
Testing (Part 2/3)
Martin Kellogg

Testing (part 2)

Today’s agenda:

● Test quality
● Test suite quality

○ lens of logic: coverage
○ lens of statistics: testing on real users
○ lens of adversity: mutation testing

● Reading Quiz

Testing (part 2)

Today’s agenda:

● Test quality
● Test suite quality

○ lens of logic: coverage
○ lens of statistics: testing on real users
○ lens of adversity: mutation testing

● Reading Quiz

Review: parts of a test

Definition: a test executes a given input on a program (the system
under test or SUT) and compares the SUT’s output to a given oracle

./prog < input > output && diff output oracle

oraclecomparatoroutputinputSUT

Test quality: what makes a test good or bad?

 Good Bad

Test quality: what makes a test good or bad?

 Good Bad

In-class exercise: with a partner, spend ~2 minutes making a list
of factors that make a test “good” or “bad”. Then, the TA will
spend ~3 minutes collecting your answers on the whiteboard.
The TA should pause the video during this exercise.

Test quality: what makes a test good or bad?

● isolated (only tests one thing)
● runs quickly
● strong oracle
● hermetic
● easy to understand
● deterministic
● etc.

● brittle
● slow
● weak oracle
● redundant
● hard to understand (“mystery”)
● non-deterministic (“flaky”)
● etc.

 Good Bad

Test quality: what makes a test good or bad?

● isolated (only tests one thing)
● runs quickly
● strong oracle
● hermetic
● easy to understand
● deterministic
● etc.

● brittle
● slow
● weak oracle
● redundant
● hard to understand (“mystery”)
● non-deterministic (“flaky”)
● etc.

 Good Bad

“Hermetic” tests

Definition: a hermetic test is fully self-contained: its behavior doesn’t
depend on anything except the test itself and the SUT

“Hermetic” tests

Definition: a hermetic test is fully self-contained: its behavior doesn’t
depend on anything except the test itself and the SUT

● avoid dependencies on the environment (e.g., software installed
on the machine, environment variables, contents of other files,
operating system behaviors, etc.)

● being hermetic is also important for builds generally (we’ll
discuss more in our lecture on build systems later this semester)

Brittle tests

Definition: a brittle test fails for reasons unrelated to what it
ostensibly tests

Brittle tests

Definition: a brittle test fails for reasons unrelated to what it
ostensibly tests

● common causes:
○ not being hermetic
○ testing too much at once
○ comparator or oracle is too specific

Mystery tests

Definition: a mystery test fails for reasons that are not immediately
clear

Mystery tests

Definition: a mystery test fails for reasons that are not immediately
clear

● commonly co-occurs with brittleness: test is brittle because it is
too complicated, and when it fails it’s not clear why
○ especially common for very large, end-to-end tests

Mystery tests

Definition: a mystery test fails for reasons that are not immediately
clear

● commonly co-occurs with brittleness: test is brittle because it is
too complicated, and when it fails it’s not clear why
○ especially common for very large, end-to-end tests

● best practice: tests should give as much information as possible
when they fail
○ implication: when writing tests, think about why they might

fail in the future and document that in the test itself

Flaky tests

Definition: a flaky test fails non-deterministically: that is, they
sometimes pass and sometimes fail

Flaky tests

Definition: a flaky test fails non-deterministically: that is, they
sometimes pass and sometimes fail

● sometimes caused by brittleness (e.g., relying on the network)

Flaky tests

Definition: a flaky test fails non-deterministically: that is, they
sometimes pass and sometimes fail

● sometimes caused by brittleness (e.g., relying on the network)
● sometimes caused by non-determinism in the program itself

○ e.g., relying on randomness, iteration order of hashtables, etc.

Flaky tests

Definition: a flaky test fails non-deterministically: that is, they
sometimes pass and sometimes fail

● sometimes caused by brittleness (e.g., relying on the network)
● sometimes caused by non-determinism in the program itself

○ e.g., relying on randomness, iteration order of hashtables, etc.
● are a major problem in practice

○ difficult to debug, so waste a lot of developer time
○ detecting them is an active research area

Testing (part 2)

Today’s agenda:

● Test quality
● Test suite quality

○ lens of logic: coverage
○ lens of statistics: testing on real users
○ lens of adversity: mutation testing

● Reading Quiz

Test suite quality

● We’ve talked about what makes individual test cases good or bad

Test suite quality

● We’ve talked about what makes individual test cases good or bad
● However, programs typically have more than one test

Test suite quality

● We’ve talked about what makes individual test cases good or bad
● However, programs typically have more than one test

Definition: a test suite is a collection of tests for the same program

Test suite quality

● We’ve talked about what makes individual test cases good or bad
● However, programs typically have more than one test

Definition: a test suite is a collection of tests for the same program

Question: what makes one test suite better or worse than another?

