Lightweight Verification via
Specialized Typecheckers

Martin Kellogg
University of Washington

Hours | Scwonds | Caleulation Time | Inaccuracy | Approxmale Shifl in
(scconds) (scconds) | range gale (meters)
0 0 0 0 0
1 3600 3599.9966 0034 7
8 28800 28799.9725 0275 55
20" 72000 71999.9313 0687 137
48 172800 172799.8352 1648 330
2 259200 259199.7528 2472 494
1002 | 360000 359999.6567 3433 687

Bugs in software

a

11]] B 3:24 PM

INSULIN ON BOARD

1

14 Nov

1400
4350
4« 300
41250
1200
<150

- ¢ €100

<« 50

1.1u | 1:09 hrs

2

88

mg/dL

=
3

Goal: every developer uses verification

Preventing bugs: a gross oversimplification

A

Usability

Can find all the bugs?

Preventing bugs: a gross oversimplification

A

Usability

Can find all the bugs?

Preventing bugs: a gross oversimplification

4
Testing

Usability

Can find all the bugs?

Preventing bugs: a gross oversimplification

Usability

A

Testing =- -

“Testing can only show the presence
of bugs, not their absence”

Can find all the bugs?

Preventing bugs: a gross oversimplification

4
Testing

Usability

Verification

>

Can find all the bugs?

Preventing bugs: a gross oversimplification

Usability

A

Testing

Pluggable types

Verification

>

Can find all the bugs?

10

Preventing bugs: a gross oversimplification

Usability

A

Testing

Goal #1:

Pluggable types

Verification

>

Can find all the bugs?

11

Preventing bugs: a gross oversimplification

Usability

A

Testing

Goal #1:

Pluggable types
Goal #2:

Verification

>

Can find all the bugs?

12

Preventing bugs: a gross oversimplification

Usability

A

Testing

[Goal #1:]

Pluggable types

Goal #2:

Verification

>

Can find all the bugs?

13

A new domain: compliance

e Certificates that acompany follows a ruleset

O O O O O

PCI DSS for credit card transactions

HIPAA for healthcare information

FedRAMP for US government cloud vendors
SOC for information security vendors

etc.

14

A new domain: compliance

e Certificates that acompany follows a ruleset

PCI DSS for credit card transactions
HIPAA for healthcare information

o O O O

SOC for information security vendors
o etc.

e State-of-the-practiceis

FedRAMP for US government cloud vendors

of source code

15

A new domain: compliance

e Certificates that acompany follows a ruleset
PCI DSS for credit card transactions

HIPAA for healthcare information

FedRAMP for US government cloud vendors

SOC for information security vendors

o efc

[e State-of-the-practice is manual audits of source code]

o O O O

Developers hate doing this work

A new domain: compliance

e Certificates that acompany follows a ruleset

PCI DSS for credit card transactions

HIPAA for healthcare information

FedRAMP for US government cloud vendors
SOC for information security vendors

o etc.

o O O O

e State-of-the-practiceis of source code

Insight: specialized checkers can replace manual audits

17

A new domain: compliance

e Certificates that acompany follows a ruleset

o O O O

O

PCI DSS for credit card transactions

HIPAA for healthcare information

FedRAMP for US government cloud vendors
SOC for information security vendors

etc.

e State-of-the-practiceis of source code
Insight: specialized checkers can replace manual audits

|—> Developers love this, because it saves work

18

Specialized compliance checkers, industry

Runon 76M NCNB LoC

Verified 37,315 pkgs
True pos. 173 pkgs
False pos. 1 pkg

19

Specialized compliance checkers, industry

Only 23 annotations
Runon 76M NCNB LoC

Verified [37,315 pkgs]

True pos. 173 pkgs
False pos. 1 pkg

20

Specialized compliance checkers, industry

Runon 76M NCNB LoC

Verified 37,315 pkes e Auditors accepted output

of typecheckers as evidence
True pos. 173 pkgs during a real audit
e Checkersintegrated into

False pos. 1 pkg build process

21

Types vs. other approaches

Recall

Ours

SpotBugs

Coverity

CrySL

CryptoGuard

100%

Kellogg, Schaef, Tasiran, Ernst. Continuous Compliance. ASE 2020.

Precision

Ours
SpotBugs
Coverity

CrySL

CryptoGuard

100%

22

Preventing bugs: a gross oversimplification

Usability

A

Testing

Goal #1:

Pluggable types

[Goal #2:

Verification

>

Can find all the bugs?

