
https://doi.org/10.1007/s10664-018-9628-3

Syntax, predicates, idioms — what really affects code
complexity?

Shulamyt Ajami1 ·Yonatan Woodbridge2 ·
Dror G. Feitelson1

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract Program comprehension concerns the ability to understand code written by oth-
ers. But not all code is the same. We use an experimental platform fashioned as an online
game-like environment to measure how quickly and accurately 220 professional program-
mers can interpret code snippets with similar functionality but different structures; snippets
that take longer to understand or produce more errors are considered harder. The results
indicate, inter alia, that for loops are significantly harder than ifs, that some but not
all negations make a predicate harder, and that loops counting down are slightly harder
than loops counting up. This demonstrates how the effect of syntactic structures, differ-
ent ways to express predicates, and the use of known idioms can be measured empirically,
and that syntactic structures are not necessarily the most important factor. We also found
that the metrics of time to understanding and errors made are not necessarily equivalent.
Thus loops counting down took slightly longer, but loops with unusual bounds caused many
more errors. By amassing many more empirical results like these it may be possible to
derive better code complexity metrics than we have today, and also to better appreciate their
limitations.

Communicated by: David Lo and Alexander Serebrenik

Dror Feitelson holds the Berthold Badler chair in Computer Science. This research was supported by
the ISRAEL SCIENCE FOUNDATION (grant no. 407/13). This paper is an invited extended version of
a paper from ICPC 2017.

� Dror G. Feitelson
feit@cs.huji.ac.il

Shulamyt Ajami
shulamyt@gmail.com

Yonatan Woodbridge
yonatan.woodbridge@mail.huji.ac.il

1 Department of Computer Science, The Hebrew University, 91904 Jerusalem, Israel

2 Department of Statistics, The Hebrew University, 91905 Jerusalem, Israel

Empir Software Eng (2019) 24:287–328

Published online: 11 June 2018

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-018-9628-3&domain=pdf
http://orcid.org/0000-0002-2733-7709
mailto: feit@cs.huji.ac.il
mailto: shulamyt@gmail.com
mailto: yonatan.woodbridge@mail.huji.ac.il


Keywords Code complexity · Program understanding · Gamification

1 Introduction

Program comprehension is largely about bridging gaps of knowledge (Brooks 1983). Devel-
opers often need to understand code written by others. But doing so is notoriously hard and
time consuming. The attribute of the code that makes it hard to understand is sometimes
called “code complexity”. This is an ill-defined term, and people use it in different ways.
Factors that may influence complexity include length (more code is harder to understand),
syntactical elements (gotos are harder than structured loops), data flow patterns (linear is
simpler), variable names (which should convey meaning), the way the code is laid out (is it
indented for readability?), and more (Dijkstra 1968; Henry and Kafura 1981; Munson and
Khoshgoftaar 1990; Denaro and Pezzè 2002; Buse and Weimer 2008; Butler et al. 2010;
Curtis et al. 2011; Herraiz and Hassan 2011).

Once factors influencing code complexity are identified, one can try to formulate metrics
that quantify the complexity. One of the oldest examples is MCC (McCabe’s Cyclomatic
Complexity), which essentially counts branch points in the code (McCabe 1976). This was
meant mainly as a testing-complexity metric, meaning it provides a lower bound on the
number of tests required to exercise all paths in the code. However, it is often used as a
metric for general conceptual complexity, partly because there are no widely agreed alter-
natives. At the same time, using MCC to measure complexity has met with heated debate
(Shepperd 1988; Weyuker 1988; Gill and Kemerer 1991; Ball and Larus 2000; Jbara and
Feitelson 2014).

MCC gives the same weight to all control structures. But intuitively a while loop
feels more complicated than an if, a case in a switch is less complicated, nested ifs
feel more complicated than a sequence of ifs (Piwowarski 1982), and so on. However,
proposals to give different constructs different weights did not report empirical evidence
supporting the proposed weights (Shao and Wang 2003; Gruhn and Laue 2007). We
wanted to measure how different constructs affect understanding, thereby quantifying their
contribution to complexity.

Following the tradition of “micro-benchmarks” used in performance evaluation, we
started by writing short code snippets that isolate various basic structures, and used them in
controlled experiments to measure their effect. But this led to two problems. First, there are
endless possibilities, which create the danger of confounding factors that will prevent mean-
ingful analysis. Second, based on experience with various code fragments, we felt that some
of the most important factors may not be related to differences between basic constructs, but
rather to the composition of conditionals and to using or violating common programming
idioms.

We therefore made the following decisions. First, we focused on one specific well-
defined family of code snippets: checking whether a number is in any of a set of ranges.
This functionality can be expressed in a wide variety of ways, using different syntactical
constructs and conditionals, thereby enabling meaningful comparisons; at the same time, it
is simple and straightforward and does not require any prior domain knowledge. Second,
we extended the scope to add compound conditional expressions. Third, we included some
specific idioms and their violations that may have an effect on understanding despite being
syntactically similar (e.g. a loop counting up vs. a loop counting down).

Empir Software Eng (2019) 24:287–328288



The following sections present the experimental design in detail, followed by results of
experiments with 220 programmers. They embody the following contributions:

– Development of an experimental platform where subjects participate in an online game
with the objective to correctly interpret code snippets. Measuring the time needed to
interpret snippets and the number of mistakes made provides an operationalization of
how hard each one is.

– Generation of an initial set of snippets that allow comparisons between syntactic and
other differences.

– Empirical quantification of differences between constructs (e.g. for loops are signifi-
cantly harder than ifs), predicates (some but not all negations make predicates slightly
harder), and idioms (loops counting down are slightly harder than loops counting up,
despite being syntactically identical).

– Indication that the metrics of time to understanding and error rate in understanding
may measure different effects: making mistakes may reflect misconceptions rather than
complexity.

– Demonstration of a small learning effect during the experiment as subjects become
more proficient at answering such questions. At the same time a larger effect is due to
experimental subjects experiencing difficulties dropping out.

– Analysis indicating that most demographic variables (such as experience and sex) do
not affect the results.

This paper is an invited extended version of a paper with the same title that appeared in
the 25th International Conference on Program Comprehension (Ajami et al. 2017). The
main additions are in the deeper analysis of the experimental results: The analysis of how
the time to a correct answer and the error rate depend on the serial number of the snippet
in the experiment, demonstrating a small learning effect (Section 7.1); The analysis of the
correlation (or lack thereof) between the time to a correct answer and the error rate for
different snippets (Section 7.4); And the analysis of the possible effect of the demographic
characteristics of the experimental subjects (Section 8). In addition, many details have been
added throughout, and the structure of the paper has been improved to make it easier to read.
As part of this all the code snippets used are displayed as part of the discussion on selecting them.

2 Related Work

Surprisingly, there has been relatively little empirical work on how program structures affect
comprehension. For example, McCabe famously conjectured that the cyclomatic number of
a function’s control flow graph reflects its complexity, but did not put this to the test with
any real programmers (McCabe 1976). He also suggested an extended version where the
components of compound conditionals are enumerated separately, which in a sense antici-
pates one aspect of our work. This was later discussed by Myers, but again with no empirical
grounding, instead saying that “it is hoped that the reader will intuitively arrive at the same
conclusion” (Myers 1977). Over the years there have been some reports that this and related
metrics can be used to predict code quality (Curtis et al. 1979; Munson and Khoshgoftaar
1990; Ohlsson and Alberg 1996; Schneidewind and Hinchey 2009), but also reports that
claimed that any correlations with these metrics are low or nonexistent (Denaro and Pezzè
2002; Feigenspan et al. 2011; Katzmarski and Koschke 2012). In particular, there has been

Empir Software Eng (2019) 24:287–328 289



a debate on the degree to which cyclomatic complexity adds upon the straightforward code
length metric (Herraiz and Hassan 2011; Landman et al. 2014; Gil and Lalouche 2017).
And as noted above, proposals to give different constructs different weights did not report
empirical evidence supporting the proposed weights (Shao and Wang 2003; Gruhn and Laue
2007).

Other studies did compare specific constructs empirically. Mynatt considered how the
use of iteration vs. recursion affects comprehension, as measured by ability to recall pro-
grams (Mynatt 1984). Iselin studied looping constructs and the interplay between writing
positive/negative conditions and whether they evaluate to true or false, in an effort to sub-
stantiate theories of the cognitive processes involved in comprehension (Iselin 1988). We
focus more on how (compound) conditionals are expressed, and on quantifying this effect.

Another structural element of programs that may affect comprehension is successive
repetitions. The idea is that repetitive code is easier to understand, because once one under-
stands the structure of a certain code fragment, this understanding can be leveraged for its
repetitions (Vinju and Godfrey 2012; Jbara and Feitelson 2014; Nunez et al. 2017). At this
stage our experiments consider only basic structures in isolation.

We define programming idioms as commonly used coding constructs, such as the dou-
ble loop used to traverse a 2-D image. There has been little study of the effect of using (or
violating) such basic idioms on program comprehension, and most related work appears to
be at a slightly higher level of abstraction. One of the examples is the work of Soloway and
Ehrlich in the early 1980s (Soloway and Ehrlich 1984), in the context of studying the differ-
ences between experts and novices. They define “programming plans” as “generic program
fragments that represent stereotypic action sequences in programming”, allowing program-
mers to perform “chunking” and to identify standard approaches to problem solving (Rich
1987). One of the findings was that experts know of and exploit “rules of discourse” and
“accepted conventions of programming”. Hansen et al. also show that programs that con-
form to expectations, as opposed to programs that contain misleading elements, are easier
to understand correctly (Hansen et al. 2013).

Other studies have also aimed at theories of cognitive processes (Shneiderman and Mayer
1979; Brooks 1983; Letovsky 1987; von Mayrhauser and Vans 1995; Arunachalam and
Sasso 1996; Rilling and Klemola 2003). For a brief exposition on those specifically related
to programming plans see e.g. Parnin et al. and references therein (Parnin et al. 2017). We
make no claim regarding the internal representations of programs or the cognitive processes
behind them, and in our opinion much more experimental data is needed for such theorizing.
As Hansen et al. also claim, the relationship between code, correctness, and speed is a
complex one, and even “small notational changes can have profound effects” (Hansen et al.
2013).

On the practical level repeated use of code fragments may be seen as a precursor of
design patterns, which were later popularized by the “gang of four” in the context of object-
oriented programming (Gamma et al. 1994). Since then there has been some empirical
research on the actual impact of using patterns, but not very much, and the cumulative
results are not conclusive (Ali and Elish 2013). Our work does not deal with these classic
design patterns; rather, we focus on more elementary idioms such as a simple loop on an
array. Moreover, we study the effect directly on understanding and not on software quality
metrics or maintainability as is often done.

As for the interaction of code comprehension with demographic variables, there has been
significant work comparing code comprehension by experts and novices, oftentimes in the
context of evaluating a certain methodology or tool (Kahney 1983; Adelson and Soloway

Empir Software Eng (2019) 24:287–328290



1985; Bednarik and Tukiainen 2006; Sonnentag et al. 2006; Abrahão et al. 2013). Interest-
ingly, the effect seems to be non-linear: differences were found mainly between novices
and those with some training, and less so between professionals with different degrees of
experience (Sackman et al. 1968; Sonnentag 1998; Bergersen and Gustafsson 2011). These
results concur with the “laws of practice”, which state that initially, when one lacks expe-
rience, every additional bit of experience has an important effect, but when one is already
experienced, the marginal benefit from additional experience is much reduced (Newell and
Rosenbloom 1981; Heathcote et al. 2000). Other work has shown that sex may lead to
differences in the approach to understanding code (Sharafi et al. 2012).

On the methodological front, an important issue is how to operationalize the mea-
surement of code complexity. We follow many previous studies in requiring experimental
subjects to answer questions about code snippets. In particular, we require subjects to
deduce what the code will print as its output. To further the experimental subjects’ engage-
ment with the experiment we use gamification. This is motivated in part by an analogy to
notions like considering programming as a sporting event (Bishop et al. 2015; Kirkpatrick
2016).

Previous work on using gamification to enhance motivation and engagement has focused
mainly on education, and especially online learning platforms (Hamari et al. 2016). To
the best of our knowledge, the only prior use of gamification in the context of empirical
experiments is that by Yoder and Belmonte (2010).

3 Research Questions

The study described actually has two main parts. The goal of the first and major part is
to measure how different syntactic and other factors influence code complexity and com-
prehension. The second part concerns the interaction of demographic explanatory variables
with the code-related explanatory variables. To concretize the main goal, we focused on the
following specific research questions. Each of these questions identifies a distinct potential
code feature and asks about its effect on code complexity and comprehension:

1. What is the effect of control structures on code complexity? More specifically, is the
complexity of an if the same as that of a for?

2. What is the effect of different formulations of conditionals on code complexity? This
includes

(a) What is the effect of the size (number of predicates) of a logical expression?
(b) What is the relative complexity of expressing a multi-part decision using a single

compound logical expression as opposed to a sequence of elementary ones?
(c) What is the relative complexity of a “flat” formulation and a nested one?
(d) What is the effect of using negation?

3. How does the use (or violation) of programming idioms affect the complexity of the
resulting code?

The metrics used to investigate these questions are time and correctness that are mea-
sured in a controlled experiment, in which different code snippets with different constructs
are presented to programmers. The experimental task is to identify the output printed
by these snippets. A longer time or more errors are assumed to reflect difficulties in
understanding the code, and hence serve to identify more complex (harder) code.

Empir Software Eng (2019) 24:287–328 291



It should be noted, however, that it is not necessarily self-evident that time and correct-
ness measure the same aspect of code complexity. Looking at them separately may therefore
lead to interesting observations. This leads to another research question:

4. What if any is the correlation between the metrics of time to correct answer and error
rate?

As noted our main goal is to characterize the elements of code complexity. But code
complexity may be in the eye of the beholder. Therefore a secondary goal was to study
the interaction of code complexity and demographic variables. In particular, we wanted to
check the following research questions:

5. Do experimental subjects experience a learning effect during the experiment?
6. What if any is the effect of demographic variables on the performance of experimental

subjects faced with code comprehension tasks, and specifically

(a) What is the effect of age?
(b) What is the effect of sex?
(c) What is the effect of education (having an academic degree)?
(d) What is the effect of experience?
(e) Does performance correlate with self-assessment?