Test suite quality

● We’ve talked about what makes individual test cases good or bad
● However, programs typically have more than one test

Definition: a test suite is a collection of tests for the same program

Question: what makes one test suite better or worse than another?

● not just the sum of the “goodness” of all the individual tests!

Test suite quality: who cares?

Why would we want to evaluate the quality of a test suite?

Test suite quality: who cares?

Why would we want to evaluate the quality of a test suite?

● testing is expensive (e.g., 35% of total IT spending according to
Capgemini World Quality Report, 2015)

Test suite quality: who cares?

Why would we want to evaluate the quality of a test suite?

● testing is expensive (e.g., 35% of total IT spending according to
Capgemini World Quality Report, 2015)

● we want to direct our resources efficiently
○ i.e., avoid writing new tests if we already have a good test suite

Test suite quality: who cares?

Why would we want to evaluate the quality of a test suite?

● testing is expensive (e.g., 35% of total IT spending according to
Capgemini World Quality Report, 2015)

● we want to direct our resources efficiently
○ i.e., avoid writing new tests if we already have a good test suite

● we want to know how much confidence our tests give us
○ ideal world: all tests pass = software is 100% correct

Test suite quality: who cares?

Why would we want to evaluate the quality of a test suite?

● testing is expensive (e.g., 35% of total IT spending according to
Capgemini World Quality Report, 2015)

● we want to direct our resources efficiently
○ i.e., avoid writing new tests if we already have a good test suite

● we want to know how much confidence our tests give us
○ ideal world: all tests pass = software is 100% correct

● sometimes, we may not even have enough resources to run all tests
○ we’ll discuss test suite minimization next time

Ways to think about test suite quality

Today we’re going to consider three ways to think about test suite
quality:

● test suite quality through the lens of logic
● test suite quality through the lens of statistics
● test suite quality through the lens of adversity

The Lens of Logic

Informally, we want the following property:

● The program passes the tests if and only if it does all the right
things and none of the wrong things.

The Lens of Logic

Informally, we want the following property:

● The program passes the tests if and only if it does all the right
things and none of the wrong things.
○ Pass all tests → program adheres to requirements
○ Each failing test → program behaves incorrectly

The Lens of Logic: intuition

● Suppose you were writing a sqrt program and one of the
requirements was that it should abort gracefully on negative
inputs.

The Lens of Logic: intuition

● Suppose you were writing a sqrt program and one of the
requirements was that it should abort gracefully on negative
inputs.

● Suppose further that your test suite does not include any
negative inputs.

The Lens of Logic: intuition

● Suppose you were writing a sqrt program and one of the
requirements was that it should abort gracefully on negative
inputs.

● Suppose further that your test suite does not include any
negative inputs.

● Can we conclude that passing all of the tests implies adhering to
all of the requirements?

The Lens of Logic: coverage

● We desire all of the requirements to be covered (“checked”) by
the test suite.

The Lens of Logic: coverage

● We desire all of the requirements to be covered (“checked”) by
the test suite.

● For our purposes, X coverage is the degree to which X is
executed/exercised by the test suite.

The Lens of Logic: coverage

● We desire all of the requirements to be covered (“checked”) by
the test suite.

● For our purposes, X coverage is the degree to which X is
executed/exercised by the test suite.

● Code coverage is the degree to which the source code is
executed by the test suite.

The Lens of Logic: coverage

● We desire all of the requirements to be covered (“checked”) by
the test suite.

● For our purposes, X coverage is the degree to which X is
executed/exercised by the test suite.

● Code coverage is the degree to which the source code is
executed by the test suite.
○ How do we actually measure code coverage?

Coverage: statement coverage

Definition: Statement coverage is the fraction of source statements
that are executed by the test suite.

Coverage: statement coverage

Definition: Statement coverage is the fraction of source statements
that are executed by the test suite.

● Key Logical Observation: If we never test line X then testing
cannot rule out the presence of a bug on line X

Coverage: statement coverage

Definition: Statement coverage is the fraction of source statements
that are executed by the test suite.

● Key Logical Observation: If we never test line X then testing
cannot rule out the presence of a bug on line X

● Example: if our test executes lines 1 and 2, but there is a bug on
line 3, there is no way that our test will find the bug!

