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Hours | Scwonds | Caleulation Time | Inaccuracy | Approxmale Shifl in
(scconds) (scconds) | range gale (meters)
0 0 0 0 0
1 3600 3599.9966 0034 7
8 28800 28799.9725 0275 55
20" 72000 71999.9313 0687 137
48 172800 172799.8352 1648 330
2 259200 259199.7528 2472 494
1002 | 360000 359999.6567 3433 687
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Goal: every developer uses verification
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of bugs, not their absence”
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A new domain: compliance

e Certificates that acompany follows a ruleset

O O O O O

PCI DSS for credit card transactions

HIPAA for healthcare information

FedRAMP for US government cloud vendors
SOC for information security vendors

etc.
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A new domain: compliance

e Certificates that acompany follows a ruleset

o O O O

O

PCI DSS for credit card transactions

HIPAA for healthcare information

FedRAMP for US government cloud vendors
SOC for information security vendors

etc.

e State-of-the-practiceis of source code
Insight: specialized checkers can replace manual audits

|—> Developers love this, because it saves work
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Specialized compliance checkers, industry

Runon 76M NCNB LoC

Verified 37,315 pkgs
True pos. 173 pkgs
False pos. 1 pkg
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Specialized compliance checkers, industry

Only 23 annotations
Runon 76M NCNB LoC

Verified [37,315 pkgs ]

True pos. 173 pkgs
False pos. 1 pkg
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Specialized compliance checkers, industry

Runon 76M NCNB LoC

Verified 37,315 pkes e Auditors accepted output

of typecheckers as evidence
True pos. 173 pkgs during a real audit
e Checkersintegrated into

False pos. 1 pkg build process
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Types vs. other approaches

Recall

Ours

SpotBugs

Coverity

CrySL

CryptoGuard

100%

Kellogg, Schaef, Tasiran, Ernst. Continuous Compliance. ASE 2020.

Precision

Ours
SpotBugs
Coverity

CrySL

CryptoGuard

100%
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Harder problem: array indexing

T[] a = .
int 1 = .;
ali]
We need to show that:

e i isanindexfora
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Harder problem: array indexing

int 1 = ..; Insight: treat array indexing as a
collection of problems

.ali] ..
|—> build many analyses

We need to show that: : :

. : instead of just one
o ——isarndefora
e 1 > 0
¢ 1 < a.length
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Cooperating specialized checkers: array indexing

Linear inequalities
i<j

Negative indices
| i| <a.length

Minimum lengths
a.length > 10

l

Equal lengths
a.length = b.length

Lower bounds
i>0

l

N\

Upper bounds
i <a.length
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Summary of results

e Found bugs inindustrial codebases (Google Guava)
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Summary of results

e Found bugs inindustrial codebases (Google Guava)
e Vs prior verification approaches (KeY, Clousot):
o more sound in microbenchmarks

o on large codebases
o - 10 min vs 3 hrs to check 100k LoC
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Typestate analysis

read () ("

File f =
f.open ()
File f2

f.close (
f2.read

L]
cee J

) ;
) ;

t;
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The builder pattern

Userldentity identity =
UserIdentity.builder ()
.name (username)
.id (generateRandom (
.build () ;

) )
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The builder pattern

Userldentity identity =
UserIdentity.builder ()
.name (username)
.id (generateRandom (3”) )
build () ;

Userldentity identity =
UserIdentity.builder ()
.name (username)
.build () ;




The builder pattern

Key insight:
No loops in this FSM!

Kellogg, Ran, Sridharan, Schaef, Ernst. Verifying Object Construction. ICSE 2020.
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The builder pattern

“accumulation analysis” name ()

(e

Key insight:
No loops in this FSM!

Kellogg, Ran, Sridharan, Schaef, Ernst. Verifying Object Construction. ICSE 2020.
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Accumulation analysis

A typestate analysis whose state representation
is a monotonically-increasing set.
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Accumulation analysis

A typestate analysis whose state representation
is a monotonically-increasing set.