The metrics used were the same as those used above, namely the time and correctness
of answering about the different code snippets. But in analyzing the collected data, we
compared the performance of different groups of experimental subjects rather than the per-
formance on different groups of snippets. Likewise, to investigate the learning effect, we
compare performance on questions based on their serial number rather than based on their
content.

4 Experimental Design

Our experiment is based on showing experimental subjects short code snippets which they
need to interpret. A major issue is what code snippets to use.

4.1 Considerations for Code Snippet Selection

Since the number of possible code snippets is endless, they need to be chosen carefully
taking several considerations into account.

First and obviously, the code snippets need to answer the research questions. We need
to include snippets using different constructs, simple or compound conditions, flat/nested
structure, with or without negation, with natural scaling to different sizes, and using or
violating idioms.

Second, differences in difficulty need to come only from the code’s structure. A major
gap that may exist between whoever wrote some code and whoever is trying to understand
it concerns domain knowledge. For example, if a program embodies certain business rules,
a reader who does not know these rules will find it difficult to understand. This is unrelated
to the programming. If we want to study the difficulties in understanding code, we need
to factor out any domain knowledge and focus on the code elements. Therefore, the code

Empir Software Eng (2019) 24:287–328292



snippets need to have some well-known common ground, so that the variation between them
will not come from their content but from how they express it.

Third, will the code snippets be synthetic or real? Obviously it is better to base an exper-
iment on snippets taken from a real program in the interest of external validity. But it may
be hard to find suitable code snippets that have common ground as we desire, leading to
noise that might cloak the potentially subtle effect we want to measure.

Finally, a deeper issue is the major question of what exactly we mean by “understand-
ing the code”, and how code snippets can be used to assess it at all. We make a distinction
between interpretation and comprehension. Interpretation — as in an interpreter which
executes code one instruction at a time — is being able to trace the execution of the
code and find its output. It requires an understanding of the instructions and the mem-
ory model, but does not necessarily reflect a high-level understanding of what the program
does. Comprehension, in contradistinction, means being able to state the objective of the
code. Such understanding can be achieved in various ways. One is a top-down process in
which hypotheses about the program are refined as more details are studied. Alternatively
a bottom-up process can be used, in which details are grouped together to achieve a more
general understanding.

For example, consider the following code snippet:

sum = 0;
for (i=1; i< =100; i++)

sum += i;

one can immediately see that it calculates the sum of all numbers from 1 to 100 — what
we would classify as comprehension. And if asked about the outcome, we can calculate
that it is 5050 without actually running all 100 iterations in our head. But in other cases the
functionality is not so transparent, and we do need to mentally (or ever physically) execute
the code to find its outcome. Thus it might be claimed that resorting to interpretation is
a sign of complexity, or at least a lack of recognizing what is going on at a glance (Rich
1987). However, different people may be able to comprehend different snippets easily, so
the distinction is probably not universal.

We therefore decided not to try to distinguish between different levels of understand-
ing at this stage. Our experiment requires finding the output printed by code snippets, and
subjects are free to use whatever technique they wish to do so, whether mechanical inter-
pretation or high-level comprehension. Investigating the distinction between interpretation
and comprehension further is left to future work.

4.2 Choosing a Common Framework

Taken together, the considerations listed above led to the decision to use a set of synthetic
code snippets written especially for the experiments, with common functionality, that can
each be employed in the context of multiple research questions. The chosen functionality is
to test whether a number is in a collection of non-overlapping ranges, as this is a generic
and simple operation that can serve as a prototype of more complicated decisions. Each
range is defined by a conjunction of two simple Boolean atoms with “greater than” (>) and
“smaller than” (<) comparisons, e.g. x>0 && x<10. We assume that understanding such
atoms is easy, and specifically do not test for edge cases to avoid possible confusion. The
same atoms are used in all the snippets, so the variation is caused only by the syntactic ways
of using and combining them.

Empir Software Eng (2019) 24:287–328 293



In this framework all the snippets have common ground from a very basic domain, and
they are easy to scale (add more ranges). But most importantly, this functionality can be
expressed in many different ways. For example, consider the question of verifying whether
x is in any of three successive ranges (0,10), (20,30), and (40,50). As shown in the top
of Fig. 1 this can be expressed as a disjunction of predicates defining the three ranges.
Alternatively, we can store the pairs of endpoints defining the ranges in an array, and use
a loop that checks these pairs one at a time. A different approach, shown in the bottom of
Fig. 1, is to use one predicate to select the whole range from 0 to 50, and conjugate this with
negations of the gaps from 10 to 20 and from 30 to 40.

The code snippets used to express the different approaches include print statements that
identify the path in the code. For example, the simple disjunction will be

if (x> 0 && x< 10 || x> 20 && x< 30 || x> 40 && x< 50)
print(1); /*in*/

}else {
print(2); /*out*/

}

{

Note that this is done using single-digit numbers rather than strings like “in” and “out” to
avoid giving hints regarding the functionality. The outcome of each snippet is one such digit
being printed, and this is what the subjects are asked to identify. In the real experiments the
“in” and “out” comments are of course excluded.

4.3 Creating the Pool of Snippets

Given the common framework described above, we need to create specific code snippets to
use in experiments and answer the different research questions.

4.3.1 Version a: Simple Disjunction

We start with the simplest and most straightforward version, which we call version a. This
version uses the simple disjunction introduced above. The first variant of this version does
this in a single compound logic expression, which for 3 ranges is as follows:

al: (x> 0 && x< 10 || x> 20 && x< 30 || x> 40 && x< 50)

This snippet is referred to in the sequel as al, which stands for version “a” variant “logic”.

0 10 20 30 40 50

0 10 20 30 40 50

Fig. 1 example of different ways to express three ranges

Empir Software Eng (2019) 24:287–328294



The second variant achieves the same effect using a structure of nested if expressions.
In order to be able to compare snippets consistently, we define precise conversion rules for
breaking compound predicates. Conjunction (&&) in a compound expression converts to an
additional if nested in the then block:

Disjunction (||) converts to an if nested in the else block:

Note, however, that this cannot be completely automatic, as the ordering of the atoms
needs to be decided so as to preserve correctness. Brackets are added only if necessary,
meaning that the expression outcome will be different without brackets.

Using these conversion rules, snippet al can be reshaped using nested ifs with simple
predicates. This leads to snippet as (version “a”, variant “structure”):

Note that while these two variants are equivalent in terms of checking whether the param-
eter x is in any of the ranges (0, 10), (20, 30), or (40, 50), they differ in many respects:

Empir Software Eng (2019) 24:287–328 295



snippet as is much longer and provides more detailed information on the code path followed,
while snippet al is short but employs a much more complex logical expression. These issues
are obvious threats to validity and are discussed in Section 9. For now it suffices to say that
they are unavoidable compromises needed to express the selected functionality in diverse
ways.

Note that both snippet al and snippet as can be scaled with different numbers of ranges.
In our experiments we use 2, 3, or 4 ranges, for RQ 2a. The same applies for all the snippets
described in the following subsections.

The next step is to create snippets based on different versions of code structure, with
differences in nesting. These reflect RQ 2c. Just like version a, these additional versions can
also be expressed in two main ways: using a single if/else statement with a compound
logical expression (like snippet al), or using control flow with multiple if/elses with a
single condition in each one (like snippet as). This reflects RQ 2b.

4.3.2 Version b: Two-Level

The first alternative to version a is a two-level scheme, first testing whether a number is between
a lower and an upper bound, and then whether it is in some range in between. This is called version
b. The logic-expression variant is as follows, using 4 ranges to emphasize the structure:

bl:

(x> 0 && x< 70 && (x< 10 || (x> 20 && (x< 30 || (x> 40 && (x< 50
|| x> 60))))))

This logical expression can be broken into a structure of nested ifs using the conversion
rules presented above. This leads to a structural variant of this snippet, called bs.

Note that the logic expression treats the range bounds in order, where each one is within
the context of the previous one. This leads to very deep nesting. We therefore also defined
an alternative two-level scheme in which the second level is flat. This variant is called bl1.

bl1: (x> 0 && x< 70 && (x< 10 || x> 20 && x< 30 || x> 40 && x< 50||
x> 60))

4.3.3 Version c: Recursive Structure

The second alternate version has a recursive structure. It first divides the whole range into
two, and tests whether the number is in the first part or the second part. It then continues
recursively inside the selected part, drilling down to the individual ranges. This leads to a
more balanced nested structure, which will be called version c. The logic-expression variant
is as follows, again using 4 ranges:

cl: (x> 40 && (x< 50 || x> 60 && x< 70) || x< 30 && (x> 20 || x< 10
&& x> 0))

Just like the previous two versions, this logical expression too can be broken into a structure
of nested ifs using the conversion rules presented above. This leads to a structural variant
of this snippet, called cs.

Empir Software Eng (2019) 24:287–328296



4.3.4 Using Negation

The next step was to express the first variant (al above) with negation, in three different
variants that will be denoted an, an1, and an2. This reflects RQ 2d. The logical expressions
used, for 3 ranges, are as follows:

an: (x> 0 && x< 50 && !(x> 10 && x< 20) && !(x> 30 && x< 40))

an1: (!(x< 0 || (x> 10 && x< 20) || (x> 30 && x< 40) || x> 50))

an2: (!x< 0 && !(x> 10 && x< 20) && !(x> 30 && x< 40) && !(x> 50))

The first (snippet an) implements the construct shown at the bottom of Fig. 1: it includes the
whole range from the lowest bound to the highest bound, and negates the gaps. The second
(snippet an1) is a flat version, and negates a disjunction of both the gaps and the rays below
the bottom bound and above the top bound. The third (snippet an2) is obtained by applying
De Morgan’s law to an1, negating each part individually and turning the disjunctions into
conjunctions.

4.3.5 Using Loops

A harder problem is to accommodate different control structures. It initially seems that if is
intrinsically different from for: the first denotes a branch, the second a loop. But when we
want to check inclusion in multiple ranges, this can be done either by ifs as shown above,
or by a loop that traverses all the ranges and checks them one at a time. This observation
facilitated creating snippets using a for loop, used for RQ 1.

In fact we have two versions of snippets using for loops. The first is based on setting
the ends of the ranges to be multiples of 10, say 0 to 10, 20 to 30, and so on. In this case
we can express them by simple arithmetic manipulations of the for loop iteration variable.
This variant if called f*:

Alternatively, it is possible to store the ranges’ end points in an array, and loop over this
array to handle the ranges one after the other. This variant will be called f[ ].

Note that these are both reasonable uses of for loops.

4.3.6 Loop Idioms and Their Violation

Finally, we need snippets which reflect idioms and their violation, for RQ 3. We decided to
use idioms of for loops. These are denoted lp0 to lp6, and included the following:

– The idiomatic for loop for (i=0; i<n; i++).
– Loops with different end conditions, including variants starting from 1 and/or using <=

as the condition. An example is for (i=1; i<n; i++), which does not cover the
full conventional range.

Empir Software Eng (2019) 24:287–328 297



Table 1 Variations between
code snippets that compare for
loops

version init cmp end step

lp0 0 < len ++

lp1 0 <= len-1 ++

lp2 0 < len-1 ++

lp3 1 < len ++

lp4 1 < len-1 ++

lp5 len-1 >= 0 – –

lp6 len-1 > 0 – –

– Comparing a loop counting up with the same loop counting down, e.g. for (i=n-1;
i>=0; i--).

The precise definitions of the seven snippets we use are given in Table 1.

4.4 Generating a Test Plan

All told we have 40 code snippets: 12 each with 3 and 4 ranges, only 9 with 2 ranges
(because some cases become identical for only 2 ranges, e.g. al and cl), and 7 special loop
cases. A summary of these snippets, the notation used to identify them, and their relationship
to research questions is given in Table 2. In the pilot study we found that this is too much
for a single subject to perform, not because of the time investment (many snippets take only
10–20 seconds to solve) but because they are repetitive causing reduced focus and a learning
effect. So we need to select a subset for each subject.

One possible course of action is to just select around 12 snippets at random for each
subject. But (as explained below) this confounds differences due to experimental treat-
ments with individual differences between the subjects, and reduces experimental power.
The alternative is to assign pairs of snippets that we want to compare to the same subjects.
For example, snippet al (simple logic expression) can be compared with as (an equivalent
structure of ifs) in the context of RQ 2b. It can also be compared with snippets an, an1,
and an2 (alternative expressions using negation) to answer RQ 2d, and with snippets bl and
cl (different nesting structure) for RQ 2c. If we give such sets of snippets to the same sub-
jects, we can use within-subject comparisons and hopefully reduce variance. The full graph
showing all pairs of comparable snippets (except those relating to size) is given in Fig. 2.

Based on the above, the selection of snippets to present to a subject is done as follows.

Table 2 Code snippets used for
each research question RQ description snippet comparisons

1 if vs. for as–cs–f*–f[ ], f*–f[ ]

2a expression size more or fewer ranges

2b compound vs. structure as–al, bs–bl, cs–cl

2c flat vs. nesting as–bs–cs, al–bl–cl

2d negation al–an–an1–an2

3 loop idioms lp0–lp1–...–lp5–lp6

Empir Software Eng (2019) 24:287–328298



bl

f[]

f*

if−for

logic−
structure

cs

as al

bs

cl

bl1

nest
flat−

negation

an1

an

an2

Fig. 2 Code snippet comparisons in relation to research questions

– We formed three partly overlapping subsets based on the research questions: {as, cs, f*,
f[ ]}, {as, al, bs, bl, bl1, cs, cl}, and {al, an, an1, an2}. These facilitate the collection of
data for within-subject comparisons. For each subject we pick one of these three groups
at random.