Aside: “don’t do bad things”

● We can test that programs do not do certain bad things
○ e.g., “don't segfault”, “don't send my password to Microsoft”,

“on this one particular input, don't get the wrong answer”
● Note that “I never do bad things” is not the same as “I

always/eventually do good things”
○ For more information, take a class on Modal Logic or read

about Liveness vs. Safety properties

Coverage: statement coverage

Implication for statement coverage: you could test line X and still
have a bug on line X

● e.g., foo(a,b) { return a/b; }
● test: foo(6,2) does not throw DivideByZeroException

Coverage: statement coverage

Implication for statement coverage: you could test line X and still
have a bug on line X

● e.g., foo(a,b) { return a/b; }
● test: foo(6,2) does not throw DivideByZeroException

But testing line X gives us some small but non-zero confidence in the
correctness of line X

Coverage: statement coverage: assumptions

We’ve made some assumptions in our discussion of statement
coverage so far:

Coverage: statement coverage: assumptions

We’ve made some assumptions in our discussion of statement
coverage so far:

● We gain the same amount of confidence (or information) for each
visited line

● The amount of confidence (or information) we gain per visited
line is positive

● …

Coverage: computing statement coverage

Coverage: computing statement coverage

● At its simplest, this is just print-statement debugging

Coverage: computing statement coverage

● At its simplest, this is just print-statement debugging
● Put a print statement before every line of the program

○ Run all the tests, collect all the printed information, remove
duplicates, count

Coverage: computing statement coverage

● At its simplest, this is just print-statement debugging
● Put a print statement before every line of the program

○ Run all the tests, collect all the printed information, remove
duplicates, count

● Practical concern: the observer effect (from physics) is the fact
that simply observing a situation or phenomenon necessarily
changes that phenomenon.

Coverage: computing statement coverage

● At its simplest, this is just print-statement debugging
● Put a print statement before every line of the program

○ Run all the tests, collect all the printed information, remove
duplicates, count

● Practical concern: the observer effect (from physics) is the fact
that simply observing a situation or phenomenon necessarily
changes that phenomenon.
○ Implication for computing statement coverage: program

might depend on timing info, amount of I/O, etc.

Coverage: computing statement coverage

Definition: Coverage instrumentation modifies a program to record
coverage information in a way that minimizes the observer effect.

Coverage: computing statement coverage

Definition: Coverage instrumentation modifies a program to record
coverage information in a way that minimizes the observer effect.

● This can be done at the source or binary level.
● Don't actually print to stdout/stderr
● Don't slow things down too much

○ Pre-check before printing a duplicate?
● Don't introduce infinite loops

○ Instrument “print” with a call to “print”?

Coverage: computing statement coverage

Definition: Coverage instrumentation modifies a program to record
coverage information in a way that minimizes the observer effect.

● This can be done at the source or binary level.
● Don't actually print to stdout/stderr
● Don't slow things down too much

○ Pre-check before printing a duplicate?
● Don't introduce infinite loops

○ Instrument “print” with a call to “print”?

Good news: coverage
instrumentation is a
“solved” problem:
● e.g., Jest does it

automatically

Coverage: limitations of statement coverage

● As we’ve seen, executing every line doesn’t guarantee no bugs

Coverage: limitations of statement coverage

● As we’ve seen, executing every line doesn’t guarantee no bugs
● Not only that, but executing every line doesn’t even guarantee

that we cover all of the program’s behaviors

Coverage: limitations of statement coverage

● As we’ve seen, executing every line doesn’t guarantee no bugs
● Not only that, but executing every line doesn’t even guarantee

that we cover all of the program’s behaviors
○ many behaviors are dependent on data that causes particular

control flows: that is, that cause different branches of
conditionals to be executed

Coverage: limitations of statement coverage

● As we’ve seen, executing every line doesn’t guarantee no bugs
● Not only that, but executing every line doesn’t even guarantee

that we cover all of the program’s behaviors
○ many behaviors are dependent on data that causes particular

control flows: that is, that cause different branches of
conditionals to be executed

● Informally, the problem of ensuring that we cover interesting
data values may reduce to the problem of ensuring that we cover
all branches of conditionals

Aside: reductions

Your CS education is incomplete until you have reduced one problem
to another

● examples: reducing something to the halting problem to show
that it is not computable; reducing something to satisfiability to
show that it is NP-hard

● should be covered in a theory of computation class (likely near
the end of the semester)

Aside: reductions

Your CS education is incomplete until you have reduced one problem
to another

● examples: reducing something to the halting problem to show
that it is not computable; reducing something to satisfiability to
show that it is NP-hard

● should be covered in a theory of computation class (likely near
the end of the semester)

Reduction is a powerful tool for
thinking about problems: it lets
you solve difficult problems
indirectly by re-using solutions
for other, related problems.

Coverage: branch coverage

Definition: Branch coverage is a test suite quality metric that counts
the total number of conditional branches exercised by that test suite
(i.e., if true and if false are counted separately)

Coverage: branch coverage

Definition: Branch coverage is a test suite quality metric that counts
the total number of conditional branches exercised by that test suite
(i.e., if true and if false are counted separately)

Note that branch coverage can subsume line coverage:

foo(a):
 if a > 5:
 print “x”
 print “y”

Coverage: branch coverage

Definition: Branch coverage is a test suite quality metric that counts
the total number of conditional branches exercised by that test suite
(i.e., if true and if false are counted separately)

Note that branch coverage can subsume line coverage:

foo(a):
 if a > 5:
 print “x”
 print “y”

Test Suite { foo(7)}
has 100% line
coverage but 50%
branch coverage.