23

Harder problem: array indexing

T[] a = .
int 1 = .;
ali]
We need to show that:

e i isanindexfora

24

Harder problem: array indexing

T[] a = ..;
int 1 = ..;
ali]
We need to show that:
. e
e 1 > 0

¢ 1 < a.length

25

Harder problem: array indexing

T[] a = ..;
int 1 = ..;
ali]
We need to show that:
. e
e 1 > 0

¢ 1 < a.length

Insight: treat array indexing as a
collection of problems

26

Harder problem: array indexing

int 1 = ..; Insight: treat array indexing as a
collection of problems

.ali] ..
|—> build many analyses

We need to show that: : :

. : instead of just one
o ——isarndefora
e 1 > 0
¢ 1 < a.length

27

Cooperating specialized checkers: array indexing

Linear inequalities
i<j

Negative indices
| i| <a.length

Minimum lengths
a.length > 10

l

Equal lengths
a.length = b.length

Lower bounds
i>0

l

N\

Upper bounds
i <a.length

28

Summary of results

e Found bugs inindustrial codebases (Google Guava)

29

Summary of results

e Found bugs inindustrial codebases (Google Guava)
e Vs prior verification approaches (KeY, Clousot):
o more sound in microbenchmarks

o on large codebases
o - 10 min vs 3 hrs to check 100k LoC

30

Preventing bugs: a gross oversimplification

Usability

A

Testing

Goal #1:

Pluggable types
Goal #2:

Verification

>

Can find all the bugs?

31

Preventing bugs: a gross oversimplification

*
Testing

[Goal #1:]
Usability

Pluggable types

[Goal #2:

Verification

>

Can find all the bugs?

32

Typestate analysis

read () ("

File f =
f.open ()
File f2

f.close (
f2.read

L]
cee J

) ;
) ;

t;

33

Typestate analysis

read () ("

File £ = ..;
f.open ()
File f2 f;

f.close();
f2.read();n!

34

Typestate analysis

read () ("

File £ = ..;
f.open ()
File f2 f;

f.close();
f2.read();n!

35

The builder pattern

Userldentity identity =
UserIdentity.builder ()
.name (username)
.id (generateRandom (
.build () ;

))

36

The builder pattern

UserIdentity identity =
UserIdentity.builder () Q§77
.name (username)
.id (generateRandom(32))
.build () ;

37

The builder pattern

UserIdentity identity =
UserIdentity.builder () (§§7
.name (username)
.id (generateRandom(32))
.build () ;

UserIdentity identity =
UserIdentity.builder ()
.name (username)
.build () ;

38

The builder pattern

Userldentity identity =
UserIdentity.builder ()
.name (username)
.id (generateRandom (3”))
build () ;

Userldentity identity =
UserIdentity.builder ()
.name (username)
.build () ;

The builder pattern

Key insight:
No loops in this FSM!

Kellogg, Ran, Sridharan, Schaef, Ernst. Verifying Object Construction. ICSE 2020.

40

The builder pattern

“accumulation analysis” name ()

(e

Key insight:
No loops in this FSM!

Kellogg, Ran, Sridharan, Schaef, Ernst. Verifying Object Construction. ICSE 2020.

41

Accumulation analysis

A typestate analysis whose state representation
is a monotonically-increasing set.

42

Accumulation analysis

A typestate analysis whose state representation
is a monotonically-increasing set.

Advantages:

e Does not require alias analysis for soundness
o

43

User study

Task: add a new required field to a builder

Results:
® +50% success rate

® ~50%

44

Accumulation for resource leaks

try {

Socket s = new Socket (address, port);

s.close();

} catch (IOException e) {

}

45

Accumulation for resource leaks

try {

Socket s = new Socket (address, port);

— Missing call to close()

} catch (IOException e) {

}

46

Accumulation for resource leaks

3 stage checker:

1. taint-tracker over-approximates methods that need to be called
2. accumulation under-approximates methods that

3. dataflow analysis compares the two at “going out-of-scope” points

47

Accumulation for resource leaks: results

For full results, come to our talk on 26 August, 4pm Athens time ;)

48

Accumulation for resource leaks: results

Recall Precision
we [N LT
Eclipse Eclipse
I Grapple
100%

100%

| RLC

Eclipse

Grapple

~37 hrs

Kellogg, Shadab, Sridharan, Ernst. Lightweight and Modular Resource Leak Verification. ESEC/FSE 2021.