– The snippets in the above group are used in their 3-range version. In addition we select
two of them at random and add their 2-range and 4-range versions (if they exist — not
all snippets have a meaningful 2-range version).

– Finally, we add three special idiom snippets drawn randomly.

The selected snippets are presented in a random order to avoid confounding with any learn-
ing effects. The total number of snippets presented to each subject is between 11 and
15.

5 Experimental Platform

Given a well defined pool of snippets, we need to design the experimental platform to
present them to subjects.

5.1 Considerations and Implementation Principles

Our metrics — from which we deduce the effect of syntactic factors — are the time and
accuracy with which subjects interpret the code. But this may be a subtle effect. The snippets
are at a basic level and very short. So we need high accuracy in measurement and many
samples, meaning many subjects.

We also need to motivate the subjects to do their best in terms of both time and accu-
racy. This typically involves a tradeoff: higher accuracy requires more time, so we don’t
want subjects to spend much time rechecking their work. Moreover, the subjects won’t be
under our control, and monetary compensation will probably not work to get experienced
professionals to participate in such a short experiment. So how can we motivate the subjects?

Our solution to these problems comes in two levels:

Empir Software Eng (2019) 24:287–328 299



Fig. 3 Introduction page of the experiment

– Technological: To reach many subjects and achieve accurate measurements, we imple-
ment a website for the experiment. Participation is then easy (send a link, no installation
needed in the client, cross platform so any OS with a browser can run it).

– Methodological: To motivate the subjects we design the website based on some gam-
ification principles. Huotari and Hamari define gamification by the user experience,
which should be fun and challenging (Huotari and Hamari 2012). Deterding et al. say
that gamification is reflected in the system implementation, by including game elements
like graphics, an avatar, a timer, a progress bar, feedback, etc. (Deterding et al. 2011).
We will show how we implement gamification according to both these definitions.

Gamification is generally defined as a form of service packaging where a core service
is enhanced by a rules-based service system that provides feedback and interaction mech-
anisms to the user with an aim to facilitate and support the user’s overall value creation.
One possible interpretation is to emphasize certain elements the system should include. But
an alternative interpretation is to highlight the user experience. We favor the latter, as the
user experience can be expected to more directly affect motivation, and note that our users
indeed experienced the experiments as a game. This is in line with the notion that motivation
is largely intrinsic, and that interest and a sense of fun are better motivators than monetary
reward (Pink 2009).

Empir Software Eng (2019) 24:287–328300



5.2 The Platform

We present the system by describing its flow. More details and screenshots are provided
with the experimental materials of this paper.

1. When a subject visits the experiment website, the landing page is a welcome screen with
an explanation of how the experiment will be conducted. It includes statements that the
topic is code comprehension, that we are evaluating the code and not the participants,
and that they may retire before finishing if they wish. We add gamification elements like
a cartoon of a programmer in action that will act as an avatar, so the subject can identify
with him through the experiment. We also use a stylized slogan (“Get the code”, see
Fig. 3) to create a game context, and label the ‘next’ button with ‘Got you!’ in order to
create an enjoyable atmosphere. At this point, the server chooses a test plan randomly
according to the procedure described earlier.

2. The next screen is a demographic questionnaire with details on education and experi-
ence. None of the fields are mandatory. Notice that choosing a test plan does not depend
on experience or any other demographic information of the user.

3. Then an example screen is displayed, showing how the experimental screen looks and
pointing out the function of the different parts.

4. Now the actual experiment starts. The main screen is shown in Fig. 4. A code snippet
is presented in the white window to the left. If the snippet is too long, scrollbars are
automatically added. The subject should write the snippet’s output in the black window
to the right. Additional important elements in this screen include:

Fig. 4 Screenshot of gamified experimental platform

Empir Software Eng (2019) 24:287–328 301



– The main screen is decorated as an office from the perspective of a programmer.
This graphic is a gamification element that creates atmosphere and context.

– A timer counting down to 0. The timer provides a constant reminder to answer
as fast as possible. This is a known gamification element that adds challenge and
motivation. In most of the questions the clock counts back 60 seconds. For ques-
tions where the pilot indicated subjects had trouble answering within a minute we
gave 90 seconds.

– A progress bar, showing the place in the sequence of questions. This is also a
gamification element that keeps subject motivated by keeping them aware of their
progress.

– Two buttons at the bottom of the reply screen, labeled “I think I made it” and
“skip”. The first is used if the subject believes he managed to solve the challenge.
The second allows him to skip the question; we provide this option to reduce the
motivation to guess.

When the subject clicks either of these buttons a small popup appears, showing
the correct answer and the user’s answer, and giving a short compliment if the
subject got it right (“Wow”, “Nice :)”, “Good!”). Such feedback is a gamification
element that on the one hand motivates the user, and on the other hand helps to
do better next time by learning from mistakes. The popup also contains a button
labeled “let’s continue!” to enable the subject to move on. This allows each subject
to advance at his own pace. In particular, subjects that take a part in the experiment
remotely may be disturbed and may not do it continuously.

Every time a user completes a question we save his answer and the time it took him
asynchronously to the server. Thus, if subjects decide to quit the experiment in the
middle, we can still use the results for those snippets they did do. In addition, the correct
answer to the question is not loaded together with the question, but only after the answer
is submitted, so subjects cannot peek using the browser console.

5. After completing the experiment a goodbye screen with a thank-you message and a
summary of the results is shown. We also added a reminder that the scores are not
comparable, as each subject gets different snippets and some are harder than others.
This was because we noticed in the pilot that a competitive atmosphere was created,
and some of the subjects who achieved low results were disappointed.

The infrastructure used to run the experiment is as follows. We use DigitalOcean for
cloud server. We set up a server with Ubuntu 16.04.3 x64 as an operating system, and install
(or verify that we have) the following packages:

– Node.js - a JavaScript runtime
– npm - package manager for JavaScript
– pm2 - production process manager for Node.js
– git - distributed version control system
– PostgreSQL - database

The backend is written in JavaScript using Express which is a Node.js web application
framework. In the client we used mainly a library named React which is a JavaScript library
for building user interfaces. All the source code is available in GitHub so you can easily
repeat the experiment or reuse this tool for other experiments. A detailed “how-to” with
all the steps needed to set up the environment and run an experiment is included in the
experimental materials.

Empir Software Eng (2019) 24:287–328302



6 Experiment Execution

The experiment collected results of 220 subjects using the gamified platform. These results
were used to answer research questions 1 through 6, concerning code complexity and the
variables affecting it.

6.1 Subjects

Experimental subjects were recruited using a combination of “convenience sampling”
and “snowball sampling”. These are non-probabilistic sampling techniques, where exper-
imenters recruit subjects from among their acquaintances, and the initial subjects help to
recruit additional subjects. Specifically, we started with colleagues of the first author work-
ing at the same multinational software company, and then continuing via word of mouth to
other departments and companies. Note that all the subjects were professional developers
from the hi-tech industry. Most were from Israel, but some came from locations of the same
companies in India and the UK. Sending an email with a deadline (“we need the results of
this experiment by Tuesday”) led to 180 responses within 3 days, after a previous request
without a deadline yielded only 40 in more than a week.

The main results presented here are based on 222 subjects who participated through the
Internet during June to August 2016. (In addition there were about 30 in the pilot and 25 who
were observed personally.) Two of the subjects did not submit any answers, so the results
are actually from only 220 participants. Ten of these retired after getting a single question
wrong, but 158 continued till the end. The average number of snippets done was 10.24.

In terms of demographics, 118 of the subjects were male and 102 female. The average
age was 28.9 (range of 21–56). 151 of them had an academic degree: 124 BSc, 17 MSc, and
10 PhD. Levels of experience ranged from 0 to 19 years, with an average of 5.6 years.

6.2 Variables

The most important independent variable is obviously the code snippets. But there are also
other independent variables that may cause confounding effects. These include the demo-
graphic variables (level of experience, level of education, sex, etc.). Another is the order
that the snippets are presented, as the common framework behind the snippets may lead to
learning effects. The effect of these variables is mitigated by randomization.

The main dependent variables are correctness and time. Code snippets that are more
complex are expected to require more time and lead to more mistakes. Time is measured
from displaying the code until the subject presses the button to indicate he is done. In our
analysis we focus exclusively on the time for correct answers since incorrect answers may
reflect misunderstandings, or guesses, or giving up. Another dependent variable is the button
the subject chose to click: either “I think I made it” or “skip”. However, skip was used only
27 times in total, out of 2326 recorded answers, so its effect is negligible.

6.3 Statistical Methodology

6.3.1 Within Subject Design

A major issue in software engineering empirical research is individual differences between
experimental subjects. It is commonly thought that such differences can reach a factor of

Empir Software Eng (2019) 24:287–328 303



10 or more (Sackman et al. 1968; Curtis 1981; Klerer 1984; Prechelt 1999). This causes
comparisons of results obtained from different experimental subjects to suffer from exces-
sive variance. It confounds differences due to experimental treatments with individual
differences between the subjects, and reduces experimental power.

A possible solution to this problem is to use within-subject comparisons and paired sam-
ples. Thus, when we want to compare performance on snippet s with performance on snippet
t, we measure how the same subjects perform on both. We then analyze the within-subject
differences rather than the raw results, as described next. This is supposed to factor out indi-
vidual differences to a large degree. Our assignment of snippets to subjects as described
above facilitates this design.

6.3.2 Statistical Approach for Comparing Times for Answering Snippets

We wish to compare the times to reach a correct answer on pairs of related snippets, in the
context of the research questions. We denote Xi,j = 1 if subject i’s answer to code snippet
j is correct, and Xi,j = 0 if wrong. Moreover, we define Yi,j ∈ R+ to be the time to reach
a correct answer, with the same indexes. The matrices Xi,j and Yi,j contain many missing
values, since subjects are not tested on all snippets.

Suppose we have two vectors of code snippets, such that the differences between them
reflect one of the research questions (e.g. the snippets in one use negation and those in the
other don’t). We denote them by A = (a1, .., an) and B = (b1, .., bn). The terms ak and
bk are snippets’ identifiers. The snippets are ordered so that ak and bk are considered a pair
(Fig. 2). Note that the members of each vector are not necessarily all different, as we may
want to compare the same snippet against several others. Let Pk denote the index set of all
subjects who answered correctly both snippets of the pair ak and bk .

We first analyze the time difference of correct answers to A and B. Denote by tj the
time distribution of a correct answer to code snippet j . Our null hypothesis is that tak

= tbk

for every k = 1, ..., n. In other words, the correct answer distributions of pairs are identical.
We apply a non-parametric permutation test, where the test statistic is defined as follows.
Let Dk = (Yi,ak

− Yi,bk
) for i ∈ Pk be the time difference vector, for the k’th snippets pair,

of all subjects in Pk . Then,

Tk = √|Pk| Dk

SD(Dk)
, (1)

where SD stands for standard deviation. The test statistic T is the mean of all Tk’s. In this
way we account for the difference within each set. If |A| = |B| = 1 (we’re comparing just
one pair of snippets) T becomes the ordinary standardized mean difference.

Because the null hypothesis states identical time distribution of snippet pairs, exchang-
ing observations within pairs does not change T ’s distribution. To obtain T ’s empirical
distribution, we calculate 2 × 104 values of T corresponding to random selections of what
observations to flip. To test if tak

− tbk
> 0 on average for k = 1, .., n (standardized average

as above), we calculate the upper tail region of T . To test if tak
− tbk

�= 0, using the fact that
T is symmetric around zero under the null hypothesis, we consider the distribution of the
absolute value statistic, and calculate the upper region of |T |.

We also perform a Wilcoxon signed rank test. Denote by Ri,k the rank of |Yi,ak
− Yi,bk

|.
We compute the value R

′
i,k = sgn(Yi,ak

−Yi,bk
)Ri,k , and then calculate Tk as in (1), using all

R
′
i,k that belong to the snippet pair (ak, bk). Finally, we obtain the mean of Tk , k = 1, ..., n.

Calculation of significance was done as previously, with 2 × 104 random permutations.

Empir Software Eng (2019) 24:287–328304



6.3.3 Statistical Approach for Comparing Error Rates on Snippets

The above analyses ignore incorrect results. To analyze the error rates we use the Rasch
model (Agresti and Kateri 2011; Bergersen et al. 2014). Denote the ability of subject i

by θi , and the difficulty of snippet j by βj . The essence of the model is to express the
probability of a correct answer as a logistic function of the difference between the ability
and the difficulty:

Pr(Xi,j = 1) = eθi−βj

1 + eθi−βj
. (2)

As the difficulty parameter βj increases, the probability of the event {Xi,j = 1} decreases.
Note that the model is not identifiable, since adding a constant c to θi and βj does not
change expression (2). We therefore add a restriction that the sum of all estimated βs be
0. To estimate the βs we use the conditional maximum likelihood (CML) approach, which
conditions on the number of correct answers of each subject as a sufficient statistic for θi .

To compare difficulty between groups A and B, we consider the contrast statistic

C(A,B) = 1

|A|
∑

j∈A
β̂j − 1

|B|
∑

j∈B
β̂j . (3)

We can calculate the variance given the covariance matrix � of β̂. In order to obtain the
p-value, we assume normality of C(A,B)√

Var(C)
, since the number of degrees of freedom is large.

All this procedure was done using the eRm package (Mair and Hatzinger 2007).

6.3.4 Statistical Approach for Demographic Variables

Our goal here is to test whether a difference exists in the mean time of correct solution
between two partitions of the subjects, e.g. between sexes. For that purpose, we consider
each code snippet separately. Thus for code snippet j we have two sets of results: Ym,j and
Yw,j , representing the times required by all male (and, respectively, female) subjects who
succeeded to correctly solve the j th code snippet. Note that the sets may be of different
sizes.