Advantages:

e Does not require alias analysis for soundness
o
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User study

Task: add a new required field to a builder

Results:
® +50% success rate

® ~50%
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Accumulation for resource leaks

try {

Socket s = new Socket (address, port);

s.close();

} catch (IOException e) {

}
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Accumulation for resource leaks

try {

Socket s = new Socket (address, port);

— Missing call to close()

} catch (IOException e) {

}
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Accumulation for resource leaks

3 stage checker:

1. taint-tracker over-approximates methods that need to be called
2. accumulation under-approximates methods that

3. dataflow analysis compares the two at “going out-of-scope” points
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Accumulation for resource leaks: results

For full results, come to our talk on 26 August, 4pm Athens time ;)
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Accumulation for resource leaks: results

Recall Precision
we [N LT
Eclipse Eclipse
I Grapple
100%

100%

| RLC

Eclipse

Grapple

~37 hrs

Kellogg, Shadab, Sridharan, Ernst. Lightweight and Modular Resource Leak Verification. ESEC/FSE 2021.



Accumulation: future plans
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Accumulation: future plans

Big question: How much of typestate is accumulation?
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How much of typestate is accumulation?

What we know for sure is accumulation:

e builders
o
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How much of typestate is accumulation?

Plan #1: survey the literature
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How much of typestate is accumulation?

Plan #1: survey the literature

Example: Dwyer, Avrunin, and Corbitt (ICSE 1999) split
finite-state properties into 8 patterns

|—> 5/8|can be expressed as accumulation

60% of specifications they found in the wild!

56



How much of typestate is accumulation?

Plan #1: survey the literature

Plan #2: look for real problems solved with typestate
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How much of typestate is accumulation?

Plan #1: survey the literature

Plan #2: look for real problems solved with typestate

Example: Qi & Myers, POPL 2009 introduced “masked
types” for safe object initialization

Masked types are an accumulation analysis that
accumulates fields rather than method calls 5
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Re I a ted WO r k continuous integration (Fowler & Foemmel 2006)

Usability

fuzzing (e.g. Zawelski 2014, Padyhe et al. 2019)

* . oracle generation (e.g. Blasi et al. 2018)
Testing

Pluggable types

Verification

>

Can find all the bugs?
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Related work

Usability

Testing
Unsound static analysis

- heuristic bug-finding (e.g. Ayewah et al. 2008)

- symbolic execution (e.g. Bessey et al. 2010

) Pluggable types

- intentionally-unsound variants of sound analyses
(e.g. Bannerjee et al. 2019, Rahaman et al. 2019,
Emmiet al. 2021)

Verification

Can find all the bugs?

>
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Related work

Usability

Testing

- Proof assistants (e.g.
Coq, Isabelle/HOL,

Pluggable types Lean)

. - Automated theorem
- Dataflow analysis:

- via graph-reachability (Reps et al. 1995, Sagiv et al. 1996; Soot/Heros) provers (e'g' 23’ KeY’
- via abstract interpretation (Cousot & Cousot 1977) ESC/Java, Dafny)
- via types (i.e. pluggable types, dependent types) *

- Typestate (Strom & Yemeni 1986)
- Heap-monotonic typestate (Fahndrich & Leino 2003) . o
- Language-based approaches (e.g. Plaid, Rust) [ Ve rlﬁ Cat Ion
P
C

Can find all the bugs? 65



Related work

4
Testing

Usability
[Pluggable types]

Verification

>

Can find all the bugs?



Related work

Testing

Usa blllty - Checkers for:

2011, Papi et al. 2008)

* GUI effects (Gordon et al. 2013)

* etc.

- Formalization (Foster et al. 1999)
- Checker Framework: (Papi et al. 2008) ’

*Null (Dietl et al. 2011, Papi et al. 2008)
* Inl:mrlljiz\i)ilitlye(Cibalenz et al.gglli,aDietlet al. [ Plugga ble types]

* Regular expressions (Spishak et al. 2012)

* Locking discipline (Ernst et al. 2015)
* Determinism (Mudduluru et al. 2021)

Verification

>

Can find all the bugs?
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Conclusion

e Goal: every developer uses verification
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Conclusion

e Goal: every developer uses verification

Our contributions:

Pluggable types are a powerful and useable kind of verification
Using types in new domains makes devs want to do verification
Cooperating type systems can solve hard problems
Accumulation can often replace typestate
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