
Lightweight Verification via
Specialized Typecheckers

Martin Kellogg
University of Washington 1

Bugs in software

2

etc.

Bugs in software

3

4

Goal: every developer uses verification

5Can find all the bugs?

Usability

Preventing bugs: a gross oversimplification

6Can find all the bugs?

Usability

Preventing bugs: a gross oversimplification

Goal

Preventing bugs: a gross oversimplification

7

Usability

Testing

Can find all the bugs?

Goal

Preventing bugs: a gross oversimplification

8

Usability

Testing

Can find all the bugs?

“Testing can only show the presence
of bugs, not their absence”

Goal

Preventing bugs: a gross oversimplification

9

Usability

Testing

Verification

Can find all the bugs?

Goal

Preventing bugs: a gross oversimplification

10

Usability

Testing

Verification

Can find all the bugs?

Pluggable types

Goal

Preventing bugs: a gross oversimplification

11

Usability

Testing

Verification

Can find all the bugs?

Pluggable types

Goal #1: make pluggable
types easier to adopt

Goal

Preventing bugs: a gross oversimplification

12

Usability

Testing

Verification

Can find all the bugs?

Pluggable types

Goal #2: make pluggable types more expressive

Goal #1: make pluggable
types easier to adopt

Goal

Preventing bugs: a gross oversimplification

13

Usability

Testing

Verification

Can find all the bugs?

Pluggable types

Goal #2: make pluggable types more expressive

Goal #1: make pluggable
types easier to adopt

Goal

A new domain: compliance

● Certificates that a company follows a ruleset
○ PCI DSS for credit card transactions
○ HIPAA for healthcare information
○ FedRAMP for US government cloud vendors
○ SOC for information security vendors
○ etc.

14Kellogg, Schaef, Tasiran, Ernst. Continuous Compliance. ASE 2020.

A new domain: compliance

● Certificates that a company follows a ruleset
○ PCI DSS for credit card transactions
○ HIPAA for healthcare information
○ FedRAMP for US government cloud vendors
○ SOC for information security vendors
○ etc.

● State-of-the-practice is manual audits of source code

15Kellogg, Schaef, Tasiran, Ernst. Continuous Compliance. ASE 2020.

A new domain: compliance

16Kellogg, Schaef, Tasiran, Ernst. Continuous Compliance. ASE 2020.

Developers hate doing this work

● Certificates that a company follows a ruleset
○ PCI DSS for credit card transactions
○ HIPAA for healthcare information
○ FedRAMP for US government cloud vendors
○ SOC for information security vendors
○ etc.

● State-of-the-practice is manual audits of source code

A new domain: compliance

● Certificates that a company follows a ruleset
○ PCI DSS for credit card transactions
○ HIPAA for healthcare information
○ FedRAMP for US government cloud vendors
○ SOC for information security vendors
○ etc.

● State-of-the-practice is manual audits of source code
● Insight: specialized checkers can replace manual audits

17Kellogg, Schaef, Tasiran, Ernst. Continuous Compliance. ASE 2020.

A new domain: compliance

● Certificates that a company follows a ruleset
○ PCI DSS for credit card transactions
○ HIPAA for healthcare information
○ FedRAMP for US government cloud vendors
○ SOC for information security vendors
○ etc.

● State-of-the-practice is manual audits of source code
● Insight: specialized checkers can replace manual audits

18Kellogg, Schaef, Tasiran, Ernst. Continuous Compliance. ASE 2020.

Developers love this, because it saves work

Specialized compliance checkers, industry

19Kellogg, Schaef, Tasiran, Ernst. Continuous Compliance. ASE 2020.

Verified 37,315 pkgs

True pos. 173 pkgs

False pos. 1 pkg

Run on 76M NCNB LoC

Specialized compliance checkers, industry

20Kellogg, Schaef, Tasiran, Ernst. Continuous Compliance. ASE 2020.

Verified 37,315 pkgs

True pos. 173 pkgs

False pos. 1 pkg

Run on 76M NCNB LoC
Only 23 annotations

Specialized compliance checkers, industry

21Kellogg, Schaef, Tasiran, Ernst. Continuous Compliance. ASE 2020.