Test Suite { foo(7)}
has 100% line
coverage but 50%
branch coverage.

Coverage: branch coverage

Definition: Branch coverage is a test suite quality metric that counts
the total number of conditional branches exercised by that test suite
(i.e., if true and if false are counted separately)

Note that branch coverage can subsume line coverage:

foo(a):
 if a > 5:
 print “x”
 print “y”

Test Suite { foo(7), foo(4)}
has 100% line coverage and
100% branch coverage.

Coverage: branch vs statement coverage

Coverage: branch vs statement coverage

● Branch coverage typically gives us more confidence than line
coverage

Coverage: branch vs statement coverage

● Branch coverage typically gives us more confidence than line
coverage
○ Typically, 100% branch coverage implies 100% line coverage

Coverage: branch vs statement coverage

● Branch coverage typically gives us more confidence than line
coverage
○ Typically, 100% branch coverage implies 100% line coverage

● However, branch coverage is “more expensive” in the sense that
it is harder for a test suite to have high branch coverage than to
have high line coverage

Coverage: branch vs statement coverage

● Branch coverage typically gives us more confidence than line
coverage
○ Typically, 100% branch coverage implies 100% line coverage

● However, branch coverage is “more expensive” in the sense that
it is harder for a test suite to have high branch coverage than to
have high line coverage
○ Note: quality isn't really “more expensive”, you were just

fooling yourself before by thinking line coverage was OK.
Being correct is expensive.

Coverage: other kinds of coverage

● Function Coverage: what fraction of functions have been called?
● Condition Coverage: what fraction of boolean subexpressions

have been evaluated to both true and also (e.g., on another run)
to false?
○ Comparing this to branch coverage is a not-uncommon test

question …
● Modified Condition / Decision Coverage (MC/DC): function

coverage + branch coverage (this is a simplification)
○ Used in mission critical (e.g., avionics) software

Ways to think about test suite quality

Today we’re going to consider three ways to think about test suite
quality:

● test suite quality through the lens of logic
● test suite quality through the lens of statistics
● test suite quality through the lens of adversity

The Lens of Statistics: intuition

The Lens of Statistics: intuition

● The bugs experienced by users are the ones that matter.

The Lens of Statistics: intuition

● The bugs experienced by users are the ones that matter.
○ Dually, bugs never experienced by users do not matter.

The Lens of Statistics: intuition

● The bugs experienced by users are the ones that matter.
○ Dually, bugs never experienced by users do not matter.

● If user-experienced bugs are the ones that matter, testing should
be devoted to sampling those inputs that users will provide

The Lens of Statistics: intuition

● The bugs experienced by users are the ones that matter.
○ Dually, bugs never experienced by users do not matter.

● If user-experienced bugs are the ones that matter, testing should
be devoted to sampling those inputs that users will provide

● Two views:

The Lens of Statistics: intuition

● The bugs experienced by users are the ones that matter.
○ Dually, bugs never experienced by users do not matter.

● If user-experienced bugs are the ones that matter, testing should
be devoted to sampling those inputs that users will provide

● Two views:
○ Sample what users do most commonly

The Lens of Statistics: intuition

● The bugs experienced by users are the ones that matter.
○ Dually, bugs never experienced by users do not matter.

● If user-experienced bugs are the ones that matter, testing should
be devoted to sampling those inputs that users will provide

● Two views:
○ Sample what users do most commonly
○ Sample what causes the most harm if users do it

The Lens of Statistics: intuition

● The bugs experienced by users are the ones that matter.
○ Dually, bugs never experienced by users do not matter.

● If user-experienced bugs are the ones that matter, testing should
be devoted to sampling those inputs that users will provide

● Two views:
○ Sample what users do most commonly
○ Sample what causes the most harm if users do it

● Compare:
○ Risk = (Probability of Event) * (Damage if Event Occurs)

Example: limited input domain

● Suppose you are writing a point-of-sale cashier application that
makes change for a dollar. Given any price between 1 and 100
cents, you must indicate the coins to give out as change.
○ e.g., 23 → return 3 quarters and 2 pennies

Example: limited input domain

● Suppose you are writing a point-of-sale cashier application that
makes change for a dollar. Given any price between 1 and 100
cents, you must indicate the coins to give out as change.
○ e.g., 23 → return 3 quarters and 2 pennies

● In this scenario, you can exhaustively test all 100 inputs that will
occur to real users in the real world
○ In some sense, it does not matter if that is 100% statement or

code coverage (e.g., dead code): your testing is still exhaustive
of the inputs that will matter in the real world

Limitations on users in the real world

● Usually, in the real world, your input domain isn’t so limited
● But, you might still be able to say:

