mail services and security services. It is designed to set up, operate and integrate e-business applications across 

multiple computing platforms using Web technologies. It includes both the run-time components (like WAS) and the tools to 

develop applications that will run on WAS. 

16, Apache Geronimo is to produce a server runtime framework that pulls together the best Open Source alternatives to create 

runtimes that meet the needs of developers and system administrators.  

17, Oracle Fusion Middleware—a family of products ranging from application development tools and integration solutions to 

identity management, collaboration, and business intelligence reporting—provides the critical software foundation for business 

growth and control.  

 

We can see this middleware follow the rule of chronology. Some of them are out-dated; some are the mainstream middleware 

platform nowadays; some are still being developed and changing.   

 

This middleware also varies in terms of the programming abstractions they provide and the kinds of heterogeneity they provide 

beyond network and hardware. They are divided into the following categories:  

 Distributed database Access: ODBC/JDBC 



Monitoring Software Technology Evolution, One Trend at a Time 

                                                            13 

 Distributed Computing Environment (Remote procedure call): RMI, (Jini) 

 Message oriented middleware: JMS, MSMQ, MQSeries,  

 Distributed object middleware: COM/DCOM/COM+, JavaBean, Enterprise JavaBean, Corba 

 Transaction process monitor:  MTS 

 Enterprise Service Bus:  Dot Net and J2EE 

 Application Server (Java/.Net): JBoss, WebLogic, WebSphere, Fusion, Apache Geronimo  

 

Although it is said that the approach of layering middleware was problematic and unproductive, such an approach is useful in 

explaining their genealogy. The domain and hierarchy of these categories are listed below. The lower hierarchies provide services 

to the higher hierarchy, or they are contained in the services of the higher hierarchies as further development. By this way, we can 

ensure that the middleware family is well represented by the middleware we selected. 

 

5.2. Selecting the attributes to analyze 

Intrinsic Factors  
Factor Names Sub-attributes 

Functionality Breadth of applicability; tools supporting development and management 

Generality 
 

 Breadth of applicability 
 Tools supporting the development and management. 
 OS supported 
 Languages Supported:  
 Standard Support:  
 Support for existing applications: does it provide an efficient way to preserve or reuse legacy 

application systems?  
 Interoperability: between different languages and vendors.  
 Scalability: how extendible and runable on platforms from low end to high end. 

Usability Ease of learning; Ease of use 
Cost Acquisition Cost; Operation Cost  
Operational Quality  
 

 Availability 
 Security and Protection 
 Maintenance and management: how easy to manage, include service monitoring and 

administration.   
 Running Performance: 

 

Extrinsic Factors 

We choose the same extrinsic factors as other studies, namely: institutional support, corporate support, governmental support, , 

organizational support and grassroots support. 



Monitoring Software Technology Evolution, One Trend at a Time 

                                                            14 

 

5.4. Quantifying attributes 

Some of the attributes can be quantified easily because they are numeric themselves, such as maintenance cost. Some of the 

attributes are rated on a 1-5 scale either from online survey or analysis. The attribute can also be expressed as a composite of a list 

of sub-attributes, which are in turn quantified from above methods.  

We are currently in the early stages of this project, whereby we are setting up the online infrastructure at http://swtech.njit.edu/ to 

collect empirical data. Meanwhile, to build a new model, we are exploring the data mining methods rather than multi-linear 

regression analysis. New methods do not assume the functional form is known, and the algorithm discovers it. The function forms 

may be non-linear or arbitrarily complex.  

The online survey is currently being set up at the URL given above.  We anticipate that respondents will be solicited to assess some 

of the intrinsic factors, as well as the extrinsic factors.  Some intrinsic factors, such as ease of use, ease of learning, could 

conceivably be assessed offline by analyzing their contributing attributes and quantifying them; we envision to still solicit user 

feedback, and decide subsequently how to integrate these heterogeneous metrics.  As for extrinsic factors, we envision to dispatch 

respondents to different forms depending on two factors:  first, which type of organization they belong to (academic institution, 

governmental institution, industry, etc) and second whether they respond on behalf of their institution (accounting for their specific 

institutional support) or as individual users (accounting for grassroots support).  The same person can fill out more than one form, 

under different roles. 

6. PROSPECTS 

We envision to build on our individual empirical studies to produce more general laws of technology evolution.  One possible 

venue we are considering is to proceed as follows: 

 

 Merge data about extrinsic factors.   All our empirical studies have the same set of extrinsic factors:  institutional 

support, governmental support, corporate support, organizational support, grassroots support.  Consequently, we can 

merge the data collected on all three trends (programming languages, operating systems, middleware systems). 

 Classify then merge data about intrinsic factors.  The extrinsic factors that characterize a family of trends clearly 

depend on the family; hence we could not merge trend specific intrinsic factors directly.  We envision to classify it first, 

into broad categories such as:  usability; usefulness; user-friendliness; level of services provided; portability; 



Monitoring Software Technology Evolution, One Trend at a Time 

                                                            15 

effectiveness; cost; etc.  Once data from each trend is classified in a way that is no longer trend specific, then we can 

merge the data from all trends into one set. 

 Performs Generic Statistical Analysis.   The purpose of this step is to revisit the statistical analyses we had conducted 

for each trend and carry them out across trends, using the generic classification of intrinsic factors. 

 Derive, Analyze and Validate General Laws.  We can deploy statistical techniques to the combined data, producing 

analysis tools and predictive tools, which we can then validate empirically by seeing how faithfully they model existing 

studies (programming languages, operating systems, middleware systems) then how faithfully they model new trend data 

(dealing, for example, with database packages, web browsers, etc). 

This, we believe, is a viable alternative to the highly speculative methods of top down analysis, and provides complementary 

perspectives. 

 

Bibliography 

[1] Yaofei Chen, Rose Dios, Ali Mili, Lan Wu, Kefei Wang: An Empirical Study of Programming Language Trends. IEEE 

Software 22(3): 72-78 (2005). 

[2] Yi Peng, Ali Mili, Fu LiMin.  Modeling the evolution of operating systems: An empirical study.  Journal of Systems and 

Software.  January 2007.  

[3] Kenneth C. Louden. Programming Language Principles and Practice. PWS Publishing Company, Boston, MA. 1993. 

[4] U.S. Department of Defense. June 1978. “Department of Defense Requirements for High Order Computer Programming 

Languages: “Steelman” ” 

[5] Yaofei Chen, PhD thesis: Programming language trends : an empirical study, 2003, New Jersey Institute of Technology   

[6] Yi Feng, PhD thesis: Characterizing the evolution of operating systems. 2005, New Jersey Institute of Technology   

[7] Nikos Passas, Sarantis Paskalis1, Enabling technologies for the ‘always best connected’ concept, WIRELESS 

COMMUNICATIONS AND MOBILE COMPUTING, 2005; 5:175–191    

[8] Andrew S.Tanenbaum. Modern Operating System. Second Edition ed. Upper Saddle river, New Jersey: Prentice Hall, 2001. 

[9] David G.Kleinbaum, Lawrence L.Kupper, Keith E.Muller, Azhar Nizam. Applied Regression Analysis and Multivariable 

Methods. 3rd edition ed. Duxbury Press, 1997.  

[10] Middleware product specifications from Oracle, IBM, Microsoft. 

 