Verified 37,315 pkgs

True pos. 173 pkgs

False pos. 1 pkg

Run on 76M NCNB LoC

● Auditors accepted output
of typecheckers as evidence
during a real audit

● Checkers integrated into
build process

Types vs. other approaches

22Kellogg, Schaef, Tasiran, Ernst. Continuous Compliance. ASE 2020.

Recall

Ours

100%

CrySL

CryptoGuard

Precision

Ours

100%

SpotBugs

Coverity

CrySL

CryptoGuard

SpotBugs

Coverity

Preventing bugs: a gross oversimplification

23

Usability

Testing

Verification

Can find all the bugs?

Pluggable types

Goal #2: make pluggable types more expressive

Goal #1: make pluggable
types easier to adopt

Goal

Harder problem: array indexing

T[] a = …;

int i = …;

... a[i] …

We need to show that:
● i is an index for a

24Kellogg, Dort, Millstein, Ernst. Lightweight Verification of Array Indexing. ISSTA 2018

Harder problem: array indexing

T[] a = …;

int i = …;

... a[i] …

We need to show that:
● i is an index for a
● i ≥ 0
● i < a.length

25Kellogg, Dort, Millstein, Ernst. Lightweight Verification of Array Indexing. ISSTA 2018

Harder problem: array indexing

26Kellogg, Dort, Millstein, Ernst. Lightweight Verification of Array Indexing. ISSTA 2018

Insight: treat array indexing as a
collection of problems

T[] a = …;

int i = …;

... a[i] …

We need to show that:
● i is an index for a
● i ≥ 0
● i < a.length

Harder problem: array indexing

27Kellogg, Dort, Millstein, Ernst. Lightweight Verification of Array Indexing. ISSTA 2018

Insight: treat array indexing as a
collection of problems

T[] a = …;

int i = …;

... a[i] …

We need to show that:
● i is an index for a
● i ≥ 0
● i < a.length

build many analyses
instead of just one

Cooperating specialized checkers: array indexing

Linear inequalities
i < j

Minimum lengths
a.length > 10

Negative indices
| i | < a.length

Lower bounds
i ≥ 0

Equal lengths
a.length = b.length

Upper bounds
i < a.length

28Kellogg, Dort, Millstein, Ernst. Lightweight Verification of Array Indexing. ISSTA 2018

Summary of results

29Kellogg, Dort, Millstein, Ernst. Lightweight Verification of Array Indexing. ISSTA 2018

● Found bugs in industrial codebases (Google Guava)

Summary of results

30Kellogg, Dort, Millstein, Ernst. Lightweight Verification of Array Indexing. ISSTA 2018

● Found bugs in industrial codebases (Google Guava)
● vs prior verification approaches (KeY, Clousot):

○ more sound in microbenchmarks
○ equally precise on large codebases
○ more scalable - 10 min vs 3 hrs to check 100k LoC

Preventing bugs: a gross oversimplification

31

Usability

Testing

Verification

Can find all the bugs?

Pluggable types

Goal #2: make pluggable types more expressive

Goal #1: make pluggable
types easier to adopt

Goal

Preventing bugs: a gross oversimplification

32

Usability

Testing

Verification

Can find all the bugs?

Pluggable types

Goal #2: make pluggable types more expressive

Goal #1: make pluggable
types easier to adopt

Goal

33

File f = …;
f.open();
File f2 = f;
f.close();
f2.read();

open()

read(),
close()

close()

read()

open()

X

Typestate analysis

34

File f = …;
f.open();
File f2 = f;
f.close();
f2.read();

open()

read(),
close()

close()

read()

open()

X

Typestate analysis

X

35

File f = …;
f.open();
File f2 = f;
f.close();
f2.read();

open()

read(),
close()

close()

read()

open()

X

Typestate analysis

X

Aliasing!

UserIdentity identity =
 UserIdentity.builder()
 .name(username)
 .id(generateRandom(32))
 .build();

36Kellogg, Ran, Sridharan, Schaef, Ernst. Verifying Object Construction. ICSE 2020.

