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Goal: every developer uses verification 
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A new domain: compliance

● Certificates that a company follows a ruleset
○ PCI DSS for credit card transactions
○ HIPAA for healthcare information
○ FedRAMP for US government cloud vendors
○ SOC for information security vendors
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Developers love this, because it saves work
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Specialized compliance checkers, industry

21Kellogg, Schaef, Tasiran, Ernst. Continuous Compliance. ASE 2020.

Verified 37,315 pkgs

True pos. 173 pkgs

False pos. 1 pkg

Run on 76M NCNB LoC

● Auditors accepted output 
of typecheckers as evidence 
during a real audit

● Checkers integrated into 
build process



Types vs. other approaches

22Kellogg, Schaef, Tasiran, Ernst. Continuous Compliance. ASE 2020.

Recall

Ours

100%

CrySL

CryptoGuard

Precision

Ours
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Harder problem: array indexing

T[] a = …;

int i = …;

... a[i] …

We need to show that: 
● i is an index for a
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Harder problem: array indexing
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Insight: treat array indexing as a 
collection of problems

T[] a = …;

int i = …;

... a[i] …

We need to show that: 
● i is an index for a
● i ≥ 0
● i < a.length

build many analyses 
instead of just one



Cooperating specialized checkers: array indexing

Linear inequalities
i < j

Minimum lengths
a.length > 10

Negative indices
| i | < a.length

Lower bounds
i ≥ 0

Equal lengths
a.length = b.length

Upper bounds
i < a.length

28Kellogg, Dort, Millstein, Ernst. Lightweight Verification of Array Indexing. ISSTA 2018



Summary of results
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Summary of results

30Kellogg, Dort, Millstein, Ernst. Lightweight Verification of Array Indexing. ISSTA 2018

● Found bugs in industrial codebases (Google Guava)
● vs prior verification approaches (KeY, Clousot):

○ more sound in microbenchmarks
○ equally precise on large codebases
○ more scalable - 10 min vs 3 hrs to check 100k LoC
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UserIdentity identity =   
   UserIdentity.builder()                       
         .name(username)                           
         .id(generateRandom(32))
         .build();   
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The builder pattern
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The builder pattern
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build() X
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Key insight:
No loops in this FSM!
(except self loops)

“accumulation analysis”



Accumulation analysis

A typestate analysis whose state representation 
is a monotonically-increasing set.

42Kellogg, Ran, Sridharan, Schaef, Ernst. Verifying Object Construction. ICSE 2020.



Accumulation analysis

A typestate analysis whose state representation
is a monotonically-increasing set.

Advantages:
● Does not require alias analysis for soundness
● Modular

43Kellogg, Ran, Sridharan, Schaef, Ernst. Verifying Object Construction. ICSE 2020.



User study

Task: add a new required field to a builder

Results:
● +50% success rate

● ~50% faster

44Kellogg, Ran, Sridharan, Schaef, Ernst. Verifying Object Construction. ICSE 2020.



try {

   Socket s = new Socket(address, port);

   ...

   s.close();

} catch (IOException e) {

}

45Kellogg, Shadab, Sridharan, Ernst. Lightweight and Modular Resource Leak Verification. ESEC/FSE 2021.

Accumulation for resource leaks
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Missing call to close()

Accumulation for resource leaks

Kellogg, Shadab, Sridharan, Ernst. Lightweight and Modular Resource Leak Verification. ESEC/FSE 2021.



3 stage checker:

1. taint-tracker over-approximates methods that need to be called
2. accumulation under-approximates methods that have been called
3. dataflow analysis compares the two at “going out-of-scope” points 

47

Accumulation for resource leaks

Kellogg, Shadab, Sridharan, Ernst. Lightweight and Modular Resource Leak Verification. ESEC/FSE 2021.



Accumulation for resource leaks: results

For full results, come to our talk on 26 August, 4pm Athens time ;)

48Kellogg, Shadab, Sridharan, Ernst. Lightweight and Modular Resource Leak Verification. ESEC/FSE 2021.
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Recall

RLC

Eclipse

Grapple

100%

Precision

Eclipse

100%

RLC

Grapple

Time

Eclipse

RLC

Grapple

~37 hrs

Kellogg, Shadab, Sridharan, Ernst. Lightweight and Modular Resource Leak Verification. ESEC/FSE 2021.

Accumulation for resource leaks: results



Accumulation: future plans
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Accumulation: future plans

Big question: How much of typestate is accumulation?
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How much of typestate is accumulation?

What we know for sure is accumulation:

● builders (“call A before B”)

● resource leaks (“call C before going out of scope”)

52
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60% of specifications they found in the wild!
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Masked types are an accumulation analysis that 
accumulates fields rather than method calls
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continuous integration (Fowler & Foemmel 2006)

fuzzing (e.g. Zawelski 2014, Padyhe et al. 2019)

oracle generation (e.g. Blasi et al. 2018)
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Unsound static analysis
- heuristic bug-finding (e.g. Ayewah et al. 2008)

- symbolic execution (e.g. Bessey et al. 2010)

- intentionally-unsound variants of sound analyses 

(e.g. Bannerjee et al. 2019, Rahaman et al. 2019, 

Emmi et al. 2021)
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- Dataflow analysis: 
- via graph-reachability (Reps et al. 1995, Sagiv et al. 1996; Soot/Heros)

- via abstract interpretation (Cousot & Cousot 1977)

- via types (i.e. pluggable types, dependent types)

- Typestate (Strom & Yemeni 1986)
- Heap-monotonic typestate (Fähndrich & Leino 2003)

- Language-based approaches (e.g. Plaid, Rust)

- Proof assistants (e.g. 

Coq, Isabelle/HOL, 

Lean)

- Automated theorem 

provers (e.g. Z3, KeY, 

ESC/Java, Dafny)
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- Formalization (Foster et al. 1999)

- Checker Framework: (Papi et al. 2008)

- Checkers for:
    * Nullness (Dietl et al. 2011, Papi et al. 2008)

    * Immutability (Coblenz et al. 2017, Dietl et al. 

       2011, Papi et al. 2008)

    * Regular expressions (Spishak et al. 2012)

    * GUI effects (Gordon et al. 2013)

    * Locking discipline (Ernst et al. 2015)

    * Determinism (Mudduluru et al. 2021)

    * etc.



Conclusion

68

● Goal: every developer uses verification



Conclusion

69

● Goal: every developer uses verification

Our contributions:

● Pluggable types are a powerful and useable kind of verification
● Using types in new domains makes devs want to do verification
● Cooperating type systems can solve hard problems
● Accumulation can often replace typestate