Denote by Ym,j and Yw,j the mean solution time of snippet j , for men and women,
respectively. We then test N hypotheses on difference between means, namely:

H0 : Ym,j = Yw,j

H1 : Ym,j �= Yw,j

Where N is the number of snippets. For this it is natural to consider the well known Welch’s
t-test of unequal variances (Welch 1938). In case the data is not normally distributed, we
apply the test only if 20 or more observations are available, in which case we can assume
normality of the mean (Lumley et al. 2002). The t-test statistic for the j th snippet is given
in the following formula:

Tj = Ym,j − Yw,j√
Var(Ym,j )

|Ym,j | + Var(Yw,j )

|Yw,j |
, (4)

Empir Software Eng (2019) 24:287–328 305



where Var(Y·,j ) is the unbiased sample variance: denoting k = |Y·,j |, we have Var(Y·,j ) =
1

k−1

k∑

i=1
(Yi,j − Y·,j )2 for Yi,j ∈ Y·,j .

Using the above statistic, we again employ a permutation test. Specifically, for each
code snippet j we consider the union set Ym,j ∪ Yw,j of all observations from both sexes.
In each trial, we randomly split the set into two subsets, in a manner that preserves the
proportion

|Ym,j |
|Yw,j | , and assign each subset to one “sex”. We then compute (4) for the permuted

data. Applying 104 such trials to each code snippet, we obtain the empirical probability
density function (pdf) of the t-test. Note that under the null hypothesis, the means should not
differ. We then obtain the p-value, by computing the area under the empirical pdf, where the
domain values are larger than the non-permuted data Welch’s statistic (4), in absolute value.
We also compare our result with the p-value computed by approximating the Welch statistic
distribution to the T distribution, with degrees of freedom formula given in Welch (1938).

6.3.5 Linear Model

The above analyses are intended to verify only whether a difference exists between the
means of two sets of results. An alternative approach is to fit a linear model that estimates the
effect (if any) of each factor. We consider the following mixed effect linear model (Myers
et al. 2010), where a logarithmic transformation is applied on the dependent variable of
time, as measured in milliseconds. A log model is preferred to improve the fit to required
statistical assumptions, such as homoskedasticity (homogeneity of variance) and normality.

In this model, the intercept μ can be interpreted as the log of the average time it takes a
male, under age 30, with four or less years of experience, of self-assessment lesser than 4,
with no academic degree, to answer a snippet correctly.

The variable ui relates to subject i, and depends linearly on demographic variables, as
well as a random variable ζi . We use indicator variables for the demographic factors, with
the following coefficients:

– β1 effect when the subject is female.
– β2 effect when the subject is older than 29 years.
– β3 effect when the subject has more than 4 years of professional experience.
– β4 effect when the subject self assessment is greater than 3, in a scale of 1–5.
– β5 effect when the subject has an academic degree1.

Since the dependent variable is the log transformation of time, each coefficient indicates the
change of answer time in percents. The threshold values were selected based on observing
the distributions of the respective variables. The criteria used were that the threshold should
be near the median, and that if the histogram has a bimodal (or multi-modal) structure it
should be between modes. Additional random variables ηj and εi,j correspond to question
j (snippet) and independent random noise of answer time, respectively.

1Subjects who did not answer the academic degree questions were assigned to the group of no degree.

Empir Software Eng (2019) 24:287–328306



7 Results for Complexity Effects

7.1 Learning Effects

Well-known threats to the validity of experiments involving a sequence of questions or tasks
are learning effects and fatigue. Learning means that subjects become better at answer-
ing questions and performing tasks as they gain experience with the experiment. Fatigue
means that they become tired with the experiment, leading to careless answers or guesses.
Assessing whether such effects exist in our experiment was RQ 5.

To check for such effects we tabulated the time to correct answers as a function of the
serial number of the question, regardless of what snippet the question was about. Thus we
collected the times for all cases in which any snippet was the first to be asked about, for
all cases where it was the second, and so forth. The results are shown in Fig. 5. There is
an unmistakable downward trend, indicating that some effect is at play. A linear regression
analysis indicates that the time to correct answer is reduced by 0.75 seconds on average with
each additional question. The correlation coefficient between question serial number and
time to correct answer is ρ = −0.899, leading to a highly significant p-value of < 0.00001.
Note, however, that in reality the reduction in time is not the same for all questions. The
biggest reduction in time to correct answer occurs in the first two questions. This probably
reflects the time it takes experimental subjects to become acquainted with the experimental
environment. In subsequent questions the difference is smaller, but the downward trend
continues as subjects become more proficient at answering this type of questions. If we
perform the regression analysis on only questions 3–15, the result is a reduction of 0.544
seconds with each additional question, and the correlation coefficient indicates a higher
correlation, reaching ρ = −0.964.

question serial number
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

tim
e 

to
 c

or
re

ct
 a

ns
w

er
 [s

]

0

10

20

30

40

50

60

N=140 N=142 N=147 N=144 N=148 N=135 N=148 N=134 N=136 N=141 N=135 N=47 N=50 N=47 N=12

Fig. 5 Distributions of time to correct answer for each question in the experiment. Each boxplot displays
the 5th, 25th, 50th, 75th, and 95th percentiles. The line connects the average times

Empir Software Eng (2019) 24:287–328 307



However, there are actually three distinct effects that may affect the observed performance:

– Subjects learn how to answer the presented questions, as outlined above, leading to
improved performance with time.

– Subjects experience fatigue but hang on, leading to reduced performance with time.
– Subjects experience difficulties or become bored, leading to dropping out before the

end of the experiment.

To try and sort this out we tabulated the error rate as a function of the serial number of the
questions: what fraction of the answers to the first question were wrong, what fraction of
the answers to the second question were wrong, and so on. This was repeated twice, first
for all subjects, and again using data only from subjects who gave answers to 11 questions
or more (effectively identifying subjects who continued to the end).

The results are shown in Fig. 6. When all subjects are considered an obvious downward
trend is observed, and a linear regression indicates that the error rate is reduced by 0.0076
with each additional question. The correlation coefficient is ρ = −0.7651, and the p-value
0.001, so this is statistically significant. However, when subjects who dropped out before
the end are excluded, this trend is much weaker. The error rate is reduced by 0.0034 on
average with each additional question, and the correlation coefficient is only ρ = −0.442,
leading to a p-value of 0.099 (not statistically significant at the 0.05 level).

This indicates that the reduced error rate was not due to experimental subjects who
become better as the experiment unfolds. Rather, the correct interpretation seems to be that
the apparent improved performance is mainly due to the fact that more and more subjects
that tended to make mistakes dropped out. The subjects that continued with the experi-
ment were those who made fewer mistakes, so the error rate was reduced. When combined
with the above results concerning time to correct answer, it seems that there is no fatigue
effect. But subjects probably do become slightly more proficient at answering quickly.

question serial number
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

er
ro

r 
ra

te

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

all subjects

with 11+ answers

Fig. 6 Error rate for each question in the experiment

Empir Software Eng (2019) 24:287–328308



And indeed, repeating the analysis of Fig. 5 for only those subjects that answered 11 ques-
tions of more, the results are practically the same (time reduced by 0.75 seconds per question
and ρ = −0.882).

The fact that there is a consistent trend of lower time to correct answer with question
serial number raises the possibility of normalizing the results, thereby reducing their vari-
ance. This could potentially improve experimental power. We checked this but found that it
did not lead to any improvements in the results. The following results therefore do not make
any adjustment to the measured times.

7.2 Descriptive Statistics

An example of the raw results is shown in Fig. 7. This includes the distributions (CDF)
of the time to achieve a correct answer for two snippets: al (basic simple formulation) and
an2 (a formulation with negation). The graphs show that, except perhaps in the tails, the
distribution for an2 dominates that of al, and indeed the analysis below shows that the
difference is statistically significant.

However, it is interesting to also note the distribution of differences between pairs of
results by the same subjects. This turns out to include both positive and negative results that
are quite high. This means that despite the general tendency to do better on al, some subjects
actually did better (and even significantly better) on an2. This happened in practically all
comparisons.

7.3 Results of Statistical Analysis

Results comparing various groups of snippets are given in Tables 3 and 4. Table 3 shows
the results for performance in terms of time to correct answer. In addition to the mean and
standard deviations it includes effect sizes, defined as the standardized mean difference: the
difference between the mean times for the two groups of snippets, divided by the standard
deviation of these times. An effect size of 0.5 is considered “medium”, and an effect size of
0.8 is “large” (Coe 2002). It also includes p-values from permutation and Wilcoxon tests,
using the statistical analysis described in Section 6.3.2.

time to correct answer [s]
−60 −40 −20 0 20 40 60

cu
m

ul
at

iv
e 

di
st

rib
ut

io
n

0

0.2

0.4

0.6

0.8

1

al (N=135)

an2 (N=63)

pair dif (N=58)

Fig. 7 Distributions of time to correct answer for two snippets

Empir Software Eng (2019) 24:287–328 309



Ta
bl
e
3

Pe
rf

or
m

an
ce

re
su

lts
of

co
m

pa
ri

so
ns

re
la

te
d

to
ea

ch
re

se
ar

ch
qu

es
tio

n,
ba

se
d

on
th

e
m

et
ho

do
lo

gy
of

Se
ct

io
n

6.
3.

2

co
m
pa
re

th
is
...

...
w
it
h
th
is

ef
fe
ct

p-
va
lu
e

R
Q

sn
ip
pe
t

av
g

st
dv

sn
ip
pe
t

av
g

st
dv

N
sd

si
ze

pe
rm

ut
.

W
il
co
xo
n

1
f*
,f[

]
40

.5
17

.8
as

,c
s

17
.8

9.
8

79
1

1.
80

8
<

10
−5

∗∗
<

10
−5

∗∗

i
f

vs
.

f*
46

.6
19

.0
as

18
.3

11
.2

24
1

2.
30

0
<

10
−5

∗∗
<

10
−5

∗∗

f
o
r

f[
]

35
.0

14
.7

as
15

.9
11

.1
19

1
1.

52
2

0.
00

01
∗∗

<
10

−5
∗∗

f*
43

.6
19

.3
cs

20
.3

9.
3

19
1

2.
07

6
0.

00
01

∗∗
0.

00
03

∗∗

f[
]

34
.5

15
.0

cs
16

.3
6.

4
17

1
1.

26
4

0.
00

01
∗∗

0.
00

01
∗∗

f*
45

.6
21

.9
f[
]

33
.2

13
.2

14
2

0.
77

5
0.

05
90

0.
07

82

2a
3
se

g
24

.0
13

.1
2
se

g
20

.6
13

.4
23

5
1

1.
26

4
<

10
−5

∗∗
<

10
−5

∗∗

si
ze

4
se

g
24

.4
12

.9
3
se

g
21

.5
11

.7
22

6
1

0.
22

2
0.

74
2

0.
07

73

2b
al
,b
l,c
l

21
.2

8.
6

as
,b
s,
cs

19
.5

9.
6

11
5

1
0.

28
1

0.
04

50
∗

0.
02

73
∗

ex
pr

vs
.

al
19

.2
8.

4
as

17
.1

8.
8

43
1

0.
43

3
0.

09
24

0.
09

50

st
ru

ct
bl

22
.5

9.
4

bs
19

.9
9.

4
38

1
0.

21
3

0.
06

47
0.

05
30

cl
22

.3
7.

7
cs

22
.0

10
.3

34
1

0.
19

2
0.

42
6

0.
35

6

bl
23

.7
11

.0
bl
1

21
.6

9.
0

35
1

0.
15

1
0.

12
9

0.
17

1

2c
as

,a
l

17
.5

7.
9

bs
,b
l

21
.1

10
.2

84
2

−0
.1

27
0.

00
36

∗
0.

00
32

∗

fl
at

vs
.

as
16

.6
8.

1
bs

19
.9

9.
6

42
2

−0
.3

01
0.

04
91

∗
0.

06
02

ne
st

ed
al

18
.5

7.
6

bl
22

.4
10

.7
42

2
−0

.0
77

0.
02

49
∗

0.
02

06
∗

as
,a
l

17
.4

9.
6

cs
,c
l

21
.4

9.
2

10
2

2
−0

.1
04

<
10

−5
∗∗

<
10

−5
∗∗

as
16

.7
9.

9
cs

20
.8

10
.1

63
2

−0
.3

21
0.

00
16

∗
<

10
−5

∗∗

al
18

.6
9.

0
cl

22
.4

7.
4

39
2

−0
.0

53
0.

01
91

∗
0.

01
40

∗

bs
,b
l

21
.1

9.
7

cs
,c
l

22
.2

9.
2

70
2

0.
02

8
0.

48
2

0.
26

9

bs
20

.1
9.

7
cs

22
.0

10
.6

38
2

−0
.0

14
0.

34
3

0.
38

3

bl
22

.2
9.

8
cl

22
.3

7.
5

32
2

0.
02

8
0.

95
8

0.
49

3

Empir Software Eng (2019) 24:287–328310



Ta
bl
e
3

(c
on

tin
ue

d)

co
m
pa
re

th
is
...

...
w
it
h
th
is

ef
fe
ct

p-
va
lu
e

R
Q

sn
ip
pe
t

av
g

st
dv

sn
ip
pe
t

av
g

st
dv

N
sd

si
ze

pe
rm

ut
.

W
il
co
xo
n

2d
an

,a
n1

,a
n2

25
.0

10
.9

al
23

.5
10

.4
16

6
1

0.
29

8
0.

06
51

0.
15

0

ne
ga

tio
n

an
21

.5
8.

4
al

23
.5

10
.7

64
1

−0
.0

17
0.

92
0

0.
93

0

an
1

26
.7

11
.9

al
24

.0
11

.0
44

1
0.

44
5

0.
08

98
0.

11
8

an
2

27
.5

11
.7

al
23

.0
9.

8
58

1
0.

50
8

0.
00

44
∗

0.
00

77
∗

an
1

28
.1

11
.9

an
21

.5
8.

5
42

2
0.