Limitations on users in the real world

● Usually, in the real world, your input domain isn’t so limited
● But, you might still be able to say:

○ Suppose users will only ever cause lines 1, 2 and 3 of your
program to be executed

Limitations on users in the real world

● Usually, in the real world, your input domain isn’t so limited
● But, you might still be able to say:

○ Suppose users will only ever cause lines 1, 2 and 3 of your
program to be executed

○ If you can be sure of this, then there is no need to test line 4

Limitations on users in the real world

● Usually, in the real world, your input domain isn’t so limited
● But, you might still be able to say:

○ Suppose users will only ever cause lines 1, 2 and 3 of your
program to be executed

○ If you can be sure of this, then there is no need to test line 4
■ Aside: why do you have line 4?

Limitations on users in the real world

● Usually, in the real world, your input domain isn’t so limited
● But, you might still be able to say:

○ Suppose users will only ever cause lines 1, 2 and 3 of your
program to be executed

○ If you can be sure of this, then there is no need to test line 4
■ Aside: why do you have line 4?

○ Even if line 4 has a bug, users will never encounter it

Limitations on users in the real world

● Usually, in the real world, your input domain isn’t so limited
● But, you might still be able to say:

○ Suppose users will only ever cause lines 1, 2 and 3 of your
program to be executed

○ If you can be sure of this, then there is no need to test line 4
■ Aside: why do you have line 4?

○ Even if line 4 has a bug, users will never encounter it
● Note “will”: this either requires a prediction of the future or a

finite input domain

The Lens of Statistics

● Key idea: Sample test inputs from the population of inputs users
will actually provide in the real world

The Lens of Statistics

● Key idea: Sample test inputs from the population of inputs users
will actually provide in the real world
○ This approach inherits both advantages and disadvantages

from other kinds of statistical techniques

The Lens of Statistics

● Key idea: Sample test inputs from the population of inputs users
will actually provide in the real world
○ This approach inherits both advantages and disadvantages

from other kinds of statistical techniques

Key advantages:
● confidence that tests are indicative of the real world
● can use statistical techniques to estimate the chance that our

tests don’t cover some important behavior

The Lens of Statistics: disadvantages

The Lens of Statistics: disadvantages

● In statistics, sampling error is incurred when the statistical
characteristics of a population are estimated from a subset, or
sample, of that population.

The Lens of Statistics: disadvantages

● In statistics, sampling error is incurred when the statistical
characteristics of a population are estimated from a subset, or
sample, of that population.
○ “Our test suite is a sample of inputs that could occur in the

real world. Our program behaves well on our test suite.”

The Lens of Statistics: disadvantages

● In statistics, sampling error is incurred when the statistical
characteristics of a population are estimated from a subset, or
sample, of that population.
○ “Our test suite is a sample of inputs that could occur in the

real world. Our program behaves well on our test suite.” →
later →

The Lens of Statistics: disadvantages

● In statistics, sampling error is incurred when the statistical
characteristics of a population are estimated from a subset, or
sample, of that population.
○ “Our test suite is a sample of inputs that could occur in the

real world. Our program behaves well on our test suite.” →
later → “Our program behaves badly on some other untested
real input. Sampling error!”

The Lens of Statistics: disadvantages

● In statistics, sampling error is incurred when the statistical
characteristics of a population are estimated from a subset, or
sample, of that population.
○ “Our test suite is a sample of inputs that could occur in the

real world. Our program behaves well on our test suite.” →
later → “Our program behaves badly on some other untested
real input. Sampling error!”

● Testing gives confidence the same way sampling (or polling) gives
confidence.

The Lens of Statistics: disadvantages

● In statistics, sampling bias is a bias in which a sample is collected
in such a way that some members of the intended population are
less likely to be included than others.

The Lens of Statistics: disadvantages

● In statistics, sampling bias is a bias in which a sample is collected
in such a way that some members of the intended population are
less likely to be included than others.
○ Suppose you are conducting a poll to see who will win the

next election, but you only poll republicans.

The Lens of Statistics: disadvantages

● In statistics, sampling bias is a bias in which a sample is collected
in such a way that some members of the intended population are
less likely to be included than others.
○ Suppose you are conducting a poll to see who will win the

next election, but you only poll republicans.
○ Suppose you are creating tests to see if your program will

crash, but you only poll nice, small, inputs.

The Lens of Statistics: disadvantages

● Possible solution: there are a number of well-established
sampling techniques in the field of statistics to help address such
biases

The Lens of Statistics: disadvantages

● Possible solution: there are a number of well-established
sampling techniques in the field of statistics to help address such
biases
○ Unfortunately, they often require knowing something about

the distribution of the full population from which you want to
sample a subpopulation

The Lens of Statistics: disadvantages

● Possible solution: there are a number of well-established
sampling techniques in the field of statistics to help address such
biases
○ Unfortunately, they often require knowing something about

the distribution of the full population from which you want to
sample a subpopulation

● The basic problem in SE is that the underlying distribution of real
user inputs is not known

The Lens of Statistics: practical options

The Lens of Statistics: practical options

Definition: Beta testing is testing done by external users (often using
a special beta version of the program).