Accumulation: future plans

50

Accumulation: future plans

Big question: How much of typestate is accumulation?

51

How much of typestate is accumulation?

What we know for sure is accumulation:

e builders
o

52

How much of typestate is accumulation?

Plan #1: survey the literature

53

How much of typestate is accumulation?

Plan #1: survey the literature

Example: Dwyer, Avrunin, and Corbitt (ICSE 1999) split
finite-state properties into 8 patterns

54

How much of typestate is accumulation?

Plan #1: survey the literature

Example: Dwyer, Avrunin, and Corbitt (ICSE 1999) split
finite-state properties into 8 patterns

|—> 5/8 can be expressed as accumulation

55

How much of typestate is accumulation?

Plan #1: survey the literature

Example: Dwyer, Avrunin, and Corbitt (ICSE 1999) split
finite-state properties into 8 patterns

|—> 5/8|can be expressed as accumulation

60% of specifications they found in the wild!

56

How much of typestate is accumulation?

Plan #1: survey the literature

Plan #2: look for real problems solved with typestate

57

How much of typestate is accumulation?

Plan #1: survey the literature

Plan #2: look for real problems solved with typestate

Example: Qi & Myers, POPL 2009 introduced “masked
types” for safe object initialization

58

How much of typestate is accumulation?

Plan #1: survey the literature

Plan #2: look for real problems solved with typestate

Example: Qi & Myers, POPL 2009 introduced “masked
types” for safe object initialization

Masked types are an accumulation analysis that
accumulates fields rather than method calls 5

Related work
4
Testing

Usability
Pluggable types

Verification

>

Can find all the bugs?

Related work

4
[Testing]

Usability
Pluggable types

Verification

>

Can find all the bugs?

Re I a ted WO r k continuous integration (Fowler & Foemmel 2006)

Usability

fuzzing (e.g. Zawelski 2014, Padyhe et al. 2019)

* . oracle generation (e.g. Blasi et al. 2018)
Testing

Pluggable types

Verification

>

Can find all the bugs?

62

Related work

Usability

Testing
Unsound static analysis

- heuristic bug-finding (e.g. Ayewah et al. 2008)

- symbolic execution (e.g. Bessey et al. 2010

) Pluggable types

- intentionally-unsound variants of sound analyses
(e.g. Bannerjee et al. 2019, Rahaman et al. 2019,
Emmiet al. 2021)

Verification

Can find all the bugs?

>

63

Related work
4
Testing

Usability
Pluggable types

[Veriﬁcation]

>

Can find all the bugs?

Related work

Usability

Testing

- Proof assistants (e.g.
Coq, Isabelle/HOL,

Pluggable types Lean)

. - Automated theorem
- Dataflow analysis:

- via graph-reachability (Reps et al. 1995, Sagiv et al. 1996; Soot/Heros) provers (e'g' 23’ KeY’
- via abstract interpretation (Cousot & Cousot 1977) ESC/Java, Dafny)
- via types (i.e. pluggable types, dependent types) *

- Typestate (Strom & Yemeni 1986)
- Heap-monotonic typestate (Fahndrich & Leino 2003) . o
- Language-based approaches (e.g. Plaid, Rust) [Ve rlﬁ Cat Ion
P
C

Can find all the bugs? 65

Related work

4
Testing

Usability
[Pluggable types]

Verification

>

Can find all the bugs?

Related work

Testing

Usa blllty - Checkers for:

2011, Papi et al. 2008)

* GUI effects (Gordon et al. 2013)

* etc.

- Formalization (Foster et al. 1999)
- Checker Framework: (Papi et al. 2008) ’

*Null (Dietl et al. 2011, Papi et al. 2008)
* Inl:mrlljiz\i)ilitlye(Cibalenz et al.gglli,aDietlet al. [Plugga ble types]

* Regular expressions (Spishak et al. 2012)

* Locking discipline (Ernst et al. 2015)
* Determinism (Mudduluru et al. 2021)

Verification

>

Can find all the bugs?

67

Conclusion

e Goal: every developer uses verification

68

Conclusion

e Goal: every developer uses verification

Our contributions:

Pluggable types are a powerful and useable kind of verification
Using types in new domains makes devs want to do verification
Cooperating type systems can solve hard problems
Accumulation can often replace typestate

69