49
4

0.
00

08
∗∗

0.
00

03
∗∗

an
2

27
.6

12
.1

an
21

.2
7.

1
55

2
0.

55
8

0.
00

15
∗∗

0.
00

07
∗∗

an
1

26
.0

11
.9

an
2

26
.1

11
.7

41
2

−0
.0

57
0.

97
2

0.
92

9

3
lp
2,
lp
3,
lp
4

15
.0

9.
4

lp
0,
lp
1

15
.5

9.
0

10
3

1
−0

.1
72

0.
83

3
0.

81
8

lo
op

s
lp
5,
lp
6

20
.6

7.
9

lp
0,
lp
1

16
.2

8.
7

73
1

0.
43

0
0.

00
03

∗∗
0.

00
03

∗∗

∗
de

no
te

s
st

at
is

tic
al

si
gn

if
ic

an
ce

p
<

0.
05

∗∗
de

no
te

s
st

at
is

tic
al

si
gn

if
ic

an
ce

al
so

af
te

r
B

on
fe

rr
on

ic
or

re
ct

io
n

p
<

0.
00

16

av
g±

st
dv

:o
f

tim
e

to
co

rr
ec

ta
ns

w
er

N
:n

um
be

r
of

pa
ir

ed
sa

m
pl

es
of

co
rr

ec
ta

ns
w

er
s

sd
:o

ne
-s

id
ed

/tw
o-

si
de

d

Empir Software Eng (2019) 24:287–328 311



Ta
bl
e
4

E
rr

or
s

re
su

lts
of

co
m

pa
ri

so
ns

re
la

te
d

to
ea

ch
re

se
ar

ch
qu

es
tio

n,
ba

se
d

on
th

e
m

et
ho

do
lo

gy
of

Se
ct

io
n

6.
3.

3

co
m
pa
re

th
is
...

...
w
it
h
th
is

p-
va
lu
e

R
Q

sn
ip
pe
t

N
er
r

β
j

sn
ip
pe
t

N
er
r

β
j

sd
co
nt
ra
st

1
f*
,f[

]
80

0.
38

7
2.

32
6

as
,c
s

19
7

0.
21

3
0.

06
5

1
0.

00
03

∗∗

i
f

vs
.

f*
40

0.
32

5
0.

91
4

as
97

0.
17

5
−0

.2
31

1
0.

00
72

∗

f
o
r

f[
]

40
0.

45
0

1.
41

2
as

97
0.

17
5

−0
.2

31
1

0.
00

02
∗∗

f*
40

0.
32

5
0.

91
4

cs
10

0
0.

25
0

0.
29

6
1

0.
08

13

f[
]

40
0.

45
0

1.
41

2
cs

10
0

0.
25

0
0.

29
6

1
0.

00
49

∗

f*
40

0.
32

5
0.

91
4

f[
]

40
0.

45
0

1.
41

2
2

0.
29

1

2a
3
se

g
57

3
0.

20
6

−0
.7

86
2
se

g
35

1
0.

14
5

−5
.1

31
1

0.
00

81
∗

si
ze

4
se

g
43

0
0.

33
3

2.
98

5
3
se

g
73

8
0.

23
6

0.
96

5
1

0.
17

5

2b
al
,b
l,c
l

26
1

0.
14

2
−1

.8
12

as
,b
s,
cs

25
5

0.
20

8
−0

.1
90

1
0.

97
0

ex
pr

vs
.

al
14

7
0.

08
2

−1
.7

56
as

97
0.

17
5

−0
.2

31
1

0.
99

9

st
ru

ct
bl

55
0.

18
2

−0
.3

05
bs

58
0.

19
0

−0
.2

55
1

0.
53

5

cl
59

0.
25

4
0.

24
9

cs
10

0
0.

25
0

0.
29

6
1

0.
54

4

bl
55

0.
18

2
−0

.3
05

bl
1

56
0.

19
6

−0
.3

18
1

0.
49

1

2c
as

,a
l

24
4

0.
11

9
−1

.9
87

bs
,b
l

11
3

0.
18

6
−0

.5
60

2
0.

05
80

fl
at

vs
.

as
97

0.
17

5
−0

.2
31

bs
58

0.
19

0
−0

.2
55

2
0.

96
1

ne
st

ed
al

14
7

0.
08

2
−1

.7
56

bl
55

0.
18

2
−0

.3
05

2
0.

00
97

∗

as
,a
l

24
4

0.
11

9
−1

.9
87

cs
,c
l

15
9

0.
25

2
0.

54
5

2
<

10
−5

∗∗

as
97

0.
17

5
−0

.2
31

cs
10

0
0.

25
0

0.
29

6
2

0.
17

5

al
14

7
0.

08
2

−1
.7

56
cl

59
0.

25
4

0.
24

9
2

<
10

−5
∗∗

bs
,b
l

11
3

0.
18

6
−0

.5
60

cs
,c
l

15
9

0.
25

2
0.

54
5

2
0.

12
0

bs
58

0.
19

0
−0

.2
55

cs
10

0
0.

25
0

0.
29

6
2

0.
24

0

bl
55

0.
18

2
−0

.3
05

cl
59

0.
25

4
0.

24
9

2
0.

29
7

Empir Software Eng (2019) 24:287–328312



Ta
bl
e
4

(c
on

tin
ue

d)

co
m
pa
re

th
is
...

...
w
it
h
th
is

p-
va
lu
e

R
Q

sn
ip
pe
t

N
er
r

β
j

sn
ip
pe
t

N
er
r

β
j

sd
co
nt
ra
st

2d
an

,a
n1

,a
n2

23
3

0.
23

2
−0

.2
65

al
14

7
0.

08
2

−1
.7

56
1

0.
00

02
∗∗

ne
ga

tio
n

an
80

0.
16

2
−0

.9
22

al
14

7
0.

08
2

−1
.7

56
1

0.
05

93

an
1

76
0.

35
5

0.
50

9
al

14
7

0.
08

2
−1

.7
56

1
<

10
−5

∗∗

an
2

77
0.

18
2

−0
.3

83
al

14
7

0.
08

2
−1

.7
56

1
0.

00
30

∗

an
1

76
0.

35
5

0.
50

9
an

80
0.

16
2

−0
.9

22
2

0.
00

20
∗

an
2

77
0.

18
2

−0
.3

83
an

80
0.

16
2

−0
.9

22
2

0.
27

3

an
1

76
0.

35
5

0.
50

9
an

2
77

0.
18

2
−0

.3
83

2
0.

03
6∗

3
lp
2,
lp
3,
lp
4

21
8

0.
38

5
0.

86
6

lp
0,
lp
1

17
3

0.
22

5
−0

.0
77

1
0.

00
03

∗∗

lo
op

s
lp
5,
lp
6

13
2

0.
34

1
1.

10
4

lp
0,
lp
1

17
3

0.
22

5
−0

.1
53

1
0.

02
15

∗

∗
de

no
te

s
st

at
is

tic
al

si
gn

if
ic

an
ce

p
<

0.
05

∗∗
st

at
is

tic
al

si
gn

if
ic

an
ce

al
so

af
te

r
B

on
fe

rr
on

ic
or

re
ct

io
n

p
<

0.
00

16

N
:n

um
be

r
of

sa
m

pl
es

.e
rr

:w
ro

ng
an

sw
er

s
ra

te
.β

:e
st

im
at

ed
di

ff
ic

ul
ty

.s
d:

on
e/

tw
o

si
de

d

Empir Software Eng (2019) 24:287–328 313



Table 4 shows the results for error rates. It includes p-values from contrasts on the number
of wrong answers, using the statistical analysis described in Section 6.3.3. When fitting the
Rasch model, 10 subjects were eliminated because they had only one (wrong) answer. Note
that the statistical significance results in the two tables do not always correspond to each
other, as it may happen that in a certain comparison there is a difference in times but not in
error rates, or vice versa.

When comparing the p-values to a threshold of 0.05, 5% of them by definition should
be found to be “statistically significant” even if the null hypothesis actually holds (type I
errors). As we perform 31 tests, we may therefore expect 1 or 2 of them to pass. But the
results were that no less than 16 (for performance) or 15 (for errors) were below the 0.05
threshold, rather than only 1 or 2. We may therefore conclude that the vast majority of these
cases are indeed statistically significant.

An alternative approach is to apply the Bonferroni correction, by dividing the threshold
of 0.05 by the number of tests performed. Then there is at most a 5% chance that some test
will pass at random. The results were that 11 tests (for performance) and 7 tests (for errors)
were below the Bonferroni corrected threshold.

7.3.1 RQ 1: if vs. for

The results show a significant difference between snippets based on ifs and those using
for. The former are represented by snippets as (see Section 4.3.1) and cs (Section 4.3.3),
and use a nested sequence of > or < tests to establish inclusion in a set of ranges. The latter
do it with loops, using either arithmetic on the loop index in version f*, or an array that holds
the range bounds in version f[ ] (Section 4.3.5).

The snippets using for took more than twice as long to interpret, and led to more errors.
All the differences in performance were statistically significant (Table 3), and the effect
sizes were also extremely large. Some of the differences in error rates were also statisti-
cally significant (Table 4). These results imply that metrics like MCC that assign the same
complexity to all branching instructions may be too simplistic.

Furthermore, the f* variant took much longer than the f[ ] variant, while snippet f[ ] led to a
more errors by a similar margin. Note, however, that a direct comparison was not statistically
significant in both cases. Therefore the interpretation of these differences between variants
requires additional study and more measurements.

7.3.2 RQ 2a: Size of Conditional

The size of conditionals is quantified by the number of atomic comparisons they contain.
In our code snippets this reflects the number of ranges that are checked. The results were
largely as expected. Snippets with 3 ranges took 16.5% more time than snippets with 2 on
average, and this was statistically significant. (Note: in these analyses N > 220 because
each subject typically had 2 relevant comparisons.) Snippets with 4 ranges also took more
time than snippets with 3 on average, but this was not statistically significant. More ranges
also led to higher error rates, but this was not significant after Bonferroni correction.

7.3.3 RQ 2b: Single Expression vs. Structure

As noted above in Section 4.3.1, compound logical expressions composed of many atoms
may be converted into a nested structure of simple ifs. But which of these two structures
is easier to handle? The results were that the nested structure took slightly less time on

Empir Software Eng (2019) 24:287–328314



average, but led to slightly more errors. However, practically all the comparisons were not
statistically significant, and effect sizes were small.

This lack of difference is somewhat surprising, because in debriefings of subjects that
were observed during the experiment they reported that the nested structures were signifi-
cantly easier than the snippets with compound logic expressions. We conjectured that this
is because a sequence of ifs allows one to trace the relevant path through the code for the
given input one step at a time, but when faced with a compound expression you need to
understand it as a whole.

Note that the lack of significant separation also implies that the structures of many nested
ifs is not significantly harder, even though these code snippets are much longer when
counting LOC and have deeper nesting. This contradicts common wisdom regarding LOC
and nesting as indicators of complexity.

7.3.4 RQ 2c: Flat vs. Nested Structure

This distinction is somewhat subtle, and involves the use of a “flat” structure where pred-
icates follow each other on the same level, as opposed to a nested structure where some
predicates are subordinate to others. These differences are exhibited by code snippets al,
bl, and cl, described in Sections 4.3.1 through 4.3.3. Similarly, there were versions with
nested ifs that each contain a single atom, based on the conversion rules described above
in Section 4.3.1.

As it was not clear which is expected to be easier, we used a two-sided test in this case.
The results indicate that the flat a versions were slightly easier than the other two, and this
was statistically significant or nearly so especially when comparing with the c versions,
which have a structure similar to a full binary tree. The b versions, which have a comb-like
structure, were not statistically significantly different from the a versions after Bonferroni
correction. The bl1 version, which attempts to eliminate the deep skewed nesting of the bl
version, nevertheless was very similar to it.

7.3.5 RQ 2d: Use of Negation

The logic expressions in the three snippets using negation were shown in Section 4.3.4; they
were compared with the basic al version, shown in Section 4.3.1.

The results were somewhat surprising. Comparing the positive version al to the three
negation versions, there was a significant difference in times only when comparing with
an2, but even this was too weak to pass Bonferroni correction. Moreover, the average time
for an was actually a bit shorter than for al (although not statistically significantly different).
As a result comparisons of an with an1 and an2 led to strongly statistically significant
differences and to the largest effect sizes. Regarding correctness, it was snippet an1 that
had the worse error rate, and significant difference from al. Thus not every negation causes
difficulties to the same degree. Detailed investigation of this effect is left to future work.

7.3.6 RQ 3: Common Loop Idioms

A special set of 7 snippets concerned the details of for loops on arrays, as described in
Section 4.3.6. The specifics were listed in Table 1.

Note that the loops in code snippets lp2, lp3, lp4, and lp6 do not cover the whole range
as may be expected, and are therefore abnormal. The results showed that this did not
cause significant differences in processing time, but did lead to significantly more errors.

Empir Software Eng (2019) 24:287–328 315



Specifically, starting the loop from 1 rather than from 0, comparing to the limit using <=
rather than <, or using a limit of n-1 rather than n increased the error rate by about 20%.
The highest error rate was observed in snippet lp4, which has two abnormalities: it both
starts from 1, and compares with n-1.

In addition, significant differences were found between loops counting up and loops
counting down. But in this case the more significant difference occurred in time to correct
answer, which took 27% longer on average when the loop was counting downwards.

7.4 Correlation of Time and Error Rate

As noted in Section 6.2 our two main dependent variables are the time it took experimental
subjects to arrive at a correct answer, and conversely the rate at which they made errors.
It is a longstanding issue whether these two variables measure the same effect, and how
their data can be combined (Rajlich and Cowan 1997). Our RQ 4 concerned the correlation
between the two variables. A scatter plot with all 40 snippets is shown in Fig. 8.

A cursory observation indicates that there is no strong correlation, and indeed the Pearson
correlation coefficient is 0.35. This indicates that the two variables may reflect different
effects. And indeed, several interesting patterns seem to support this conjecture.