The Lens of Statistics: practical options

Definition: Beta testing is testing done by external users (often using
a special beta version of the program).
● in contrast to alpha testing, which is usually performed by

developers or a quality assurance team

The Lens of Statistics: practical options

Definition: Beta testing is testing done by external users (often using
a special beta version of the program).
● in contrast to alpha testing, which is usually performed by

developers or a quality assurance team
● Beta testing can be viewed as directly sampling the space of user

inputs

The Lens of Statistics: practical options

Definition: A/B testing involves two variants of your software, A and
B, which differ only in one feature. Different users are shown
different variants and responses are recorded.

The Lens of Statistics: practical options

Definition: A/B testing involves two variants of your software, A and
B, which differ only in one feature. Different users are shown
different variants and responses are recorded.

The Lens of Statistics: practical options

Definition: A/B testing involves two variants of your software, A and
B, which differ only in one feature. Different users are shown
different variants and responses are recorded.

● A/B testing is an instance

of two-sample

hypothesis testing, like

you’d encounter in a

statistics class.

The Lens of Statistics: practical options

● Recall two guiding approaches:
○ Sample what users will do most commonly
○ Sample what will cause the most harm

The Lens of Statistics: practical options

● Recall two guiding approaches:
○ Sample what users will do most commonly
○ Sample what will cause the most harm

● The former is sometimes called workload generation
○ Common for databases, webservers, etc.

The Lens of Statistics: practical options

● Recall two guiding approaches:
○ Sample what users will do most commonly
○ Sample what will cause the most harm

● The former is sometimes called workload generation
○ Common for databases, webservers, etc.

● The latter often relates to computer security
○ E.g., exploit generation, penetration testing, etc.

The Lens of Statistics: practical options

● Recall two guiding approaches:
○ Sample what users will do most commonly
○ Sample what will cause the most harm

● The former is sometimes called workload generation
○ Common for databases, webservers, etc.

● The latter often relates to computer security
○ E.g., exploit generation, penetration testing, etc.

● Damage can also be in other forms
○ e.g., for Amazon, “damage” might be “customer doesn’t

complete the purchase”

Ways to think about test suite quality

Today we’re going to consider three ways to think about test suite
quality:

● test suite quality through the lens of logic
● test suite quality through the lens of statistics
● test suite quality through the lens of adversity

The Lens of Adversity: finding bugs

● Suppose you wanted to evaluate the quality of two
truffle-sniffing pigs

The Lens of Adversity: finding bugs

● Suppose you wanted to evaluate the quality of two
truffle-sniffing pigs
○ Intuition: test whether they can actually find truffles!

The Lens of Adversity: finding bugs

● Suppose you wanted to evaluate the quality of two
truffle-sniffing pigs
○ Intuition: test whether they can actually find truffles!

● Test idea: hide some truffles in your backyard and see how many
each pig finds

The Lens of Adversity: finding bugs

● Suppose you wanted to evaluate the quality of two
truffle-sniffing pigs
○ Intuition: test whether they can actually find truffles!

● Test idea: hide some truffles in your backyard and see how many
each pig finds
○ The pig that finds more of the hidden truffles in your

backyard is assumed to find more real truffles in the wild

The Lens of Adversity: finding bugs

● Suppose you wanted to evaluate the quality of two
truffle-sniffing pigs
○ Intuition: test whether they can actually find truffles!

● Test idea: hide some truffles in your backyard and see how many
each pig finds
○ The pig that finds more of the hidden truffles in your

backyard is assumed to find more real truffles in the wild
● Suppose you wanted to evaluate the quality of two bug-finding

test suites …

The Lens of Adversity: mutation testing

Definition: Mutation testing (or mutation analysis) is a test suite
adequacy metric in which the quality of a test suite is related to the
number of intentionally-added defects it finds

The Lens of Adversity: mutation testing

Definition: Mutation testing (or mutation analysis) is a test suite
adequacy metric in which the quality of a test suite is related to the
number of intentionally-added defects it finds
● Informally: “You claim your test suite is really great at finding

security bugs? Well, I'll just intentionally add a bug to my source
code and see if your test suite finds it!”