The builder pattern

UserIdentity identity =
 UserIdentity.builder()
 .name(username)
 .id(generateRandom(32))
 .build();

37Kellogg, Ran, Sridharan, Schaef, Ernst. Verifying Object Construction. ICSE 2020.

The builder pattern

UserIdentity identity =
 UserIdentity.builder()
 .name(username)
 .id(generateRandom(32))
 .build();

38Kellogg, Ran, Sridharan, Schaef, Ernst. Verifying Object Construction. ICSE 2020.

The builder pattern

UserIdentity identity =
 UserIdentity.builder()
 .name(username)
 .build();

X

UserIdentity identity =
 UserIdentity.builder()
 .name(username)
 .id(generateRandom(32))
 .build();

39Kellogg, Ran, Sridharan, Schaef, Ernst. Verifying Object Construction. ICSE 2020.

The builder pattern

UserIdentity identity =
 UserIdentity.builder()
 .name(username)
 .build();

*

name() id()

*

*

*

name()
id()

build() X
build()

build()

40Kellogg, Ran, Sridharan, Schaef, Ernst. Verifying Object Construction. ICSE 2020.

The builder pattern

*

name() id()

*

*

*

name()
id()

build() X
build()

build()

Key insight:
No loops in this FSM!
(except self loops)

41Kellogg, Ran, Sridharan, Schaef, Ernst. Verifying Object Construction. ICSE 2020.

The builder pattern

*

name() id()

*

*

*

name()
id()

build() X
build()

build()

Key insight:
No loops in this FSM!
(except self loops)

“accumulation analysis”

Accumulation analysis

A typestate analysis whose state representation
is a monotonically-increasing set.

42Kellogg, Ran, Sridharan, Schaef, Ernst. Verifying Object Construction. ICSE 2020.

Accumulation analysis

A typestate analysis whose state representation
is a monotonically-increasing set.

Advantages:
● Does not require alias analysis for soundness
● Modular

43Kellogg, Ran, Sridharan, Schaef, Ernst. Verifying Object Construction. ICSE 2020.

User study

Task: add a new required field to a builder

Results:
● +50% success rate

● ~50% faster

44Kellogg, Ran, Sridharan, Schaef, Ernst. Verifying Object Construction. ICSE 2020.

try {

 Socket s = new Socket(address, port);

 ...

 s.close();

} catch (IOException e) {

}

45Kellogg, Shadab, Sridharan, Ernst. Lightweight and Modular Resource Leak Verification. ESEC/FSE 2021.

Accumulation for resource leaks

try {

 Socket s = new Socket(address, port);

 ...

} catch (IOException e) {

}

46

Missing call to close()

Accumulation for resource leaks

Kellogg, Shadab, Sridharan, Ernst. Lightweight and Modular Resource Leak Verification. ESEC/FSE 2021.

3 stage checker:

1. taint-tracker over-approximates methods that need to be called
2. accumulation under-approximates methods that have been called
3. dataflow analysis compares the two at “going out-of-scope” points

47

Accumulation for resource leaks

Kellogg, Shadab, Sridharan, Ernst. Lightweight and Modular Resource Leak Verification. ESEC/FSE 2021.

Accumulation for resource leaks: results

For full results, come to our talk on 26 August, 4pm Athens time ;)

48Kellogg, Shadab, Sridharan, Ernst. Lightweight and Modular Resource Leak Verification. ESEC/FSE 2021.

49

Recall

RLC

Eclipse

Grapple

100%

Precision

Eclipse

100%

RLC

Grapple

Time

Eclipse

RLC

Grapple

~37 hrs

Kellogg, Shadab, Sridharan, Ernst. Lightweight and Modular Resource Leak Verification. ESEC/FSE 2021.

Accumulation for resource leaks: results

Accumulation: future plans

50

Accumulation: future plans

Big question: How much of typestate is accumulation?

51

How much of typestate is accumulation?