First, we note that if we focus on strictly equivalent snippets, namely all those that check
for inclusion in exactly 3 ranges (snippets al, as, bl, bs, cl, cs, an, an1, an2, f*, and f[ ]), the
correlation jumps to 0.61. We focus on the size 3 snippets because they have many more
samples in comparison with the size 2 and 4 snippets.

Within this group, the two most extreme snippets are f* and f[ ]. But they are extreme in
different ways: f* took the most time, while f[ ] led to the most errors but one. A possible

error rate
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

av
er

ag
e 

tim
e 

to
 c

or
re

ct
 a

ns
w

er
 [s

]

0

10

20

30

40

50

4.as4.al
4.bs

4.cs

4.an1

2.an

4.an2

2.as

4.an

2.an1

4.bl

2.bs

4.cl

4.f[]

2.an2

2.f*

2.al2

2.bl

4.bl1

2.f[]

4.f*

al

an2

csbl1

an1

cl
bs

as

an
bl

f[]

f*

sp6

sp2
sp4

sp5

sp1sp0
sp3

Fig. 8 Correlation of the average time to arrive at a correct answer and the error rate for all the snippets. To
promote focus on the 3-range snippets (for which we have more results) the size 2 and 4 snippets are shown
in gray

Empir Software Eng (2019) 24:287–328316



interpretation is that subjects were cognizant of the effort involved in understanding the
arithmetic operations on the loop index, and were therefore more careful. The array version
appeared easier, so they were less careful and made more mistakes.

Finally, The special loop idiom snippets (sp0 through sp6) appear to form a separate
cluster, with relatively low answer times but a wide range of error rates. This is the pattern
that one may expect if many subjects based their answer on the expectation that the common
loop idiom would be followed, and therefore failed to notice the deviation from the common
idiom. In other words, the snippets that deviate from the expected idiom are misleading and
cause misunderstandings, which are manifested in wrong answers — but they do not take
more time. This is similar to the situation with misleading variable names that give rise to
mistakes in understanding code (Avidan and Feitelson 2017).

8 Results for Demographic Effects

Before starting the experiment, subjects fill out a demographic questionnaire. This is impor-
tant because differences in demographic attributes can confound the results (Siegmund and
Schumann 2015). Recording demographic variables enables one to check that the exper-
iment was appropriately randomized. In addition, using this data we can re-analyze the
results to see if any of the demographic variables collected influences the results, or whether
the demographic variables perhaps interact with the results. This is the topic of RQ 6.

Recall that the demographic variables we collected were:

– Sex
– Age
– Experience (years worked)
– self-assessment of programming skills (suggested by Siegmund et al. as more reliable

than years of experience (Siegmund et al. 2014))
– Education (degrees and years studied)

The effect of these demographic variables was analyzed using the methodology
described in Section 6.3.4. As an example, the results of using Welch’s t-test to compare men
and women are shown in Table 5. Of the 40 code snippets overall, we consider only code
snippets containing 20 or more observations. Thus, 34 code snippets remain for the analy-
sis. As we clearly see, only one result appears to be statistically significant at level 0.05, but
this is expected with so many tests. None are significant with Bonferroni correction.

In order to test the hypothesis that there is no difference between men and women over all
codes, we can use Fisher’s method, by summing up the log of all p-values, and comparing to
a chi square distribution with 68 degrees of freedom (twice the number of hypotheses). Note

that −2
34∑

i=1
log αi = 59.61. We thus get a p-value of 0.25, which is of course not significant.

For the non-binary variables we plotted their histograms and used them to partition the
range into two. For example, for the age variable the age 30 was a suitable threshold lead-
ing to a distinction between subjects that were less than 30 years old and those who were
30 or over. Performing the same analysis on this and other demographic variables pro-
duced essentially the same results as for sex: none of them led to statistically significant
differences.

Finally, we also fit a generalized linear model to the data as described in Section 6.3.5,
and considered the coefficients of the different variables. The results are shown in Table 6.

Empir Software Eng (2019) 24:287–328 317



Table 5 Results of comparison of sexes on 34 code snippets

men women p-value

snippet size N avg stdv N avg stdv permut t-test

al 4 26 22.0 9.8 31 21.2 8.1 0.75 0.74

an 4 19 28.2 12.4 20 23.6 6.5 0.17 0.16

an1 4 22 30.8 12.9 15 24.8 14.3 0.20 0.20

as 4 20 22.5 12.0 15 21.1 10.2 0.71 0.70

bl1 4 13 25.8 14.1 11 28.6 11.2 0.60 0.59

bs 4 14 24.3 10.2 16 23.0 10.5 0.75 0.74

cs 4 26 19.1 10.7 15 22.3 11.4 0.40 0.38

f* 4 19 36.4 23.4 8 41.4 28.1 0.65 0.67

al 3 71 22.8 11.8 64 20.5 8.2 0.18 0.18

an 3 36 21.5 8.2 31 21.6 8.5 0.97 0.96

an1 3 24 28.3 11.7 25 24.8 12.2 0.32 0.32

an2 3 33 27.4 11.3 30 27.0 12.2 0.88 0.88

as 3 48 17.2 9.7 32 17.5 10.7 0.91 0.90

bl1 3 25 20.0 8.9 20 22.4 8.7 0.36 0.36

bl 3 26 22.4 11.5 19 22.7 9.7 0.95 0.95

bs 3 26 21.3 11.4 21 19.2 8.0 0.48 0.47

cl 3 25 19.8 7.6 19 25.6 9.4 0.03∗ 0.04∗

cs 3 48 19.6 9.0 27 22.0 10.6 0.34 0.33

f* 3 18 48.8 19.7 9 44.7 20.3 0.63 0.63

f[ ] 3 13 34.4 13.6 9 33.4 15.1 0.87 0.87

al 2 41 14.6 9.0 35 15.2 8.4 0.76 0.75

an 2 22 21.7 10.4 20 18.7 7.9 0.29 0.29

an1 2 25 25.8 13.2 15 19.6 5.8 0.05 0.05

an2 2 16 23.2 13.2 17 19.7 10.6 0.42 0.41

bs 2 21 16.6 7.2 12 19.7 10.5 0.40 0.38

f* 2 19 36.1 18.6 6 29.8 9.9 0.32 0.30

f[ ] 2 22 32.9 18.9 11 36.7 21.8 0.63 0.62

lp0 − 39 15.1 11.0 37 18.1 10.8 0.23 0.23

lp1 − 39 17.2 10.1 19 16.9 8.7 0.92 0.92

lp2 − 32 16.4 7.2 23 12.3 10.7 0.13 0.13

lp3 − 28 13.8 8.8 21 15.4 9.5 0.56 0.55

lp4 − 12 17.2 11.2 18 16.5 11.6 0.87 0.86

lp5 − 30 19.8 8.1 18 22.6 8.3 0.27 0.26

lp6 − 21 21.1 8.2 18 20.5 7.5 0.81 0.80

Residual and QQ-plots indicate that normality and homoskedasticity assumptions approxi-
mately hold. Note that the value of μ represents the average of the logarithm of the time to
answer a question in milliseconds; for coefficients it is the fraction of change each variable
induces (and multiplying them by 100 would give the change in percents). The degrees of
freedom are approximated.

Empir Software Eng (2019) 24:287–328318



Table 6 Results of fitting a generalized linear model to estimate the effect of demographic factors

factor value stderr DF t-value p-value

μ (intercept) 9.97835 0.07956 168.07 125.419 0.0000

β1 (female) −0.01930 0.05789 155.15 −0.333 0.7393

β2 (age≥30) 0.16118 0.07073 162.22 2.279 0.0240∗

β3 (experience≥5) −0.15532 0.08133 164.77 −1.910 0.0579

β4 (assess≥4) −0.09124 0.06444 160.20 −1.416 0.1587

β5 (degree) −0.03264 0.05602 159.71 −0.583 0.5610

The coefficients for all the variables but one were not statistically significant. The one
significant factor was age, where age 30 and above added about 16.1% on average to the
time to correct answer. Years of experience above 5 led to a reduction of 15.5% on aver-
age, but this was not statistically significant. Nevertheless, this combination is interesting
because age and years of experience are somewhat correlated, with a Pearson correlation
coefficient of 0.67. Indeed, a potential problem with linear models like this one occurs when
explanatory variables are correlated to each other. We therefore also checked partial models
where one of the variables is excluded. Excluding age led to a model with no statistically
significant effects; in particular, experience was also much farther from being significant.
Excluding experience led to a model where self assessment was the only statistically sig-
nificant effect, and age was not. These results may indicate that the correct interpretation
is not that age 30 and above adds to time to correct answer, but rather that inexperienced
subjects of age 30 and above need more time. For experienced subjects, on the other hand,
the experience compensates for the age. In the original model both effects exist, and one of
them is statistically significant. But when one of the variables is excluded, the model can’t
separate the effects of age and experience, so they counteract each other and no effect is
seen. Adding an interaction variable of age and experience does not change the significance
results either, because the effect is due to the combination of age without experience.

An additional observation is that the standard deviation of the random variable ζi (which
represents the experimental subjects) is about 0.1389, while the standard deviation of ηj ,
that accounts for question type, is about 0.2725. Adding the question serial number as a
variable, which accounts for learning effects as shown in Fig. 5, does not change much the
significance results of the variables presented in Table 6.

To summarize, our results show a general lack of significant and meaningful effects due
to demographic variables, with only one test showing one statistically significant but not
very meaningful effect (a reduction of 4 seconds from 23). Comparing with previous litera-
ture, we find that some prior work also did not find demographic effects, while some studies
did. The most extensive literature concerns the differences between experienced program-
mers and novices (or between advanced students and freshmen). The majority of results
show that more experienced programmers work better, typically taking less time and using
higher levels of abstraction (see Feitelson for an extensive survey (Feitelson 2015)). But
interestingly, there have also been a number of studies showing the opposite. One possible
interpretation is that experience leads to awareness of potential problems, so experienced
programmers take more time to make sure they are correct (Bishop and McDaid 2008).
Another is that experience leads to expectations, and if these are violated it may lead to more
mistakes (Hansen et al. 2013). In our case a possible explanation for the lack of difference

Empir Software Eng (2019) 24:287–328 319



is that the experimental task (understanding short basic code snippets) is not challenging
enough to bring out differences between programmers with different levels of experience.
Also, we did not design the experiment specifically to investigate the effect of experience,
and did not select subjects so as to emphasize differences in experience.

There have been very few studies on the interaction of sex with programming in general
and with program comprehension in particular. Gramß et al. found that female mechanical
engineering students did not do as well as their male counterparts in software engineering
tasks (Gramß et al. 2014). Closer to our focus, Sharafi et al. found that fixation patterns of
women reading code are different from those of men (Sharafi et al. 2012). Our study differs
in using professionals rather than students, and probably using easier code.

9 Threats to Validity

Several decisions about the experimental design were taken specifically to mitigate threats
to validity. However, other threats remain.

Construct validity refers to correctly measuring the dependent variable. In our case this
is the time to interpret a certain code snippet and the correctness of the answer, which are
both unambiguous. However, note that these variables are just a proxy for “understanding”.
And our underlying interest is in the effect of code complexity on understanding. One can
question whether the time and accuracy of providing the output of a code snippet really
reflect understanding, and indeed our own results indicate that making errors may reflect
mismatched expectations rather than the complexity of the code. We leave the deeper dis-
cussion of what exactly is meant by “understanding” and how to measure it to future work.
At the same time we note that at present there are no good alternatives to our methodol-
ogy of measuring time and correctness on code-related tasks, and that this methodology is
universally used in the code comprehension community (Rajlich and Cowan 1997).

Internal validity refers to causation: are changes in the dependent variable necessarily the
result of manipulations to treatments. In our case the treatments are snippets that differ in
use of constructs and in the structure of conditionals. However they may also differ in length
or some other metric, which may have an effect. In particular, we identify the following
threats to internal validity.

– Perhaps the most prominent issue is the different lengths of the code snippets. Longer
code is considered harder to understand, and some say that LOC is the only important
metric (Herraiz and Hassan 2011; Gil and Lalouche 2017). Our experiments are subject
to this threat because snippets vary considerably in length. To counter this threat, we
could in principle inflate shorter snippets by adding meaningless lines (e.g. var z =
1;) until all snippets reach the same length. However, this would most probably lead
to worse confounding effects as experimental subject struggle to figure out why such
redundant code is there.

The conclusion is then that variations in length are an inherent property of our
methodology, and we have to compromise on this issue. In retrospect, however, we can
say that the results indicate that this concern is overrated. The biggest differences in
length occur between the “logic” snippets (al, bl, and cl) and the “structure” snippets
(as, bs, and cs). As reported in Table 3 the differences within each pair of snippets was
not statistically significant. Only when the number of observations was increased by
pooling all of them together did the results achieve statistical significance at the 0.05
level, but not after Bonferroni correction. Moreover, the difference was small (less than

Empir Software Eng (2019) 24:287–328320



2 seconds), and contrary to expectation: the set of longer snippets took less time! Thus
it appears that length per se is not a significant confounding factor in our experiments.

– A related issue is that the value of x (the number that is tested for inclusion in the
given number ranges) affects the part of the code snippet that has to be looked at. For
example, if x is in the first range in a simple disjunction, you do not have to look at the
following disjuncts and thus save time. To avoid such effects we made sure the selected
values indeed require the whole expression to be traversed, so short-circuiting would
be impossible.

– A third concern is that the different snippets have different outputs. In particular, the
snippets based on a tree of simple ifs provide more information regarding the location
of x than those using a single compound logic expression. Like the length issue cited
above, this is an inherent difference that we must compromise on, but it appears to be
insignificant in practice.

– In a related vein, in flat compound statements the ends of the number ranges can appear
in numerical order, but when using nested ifs the order must be manipulated in cor-
respondence with the structure. For example, in the recursive style it is necessary to
start from the middle (snippet cl as opposed to al), and such a lack of order may be
expected to lead to more difficulties. Again, this problem is inherent and indeed leads
to a potential threat. However, we note again that the results did not show significant
differences.