Mutation testing: verisimilitude

● In the truffle-pig example, if every truffle I hide in my backyard is
next to a smelly red flower, a pig that finds them all may not
actually do well in the real world

Mutation testing: verisimilitude

● In the truffle-pig example, if every truffle I hide in my backyard is
next to a smelly red flower, a pig that finds them all may not
actually do well in the real world
○ The truffle placements I made up were not indicative of

real-world truffles

Mutation testing: verisimilitude

● In the truffle-pig example, if every truffle I hide in my backyard is
next to a smelly red flower, a pig that finds them all may not
actually do well in the real world
○ The truffle placements I made up were not indicative of

real-world truffles
● Similarly, if I add a bunch of defects to my software that are not

the sort of defects real humans would make, then mutation
testing is uninformative

Mutation testing: verisimilitude

● In the truffle-pig example, if every truffle I hide in my backyard is
next to a smelly red flower, a pig that finds them all may not
actually do well in the real world
○ The truffle placements I made up were not indicative of

real-world truffles
● Similarly, if I add a bunch of defects to my software that are not

the sort of defects real humans would make, then mutation
testing is uninformative
○ Implication: mutation testing requires us to know what real

bugs look like

Mutation testing: defect seeding

Definition: Defect seeding is the process of intentionally introducing
a defect into a program.

Mutation testing: defect seeding

Definition: Defect seeding is the process of intentionally introducing
a defect into a program.
● The defect introduced is typically intentionally similar to defects

introduced by real developers.

Mutation testing: defect seeding

Definition: Defect seeding is the process of intentionally introducing
a defect into a program.
● The defect introduced is typically intentionally similar to defects

introduced by real developers.
● The seeding is typically done by changing the source code.

Mutation testing: defect seeding

Definition: Defect seeding is the process of intentionally introducing
a defect into a program.
● The defect introduced is typically intentionally similar to defects

introduced by real developers.
● The seeding is typically done by changing the source code.
● For mutation testing, defect seeding is typically done

automatically (given a model of what human bugs look like)

Mutation testing: defect seeding

Definition: Defect seeding is the process of intentionally introducing
a defect into a program.
● The defect introduced is typically intentionally similar to defects

introduced by real developers.
● The seeding is typically done by changing the source code.
● For mutation testing, defect seeding is typically done

automatically (given a model of what human bugs look like)

This is exactly how
our “fault injection”
system for testing
your IP1&2 tests
works.

Mutation testing: mutation operators

Definition: A mutation operator systematically changes a program
point. In mutation testing, the mutation operators are modeled on
historical human defects.

Mutation testing: mutation operators

Definition: A mutation operator systematically changes a program
point. In mutation testing, the mutation operators are modeled on
historical human defects.
● Example mutations:

○ if (a < b) → if (a <= b)
○ if (a == b) → if (a != b)
○ a = b + c → a = b - c
○ f(); g(); → g(); f();
○ x = y → x = z

Mutation testing: mutants

Definition: A mutant (or variant) is a version of the original program
produced by applying one or more mutation operators to one or
more program locations.

Mutation testing: mutants

Definition: A mutant (or variant) is a version of the original program
produced by applying one or more mutation operators to one or
more program locations.
Definition: The order of a mutant is the number of mutation
operators applied.

Mutation testing: mutants

Definition: A mutant (or variant) is a version of the original program
produced by applying one or more mutation operators to one or
more program locations.
Definition: The order of a mutant is the number of mutation
operators applied.

// original // 2nd-order mutant
if (a < b): if (a <= b):

x = a + b → x = a – b
print(x) print(x)

Mutation testing: competent programmers

● The competent programmer hypothesis holds that program
faults are syntactically small and can be corrected with a few
keystrokes.

Mutation testing: competent programmers

● The competent programmer hypothesis holds that program
faults are syntactically small and can be corrected with a few
keystrokes.
○ Programmers write programs that are largely correct. Thus

the mutants simulate the likely effect of real faults.

Mutation testing: competent programmers

● The competent programmer hypothesis holds that program
faults are syntactically small and can be corrected with a few
keystrokes.
○ Programmers write programs that are largely correct. Thus

the mutants simulate the likely effect of real faults.
○ Therefore, if the test suite is good at catching the artificial

mutants, it will also be good at catching the unknown but
real faults in the program.

Mutation testing: competent programmers

● The competent programmer hypothesis holds that program
faults are syntactically small and can be corrected with a few
keystrokes.
○ Programmers write programs that are largely correct. Thus

the mutants simulate the likely effect of real faults.
○ Therefore, if the test suite is good at catching the artificial

mutants, it will also be good at catching the unknown but
real faults in the program.

Is the competent programmer hypothesis true?
● Yes and no.
● It is true that humans often make simple

typos (e.g., + vs -).
● But it is also true that some bugs are much

more complex than that!

Mutation testing: competent programmers

● The competent programmer hypothesis holds that program
faults are syntactically small and can be corrected with a few
keystrokes.
○ Programmers write programs that are largely correct. Thus

the mutants simulate the likely effect of real faults.
○ Therefore, if the test suite is good at catching the artificial

mutants, it will also be good at catching the unknown but
real faults in the program.