What we know for sure is accumulation:

● builders (“call A before B”)

● resource leaks (“call C before going out of scope”)

52

How much of typestate is accumulation?

Plan #1: survey the literature

53

How much of typestate is accumulation?

Plan #1: survey the literature

Example: Dwyer, Avrunin, and Corbitt (ICSE 1999) split

finite-state properties into 8 patterns

54

How much of typestate is accumulation?

Plan #1: survey the literature

Example: Dwyer, Avrunin, and Corbitt (ICSE 1999) split

finite-state properties into 8 patterns

55

5/8 can be expressed as accumulation

Plan #1: survey the literature

Example: Dwyer, Avrunin, and Corbitt (ICSE 1999) split

finite-state properties into 8 patterns

5/8 can be expressed as accumulation

How much of typestate is accumulation?

56

60% of specifications they found in the wild!

How much of typestate is accumulation?

Plan #1: survey the literature

Plan #2: look for real problems solved with typestate

57

How much of typestate is accumulation?

Plan #1: survey the literature

Plan #2: look for real problems solved with typestate

Example: Qi & Myers, POPL 2009 introduced “masked

types” for safe object initialization

58

How much of typestate is accumulation?

Plan #1: survey the literature

Plan #2: look for real problems solved with typestate

Example: Qi & Myers, POPL 2009 introduced “masked

types” for safe object initialization

59

Masked types are an accumulation analysis that
accumulates fields rather than method calls

Related work

60

Usability

Testing

Verification

Can find all the bugs?

Pluggable types

Goal

Related work

61

Usability

Testing

Verification

Can find all the bugs?

Pluggable types

Goal

Related work

62

Usability

Testing

Verification

Can find all the bugs?

Pluggable types

Goal

continuous integration (Fowler & Foemmel 2006)

fuzzing (e.g. Zawelski 2014, Padyhe et al. 2019)

oracle generation (e.g. Blasi et al. 2018)

Related work

63

Usability

Testing

Verification

Can find all the bugs?

Pluggable types

Goal

Unsound static analysis
- heuristic bug-finding (e.g. Ayewah et al. 2008)

- symbolic execution (e.g. Bessey et al. 2010)

- intentionally-unsound variants of sound analyses

(e.g. Bannerjee et al. 2019, Rahaman et al. 2019,

Emmi et al. 2021)

Related work

64

Usability

Testing

Verification

Can find all the bugs?

Pluggable types

Goal

Related work

65

Usability

Testing

Verification

Can find all the bugs?

Pluggable types

Goal

- Dataflow analysis:
- via graph-reachability (Reps et al. 1995, Sagiv et al. 1996; Soot/Heros)

- via abstract interpretation (Cousot & Cousot 1977)

- via types (i.e. pluggable types, dependent types)

- Typestate (Strom & Yemeni 1986)
- Heap-monotonic typestate (Fähndrich & Leino 2003)

- Language-based approaches (e.g. Plaid, Rust)

- Proof assistants (e.g.

Coq, Isabelle/HOL,

Lean)

- Automated theorem

provers (e.g. Z3, KeY,

ESC/Java, Dafny)

Related work

66

Usability

Testing

Verification

Can find all the bugs?

Pluggable types

Goal

Related work

67

Usability

Testing

Verification

Can find all the bugs?

Pluggable types

Goal

- Formalization (Foster et al. 1999)

- Checker Framework: (Papi et al. 2008)

- Checkers for:
 * Nullness (Dietl et al. 2011, Papi et al. 2008)

 * Immutability (Coblenz et al. 2017, Dietl et al.

 2011, Papi et al. 2008)

 * Regular expressions (Spishak et al. 2012)

 * GUI effects (Gordon et al. 2013)

 * Locking discipline (Ernst et al. 2015)

 * Determinism (Mudduluru et al. 2021)

 * etc.

Conclusion

68

● Goal: every developer uses verification

Conclusion

69

● Goal: every developer uses verification

Our contributions:

● Pluggable types are a powerful and useable kind of verification
● Using types in new domains makes devs want to do verification
● Cooperating type systems can solve hard problems
● Accumulation can often replace typestate