– Our results indicate that idiomatic code is somewhat easier than code that violates
idioms. At a higher level, code that is easily recognized as implementing a well-known
programming plan (e.g. a linear search in an array) can be expected to be much easier
than syntactically similar code that does not. We avoid this potential issue by not using
snippets that correspond to well-known plans.

– Finally, different programmers are used to different coding guidelines. Opinions about
this sometimes reach religious proportions. For example not placing brackets on a new
line may cause annoyance and distraction. However, we use the same style for all
snippets, so this is not expected to cause a confounding effect.

Another problem potentially leading to a threat to internal validity is the possibility of
learning effects. Since most of the snippets actually perform the same logic, and some of
them are very similar to each other, there is a threat of a learning effect with the progress
from one question to the next. This is mitigated by two means. First, during the experi-
ment, we randomize the order in which snippets are presented. Consequently the results for
each snippet are a mix of results from different locations in the sequence, and we avoid a
systematic bias. Second, during the analysis, we checked the effect of adjusting the mea-
sured times to factor out the observed trend of shorter times to successive snippets. This
eliminates learning as a source of variability and may be expected to improve experimental
power. However, we found that such adjustments do not have a significant effect. We also
note that observed subjects did not notice the commonality of the snippets.

Two additional threats concern the experimental subjects and their behavior. The exper-
iment can be conducted anywhere and at any time. Not all of the subjects necessarily took
the experiment under the same conditions. They could do all the questions in a row or take
a break for a long time in the middle. They could use accessories without us knowing. Even
though we added the “skip” button, we can not actually know whether a subject just guessed
when giving some answers.

Finally there are interpersonal differences between subjects. One well-known type of
difference is in their capabilities. Another aspect is the personality of the subjects, and its

Empir Software Eng (2019) 24:287–328 321



Table 7 Main results for the different research questions

RQ description results

1 if vs. for for loops are harder than ifs

2a expression size 3 predicates is harder than 2

3 vs. 4 not significant

2b compound vs. differences not statistically significant

structure

2c flat vs. nesting flat structures appear to be slightly easier

2d negation some but not all uses of negation
are harder: negations are different
from each other

3 loop idioms loops counting up are easier

abnormal loops lead to more errors

4 time vs. not necessarily correlated

correctness errors may reflect misconceptions

5 learning effect small learning effect

main improvement due to dropouts

6 demographic variables only age possibly had a statistically
significant effect

effect on the way they choose to deal with the snippets. The time is limited, but still a varia-
tion in the way different subjects answered was observed: some chose to check themselves,
while others answered immediately when they thought they were correct and moved on.

Both these threats are mitigated by randomization and by using within-subject analysis.
External validity refers to generalization. The snippets used are synthetic code, created

just for the experiment. The generalization to real production code is therefore questionable,
especially since our snippets deal only with finding a number in a set of ranges, and do not
necessarily pertain to the general issues of constructs, conditionals, etc. The justification is
that we preferred to limit the experiment to a narrow scope in order to establish a solid base
that allows for future expansion.

Another concern is that the experimental subjects may not be a valid sample. They all
come from the same companies, and even certain departments in them. Thus replications
with other subjects and additional code samples are as always needed.

10 Conclusions and Future Work

How to measure code complexity — and even how to define code complexity — is a
contentious issue. Many different metrics have been suggested, each focusing on certain
specific aspects of the code. But there has been relatively little empirical evidence to support
such metrics and to compare them to each other.

We have designed and implemented an experimental platform, fashioned as an online
game, which can be used to measure the speed and accuracy of interpreting code snippets.
The more time it takes to interpret a code snippet, and the more mistakes that are made in

Empir Software Eng (2019) 24:287–328322



the process, the harder the snippet is considered. We used this to measure the performance
of 220 professional programmers as they interpret up to 15 different code snippets from a
pool of 40 such snippets, that have diverse structures.

Analyzing the results we find that indeed different code structures take different times to
interpret. For example, our results indicate that for loops take more time than sequences
of ifs. Thus the approach taken by MCC, for example, where all branching constructs are
given the same weight, is overly simplistic. Moreover, we also found differences that stem
from different ways to express the same logical conditions (e.g. different ways of using
negation), or from adhering to or violating common idioms (e.g. that loops count up). This
implies that looking only at basic syntactic constructs is too limited. The main results are
summarized in Table 7.

While these results are illuminating and demonstrate new paths for empirical investiga-
tion, they are far from being comprehensive. Our study focused on one specific family of
conditions, and a limited number of structures that can be used to express them. We did not
cover while loops, switch cases, conditionals with equality and inequality, and much
more. A lot of additional work will be needed to complete the picture and better quantify
the effects of different structures and the interactions between them.

Once such additional work is conducted, it may be possible to derive sound complexity
metrics that are better than those available today and are backed by empirical data. For
example, instead of just counting constructs it may be possible to weight them, and perhaps
also modify the weights based on nesting and other context (Jbara and Feitelson 2017).

To start with, we are already planning additional experiments that focus on different
styles of negation and using De Morgan’s laws, and on the effect of different levels of nesting.
We are also planning to reproduce this work using another domain, such as array and string
operations, to improve external validity. On the methodological front, we note that anecdotal
evidence from our subjects suggests that they appreciated the gamification element of the
experiment. To support this we have started another experiment aimed at assessing how
much (if at all) the gamification elements indeed contribute to motivation and achievements,
by re-running experiments with the gamification elements removed.

On a wider scale, we note that the code snippets we use and the methodology in gen-
eral do not distinguish between different levels of understanding, and specifically between
interpretation and comprehension. Brooks makes a distinction between the essence of a soft-
ware system, which is “a construct of interlocking concepts”, and its representation in code
(Brooks 1987). Real comprehension involves a reconstruction of the conceptual construct
from the representation. Our work is at the level of deciphering the representation, namely
the code. We believe that there is still a lot to be learned regarding how we read and under-
stand code, and that this is a prerequisite for meaningful studies of deeper comprehension.
Specifically, a better appreciation of the factors that affect the interpretation of code is a
first step in addressing the deeper issues of what affects understanding and how to aid com-
prehension. At the same time, such an appreciation can also lead to practical benefits, for
example by guiding programming conventions and tools.

Verifiability

All experimental materials, including the source code for the gamified experimental plat-
form and all versions of all code snippets, are available on github: https://github.com/
shulamyt/break-the-code/tree/icpc17.

Empir Software Eng (2019) 24:287–328 323

https://github.com/shulamyt/break-the-code/tree/icpc17
https://github.com/shulamyt/break-the-code/tree/icpc17


Acknowledgments Many thanks to Micha Mandel for his help with the statistical analysis, and to the
anonymous reviewers for their comments and suggestions.

References

Abrahão S, Gravino C, Insfran E, Scanniello G, Tortora G (2013) Assessing the effectiveness of sequence
diagrams in the comprehension of functional requirements: results from a family of five experiments.
IEEE Trans Softw Eng 39(3):327–342. https://doi.org/10.1109/TSE.2012.27

Adelson B, Soloway E (1985) The role of domain experience in software design. IEEE Trans Softw Eng
SE-11(11):1351–1360. https://doi.org/10.1109/TSE.1985.231883

Agresti A, Kateri M (2011) Categorical data analysis. Springer, Berlin
Ajami S, Woodbridge Y, Feitelson DG (2017) Syntax, predicates, idioms — what really affects code com-

plexity? In: 25th international conference of program comprehension, pp 66–76. https://doi.org/10.
1109/ICPC.2017.39

Ali M, Elish MO (2013) A comparative literature survey of design patterns impact on software quality.
In: International conference of information science & applications. https://doi.org/10.1109/ICISA.2013.
6579460

Arunachalam V, Sasso W (1996) Cognitive processes in program comprehension: an empirical analysis in the
context of software reengineering. J Syst Softw 34(3):177–189. https://doi.org/10.1016/0164-1212(95)
00074-7

Avidan E, Feitelson DG (2017) Effects of variable names on comprehension: an empirical study. In: 25th
international conference in program comprehension, pp 55–65. https://doi.org/10.1109/ICPC.2017.27

Ball T, Larus JR (2000) Using paths to measure, explain, and enhance program behavior. Computer 33(7):57–
65. https://doi.org/10.1109/2.869371

Bednarik R, Tukiainen M (2006) An eye-tracking methodology for characterizing porgram com-
prehension processes. In: 4th symposium eye tracking research & applications, pp 125–132.
https://doi.org/10.1145/1117309.1117356

Bergersen GR, Gustafsson J-E (2011) Programming skill, knowledge, and working memory among pro-
fessional software developers from an investment theory perspective. J Individ Differ 32(4):201–209.
https://doi.org/10.1027/1614-0001/a000052

Bergersen GR, Sjøberg DIK, Dybå T (2014) Construction and validation of an instrument for measuring pro-
gramming skill. IEEE Trans Softw Eng 40(12):1163–1184. https://doi.org/10.1109/TSE.2014.2348997

Bishop B, McDaid K (2008) Spreadsheet debugging behaviour of expert and novice end-users. In: 4th
international workshop end-user software engineering, pp 56–60. https://doi.org/10.1145/1370847.
1370860

Bishop J, Horspool RN, Xie T, Tillmann N, de Halleux J (2015) Code hunt: experience with cod-
ing contests at scale. In 37th international conference and software engineering, vol 2, pp 398–407.
https://doi.org/10.1109/ICSE.2015.172

Brooks R (1983) Towards a theory of the comprehension of computer programs. Intl J Man-Mach Stud
18(6):543–554. https://doi.org/10.1016/S0020-7373(83)80031-5

Brooks Jr, FP (1987) No silver bullet: essence and accidents of software engineering. Computer 20(4):10–19.
https://doi.org/10.1109/MC.1987.1663532

Buse RPL, Weimer WR (2008) A metric for software readability. In: International symposium software
testing & analysis, pp 121–130. https://doi.org/10.1145/1390630.1390647

Butler S, Wermelinger M, Yu Y, Sharp H (2010) Exploring the influence of identifier names on code
quality: An empirical study. In: 14th European conference in software maintenance & reengineering.
https://doi.org/10.1109/CSMR.2010.27

Coe R (2002) It’s the effect size, stupid: what effect size is and why it is important. In: Conference in British
educational research association

Curtis B (1981) Substantiating programmer variability. Proc IEEE 69(7):846. https://doi.org/10.1109/PROC.
1981.12088

Curtis B, Sheppard SB, Milliman P (1979) Third time charm: stronger prediction of programmer performance
by software complexity metrics. In: 4th international conference software and engineering

Curtis B, Sappidi J, Subramanyam J (2011) An evaluation of the internal quality of business applica-
tions: does size matter? In: 33rd international conference software and engineering, pp 711–715.
https://doi.org/10.1145/1985793.1985893

Empir Software Eng (2019) 24:287–328324

https://doi.org/10.1109/TSE.2012.27
https://doi.org/10.1109/TSE.1985.231883
https://doi.org/10.1109/ICPC.2017.39
https://doi.org/10.1109/ICPC.2017.39
https://doi.org/10.1109/ICISA.2013.6579460
https://doi.org/10.1109/ICISA.2013.6579460
https://doi.org/10.1016/0164-1212(95)00074-7
https://doi.org/10.1016/0164-1212(95)00074-7
https://doi.org/10.1109/ICPC.2017.27
https://doi.org/10.1109/2.869371
https://doi.org/10.1145/1117309.1117356
https://doi.org/10.1027/1614-0001/a000052
https://doi.org/10.1109/TSE.2014.2348997
https://doi.org/10.1145/1370847.1370860
https://doi.org/10.1145/1370847.1370860
https://doi.org/10.1109/ICSE.2015.172
https://doi.org/10.1016/S0020-7373(83)80031-5
https://doi.org/10.1109/MC.1987.1663532
https://doi.org/10.1145/1390630.1390647
https://doi.org/10.1109/CSMR.2010.27
https://doi.org/10.1109/PROC.1981.12088
https://doi.org/10.1109/PROC.1981.12088
https://doi.org/10.1145/1985793.1985893


Denaro G, Pezzè M (2002) An empirical evaluation of fault-proneness models. In: 24th international
conference software and engineering, pp 241–251. https://doi.org/10.1145/581339.581371

Deterding S, Dixon D, Khaled R, Nacke L (2011) From game design elements to gamefulness: Defin-
ing “gamification”. In: 15th international academic MindTrek conference: envisioning future media
environments, pp 9–15. https://doi.org/10.1145/2181037.2181040

Dijkstra EW (1968) Go To statement considered harmful. Comm ACM 11(3):147–148. https://doi.org/10.
1145/362929.362947

Feigenspan J, Apel S, Liebig J, Kästner C (2011) Exploring software measures to assess program com-
prehension. In: International symposium empirical software engineering & measurement, pp 127–136.
https://doi.org/10.1109/ESEM.2011.21

Feitelson DG (2015) Using students as experimental subjects in software engineering research – a review
and discussion of the evidence. arXiv:1512.08409 [cs.SE]

Gamma E, Helm R, Johnson R, Vlissides J (1994) Design patterns: elements of reusable object-oriented
software. Addison-Wesley, Boston

Gil Y, Lalouche G (2017) On the correlation between size and metric validity. Empir Softw Eng 22(5):2585–
2611. https://doi.org/10.1007/s10664-017-9513-5

Gill GK, Kemerer CF (1991) Cyclomatic complexity density and software maintenance productivity. IEEE
Trans Softw Eng 17(12):1284–1288. https://doi.org/10.1109/32.106988

Gramß D, Frank T, Rehberger S, Vogel-Heuser B (2014) Female characteristics and requirements in software
engineering in mechanical engineering. In: International conference in interactive collaborative learning,
pp 272–279. https://doi.org/10.1109/ICL.2014.7017783

Gruhn V, Laue R (2007) On experiments for measuring cognitive weights for software control structures.
In: 6th international conference in cognitive informatics, pp 116–119. https://doi.org/10.1109/COGINF.
2007.4341880

Hamari J, Shernoff DJ, Rowe E, Coller B, Asbell-Clarke J, Edwards T (2016) Challenging games help
students learn: an empirical study on engagement, flow and immersion in game-based learning. Comput
Human Behav 54:170–179. https://doi.org/10.1016/j.chb.2015.07.045

Hansen M, Goldstone RL, Lumsdaine A (2013) What makes code hard to understand? arXiv:
1304.5257v2[cs.SE]

Heathcote A, Brown S, Mewhort DJK (2000) The power law repealed: the case for an exponential law of
practice. Psychon Bullet Rev 7(2):185–207. https://doi.org/10.3758/BF03212979

Henry S, Kafura D (1981) Software structure metrics based on information flow. IEEE Trans Softw Eng
SE-7(5):510–518. https://doi.org/10.1109/TSE.1981.231113

Herraiz I, Hassan AE (2011) Beyond lines of code: do we need more complexity metrics?. In: Oram A,
Wilson G (eds) Making software: what really works, and why we believe it. O’Reilly Media Inc.,
pp 125–141

Huotari K, Hamari J (2012) Defining gamification: a service marketing perspective. In: 16th international
academic MindTrek conference, pp 17–22. https://doi.org/10.1145/2393132.2393137

Iselin ER (1988) Conditional statements, looping constructs, and program comprehension: an experimental
study. Intl J Man-Mach Stud 28(1):45–66. https://doi.org/10.1016/S0020-7373(88)80052-X

Jbara A, Feitelson DG (2014) On the effect of code regularity on comprehension. In: 22nd international
conference in program comprehension, pp 189–200. https://doi.org/10.1145/2597008.2597140

Jbara A, Feitelson DG (2017) How programmers read regular code: a controlled experiment using eye
tracking. Empir Softw Eng 22(3):1440–1477. https://doi.org/10.1007/s10664-016-9477-x

Kahney H (1983) What do novice programmers know about recursion. In: SIGCHI conference human factors
in computer system, pp 235–239. https://doi.org/10.1145/800045.801618

Katzmarski B, Koschke R (2012) Program complexity metrics and programmer opinions. In: 20th interna-
tional conferenc in program comprehension, pp 17–26. https://doi.org/10.1109/ICPC.2012.6240486

Kirkpatrick K (2016) Coding as sport. Comm ACM 59(5):32–33. https://doi.org/10.1145/289867
Klerer M (1984) Experimental study of a two-dimensional language vs Fortran for first-course programmers.

Intl J Man-Mach Stud 20(5):445–467. https://doi.org/10.1016/S0020-7373(84)80021-8
Landman D, Serebrenik A, Vinju J (2014) Empirical analysis of the relationship between CC and SLOC in a

large corpus of Java methods. In: International conference software maintenance & evolution
Letovsky S (1987) Cognitive processes in program comprehension. J Syst Softw 7(4):325–339.

https://doi.org/10.1016/0164-1212(87)90032-X
Lumley T, Diehr P, Emerson S, Chen L (2002) The importance of the normality assumption in large public

health data sets. Ann Rev of Publ Health 23(1):151–169
Mair P, Hatzinger R (2007) Extended Rasch modeling: the eRm package for the application of IRT models

in R. J Stat Softw 20(9). https://doi.org/10.18637/jss.v020.i09

Empir Software Eng (2019) 24:287–328 325

https://doi.org/10.1145/581339.581371
https://doi.org/10.1145/2181037.2181040
https://doi.org/10.1145/362929.362947
https://doi.org/10.1145/362929.362947
https://doi.org/10.1109/ESEM.2011.21
http://arXiv.org/abs/1512.08409
https://doi.org/10.1007/s10664-017-9513-5
https://doi.org/10.1109/32.106988
https://doi.org/10.1109/ICL.2014.7017783
https://doi.org/10.1109/COGINF.2007.4341880
https://doi.org/10.1109/COGINF.2007.4341880
https://doi.org/10.1016/j.chb.2015.07.045
http://arXiv.org/abs/1304.5257v2
https://doi.org/10.3758/BF03212979
https://doi.org/10.1109/TSE.1981.231113
https://doi.org/10.1145/2393132.2393137
https://doi.org/10.1016/S0020-7373(88)80052-X
https://doi.org/10.1145/2597008.2597140
https://doi.org/10.1007/s10664-016-9477-x
https://doi.org/10.1145/800045.801618
https://doi.org/10.1109/ICPC.2012.6240486
https://doi.org/10.1145/289867
https://doi.org/10.1016/S0020-7373(84)80021-8
https://doi.org/10.1016/0164-1212(87)90032-X
https://doi.org/10.18637/jss.v020.i09


McCabe T (1976) A complexity measure. IEEE Trans Softw Eng SE-2(4):308–320. https://doi.org/10.1109/
TSE.1976.233837

Munson JC, Khoshgoftaar TM (1990) Applications of a relative complexity metric for software project
management. J Syst Softw 12(3):283–291. https://doi.org/10.1016/0164-1212(90)90051-M

Myers GJ (1977) An extension to the cyclomatic measure of program complexity. SIGPLAN Not 12(10):61–
64. https://doi.org/10.1145/954627.954633

Myers RH, Montgomery DC, Vining GG, Robinson TJ (2010) Generalized linear models: with applications
in engineering and the sciences. Wiley, Hoboken

Mynatt BT (1984) The effect of semantic complexity on the comprehension of program modules. Intl J
Man-Mach Stud 21(2):91–103. https://doi.org/10.1016/S0020-7373(84)80060-7

Newell A, Rosenbloom PS (1981) Mechanisms of skill acquisition and the law of practice. In: Anderson
JR (ed) Cognitive skills and their acquisition. Lawrence Erlbaum Association, pp 1–55

Nunez WZ, Marin VJ, Rivero CR (2017) ARCC: Assistant For repetitive code comprehension. In: 11th
joint European software engineering conference & symposium foundations of software engineering, pp
999–1003. https://doi.org/10.1145/3106237.3122824

Ohlsson N, Alberg H (1996) Predicting fault-prone software modules in telephone switches. IEEE Trans
Softw Eng 22(12):886–894. https://doi.org/10.1109/32.553637

Parnin C, Siegmund J, Peitek N (2017) On the nature of programmer expertise. In: 28th psychology of
programming interest group annals workshop

Pink DH (2009) Drive: The surprising truth about what motivates us. Tiverhead Hardcover
Piwowarski P (1982) A nesting level complexity measure. SIGPLAN Not 17(9):44–50. https://doi.org/10.

1145/947955.947960
Prechelt L (1999) Comparing Java vs. C/C++ efficiency differences to interpersonal differences. Comm

ACM 42(10):109–112. https://doi.org/10.1145/317665.317683
Rajlich V, Cowan GS (1997) Towards standard for experiments in program comprehension. In: 5th IEEE

international workshop program comprehension, pp 160–161. https://doi.org/10.1109/WPC.1997.601284
Rich C (1987) Inspection methods in programming: Clichés and plans. A.I. Memo 1005, MIT Artificial

Intelligence Laboratory
Rilling J, Klemola T (2003) Identifying comprehension bottlenecks using program slicing and cognitive

complexity metrics. In: 11th IEEE international workshop program comprehension, pp 115–124
Sackman H, Erikson WJ, Grant EE (1968) Exploratory experimental studies comparing online and offline

programming performance. Comm ACM 11(1):3–11. https://doi.org/10.1145/362851.362858
Schneidewind N, Hinchey M (2009) A complexity reliability model. In: 20th international symposium

software reliability engineering, pp 1–10. https://doi.org/10.1109/ISSRE.2009.10
Shao J, Wang Y (2003) A new measure of software complexity based on cognitive weights. Canadian. J Elect

Comput Eng 28(2):69–74. https://doi.org/10.1109/CJECE.2003.1532511
Sharafi Z, Soh Z, Guéhéneuc Y-G, Antoniol G (2012) Women and men — different but equal: on the impact

of identifier style on source code reading. In: 20th international conferenc program comprehension,
pp 27–36. https://doi.org/10.1109/ICPC.2012.6240505

Shepperd M (1988) A critique of cyclomatic complexity as a software metric. Softw Eng J 3(2):30–36.
https://doi.org/10.1049/sej.1988.0003

Shneiderman B, Mayer R (1979) Syntactic/semantic interactions in programmer behavior: a model and
experimental results. Intl J Comput Inf Syst 8(3):219–238. https://doi.org/10.1007/BF00977789

Siegmund J, Kästner C, Liebig J, Apel S, Hanenberg S (2014) Measuring and modeling programming
experience. Empir Softw Eng 19(5):1299–1334. https://doi.org/10.1007/s10664-013-9286-4

Siegmund J, Schumann J (2015) Confounding parameters on program comprehension: a literature survey.
Empir Softw Eng 20(4):1159–1192. https://doi.org/10.1007/s10664-014-9318-8

Soloway E, Ehrlich K (1984) Empirical studies of programming knowledge. IEEE Trans Softw Eng SE-
10(5):595–609. https://doi.org/10.1109/TSE.1984.5010283

Sonnentag S (1998) Expertise in professional software design: a process study. J App Psychol 83(5):703–715.
https://doi.org/10.1037/0021-9010.83.5.703

Sonnentag S, Niessen C, Volmer J (2006) Expertise in software design. In: Ericsson KA, Charness N, Fel-
tovich PJ, Hoffman RR (eds) The Cambridge handbook of expertise and expert performance. Cambridge
University Press, pp 373–387

Vinju JJ, Godfrey MW (2012) What does control flow really look like? Eyeballing the cyclomatic complexity
metric. In: 12th IEEE international working conference source code analysis & manipulation

Empir Software Eng (2019) 24:287–328326

https://doi.org/10.1109/TSE.1976.233837
https://doi.org/10.1109/TSE.1976.233837
https://doi.org/10.1016/0164-1212(90)90051-M
https://doi.org/10.1145/954627.954633
https://doi.org/10.1016/S0020-7373(84)80060-7
https://doi.org/10.1145/3106237.3122824
https://doi.org/10.1109/32.553637
https://doi.org/10.1145/947955.947960
https://doi.org/10.1145/947955.947960
https://doi.org/10.1145/317665.317683
https://doi.org/10.1109/WPC.1997.601284
https://doi.org/10.1145/362851.362858
https://doi.org/10.1109/ISSRE.2009.10
https://doi.org/10.1109/CJECE.2003.1532511
https://doi.org/10.1109/ICPC.2012.6240505
https://doi.org/10.1049/sej.1988.0003
https://doi.org/10.1007/BF00977789
https://doi.org/10.1007/s10664-013-9286-4
https://doi.org/10.1007/s10664-014-9318-8
https://doi.org/10.1109/TSE.1984.5010283
https://doi.org/10.1037/0021-9010.83.5.703


von Mayrhauser A, Vans AM (1995) Program comprehension during software maintenance and evolution.
Computer 28(8):44–55. https://doi.org/10.1109/2.402076

Welch BL (1938) The significance of the difference between two means when the population variances are
unequal. Biometrika 29(3/4):350–362

Weyuker EJ (1988) Evaluating software complexity measures. IEEE Trans Softw Eng 14(9):1357–1365.
https://doi.org/10.1109/32.6178,

Yoder KJ, Belmonte MK (2010) Combining computer game-based behavioral experiments with high-density
EEG and infrared gaze tracking. J Vis Exp 46, art. no. e2320. https://doi.org/10.3791/2320

Shulamyt Ajami is currently a Ph.D student at the Department of Computer Science in the Hebrew Univer-
sity of Jerusalem. Her main research deals with the contribution of intra-function structure to the complexity
of code.

Yonatan Woodbridge received his M.A degree in statistics from the Hebrew University of Jerusalem in
2016. He is currently a Ph.D student at the Department of Statistics, the Hebrew University of Jerusalem. His
main research interest lies in the field of statistical signal processing.

Empir Software Eng (2019) 24:287–328 327

https://doi.org/10.1109/2.402076
https://doi.org/10.1109/32.6178
https://doi.org/10.3791/2320


Dror G. Feitelson holds the Berthold Badler chair in Computer Science at the School of Computer Science
and Engineering of the Hebrew University of Jerusalem, where he has been a faculty member since 1995
and heads the experimental systems lab. His research interests are in performance evaluation and software
engineering, with an emphasis on human aspects and experimental methodology. His current research focus
is on code complexity and comprehension, and especially what makes software hard to understand.

Empir Software Eng (2019) 24:287–328328


	Syntax, predicates, idioms — what really affects code complexity?
	Abstract
	Introduction
	Related Work
	Research Questions
	Experimental Design
	Considerations for Code Snippet Selection
	Choosing a Common Framework
	Creating the Pool of Snippets
	Version a: Simple Disjunction
	Version b: Two-Level
	Version c: Recursive Structure
	Using Negation
	Using Loops
	Loop Idioms and Their Violation

	Generating a Test Plan

	Experimental Platform
	Considerations and Implementation Principles
	The Platform

	Experiment Execution
	Subjects
	Variables
	Statistical Methodology
	Within Subject Design
	Statistical Approach for Comparing Times for Answering Snippets
	Statistical Approach for Comparing Error Rates on Snippets
	Statistical Approach for Demographic Variables
	Linear Model


	Results for Complexity Effects
	Learning Effects
	Descriptive Statistics
	Results of Statistical Analysis
	RQ 1: if vs. for
	RQ 2a: Size of Conditional
	RQ 2b: Single Expression vs. Structure
	RQ 2c: Flat vs. Nested Structure
	RQ 2d: Use of Negation
	RQ 3: Common Loop Idioms

	Correlation of Time and Error Rate

	Results for Demographic Effects
	Threats to Validity
	Conclusions and Future Work
	Verifiability
	Acknowledgments
	References