Is the competent programmer hypothesis true?
● Yes and no.
● It is true that humans often make simple

typos (e.g., + vs -).
● But it is also true that some bugs are much

more complex than that!

Mutation testing: coupling effect

● The coupling effect hypothesis holds that complex faults are
“coupled” to simple faults in such a way that a test suite that
detects all simple faults in a program will detect a high
percentage of the complex faults.

Mutation testing: coupling effect

● The coupling effect hypothesis holds that complex faults are
“coupled” to simple faults in such a way that a test suite that
detects all simple faults in a program will detect a high
percentage of the complex faults.

● Is this true?

Mutation testing: coupling effect

● The coupling effect hypothesis holds that complex faults are
“coupled” to simple faults in such a way that a test suite that
detects all simple faults in a program will detect a high
percentage of the complex faults.

● Is this true?
○ Tests that detect simple mutants were also able to detect

over 99% of second- and third-order mutants historically

[A. J. Offutt. Investigations of the software testing coupling effect. ACM Trans. Softw. Eng. Methodol., 1(1):5–20,

Jan. 1992.]

Mutation testing: putting it all together

● A test suite is said to kill (or detect, or reveal) a mutant if the
mutant fails a test that the original passes.

Mutation testing: putting it all together

● A test suite is said to kill (or detect, or reveal) a mutant if the
mutant fails a test that the original passes.

● Mutation testing (or mutation analysis) of a test suite proceeds by
making a number of mutants and measuring the fraction of them
killed by that test suite. This fraction is called the mutation
adequacy score (or mutation score).

Mutation testing: putting it all together

● A test suite is said to kill (or detect, or reveal) a mutant if the
mutant fails a test that the original passes.

● Mutation testing (or mutation analysis) of a test suite proceeds by
making a number of mutants and measuring the fraction of them
killed by that test suite. This fraction is called the mutation
adequacy score (or mutation score).
○ A test suite with a higher score is better.

Mutation testing: putting it all together

● A test suite is said to kill (or detect, or reveal) a mutant if the
mutant fails a test that the original passes.

● Mutation testing (or mutation analysis) of a test suite proceeds by
making a number of mutants and measuring the fraction of them
killed by that test suite. This fraction is called the mutation
adequacy score (or mutation score).
○ A test suite with a higher score is better.

● (Sorry for all of the vocabulary!)

Mutation testing: pros and cons

Mutation testing: pros and cons

● Has the potential to subsume other test suite adequacy criteria
(it can be very good)

Mutation testing: pros and cons

● Has the potential to subsume other test suite adequacy criteria
(it can be very good)

● Difficult to do well:
○ Which mutation operators do you use?
○ Where do you apply them? How often do you apply them?

■ Typically done at random, but how?

Mutation testing: pros and cons

● Has the potential to subsume other test suite adequacy criteria
(it can be very good)

● Difficult to do well:
○ Which mutation operators do you use?
○ Where do you apply them? How often do you apply them?

■ Typically done at random, but how?
● It is very expensive. If you make 1,000 mutants, you must now

run your test suite 1,000 times!
○ We started by saying testing (1x) was expensive!

Mutation testing: equivalent mutant problem

● Suppose you have “x = a + b; y = c + d;” and you swap
those two statements.

Mutation testing: equivalent mutant problem

● Suppose you have “x = a + b; y = c + d;” and you swap
those two statements.

● The resulting program is a mutant, but it is semantically
equivalent to the original.

Mutation testing: equivalent mutant problem

● Suppose you have “x = a + b; y = c + d;” and you swap
those two statements.

● The resulting program is a mutant, but it is semantically
equivalent to the original.
○ So it will pass and fail all of the tests that the original passes

and fails.

Mutation testing: equivalent mutant problem

● Suppose you have “x = a + b; y = c + d;” and you swap
those two statements.

● The resulting program is a mutant, but it is semantically
equivalent to the original.
○ So it will pass and fail all of the tests that the original passes

and fails.
○ So it will dilute the mutation score

Mutation testing: equivalent mutant problem

● Suppose you have “x = a + b; y = c + d;” and you swap
those two statements.

● The resulting program is a mutant, but it is semantically
equivalent to the original.
○ So it will pass and fail all of the tests that the original passes

and fails.
○ So it will dilute the mutation score

● Detecting these “equivalent mutants” is a big deal. How hard is it?

Mutation testing: equivalent mutant problem

● Suppose you have “x = a + b; y = c + d;” and you swap
those two statements.

● The resulting program is a mutant, but it is semantically
equivalent to the original.
○ So it will pass and fail all of the tests that the original passes

and fails.
○ So it will dilute the mutation score

● Detecting these “equivalent mutants” is a big deal. How hard is it?

Remember when I
mentioned reductions
earlier? Now is a good
time to do one!

Mutation testing: equivalent mutant problem

● Detecting these “equivalent mutants” is a big deal. How hard is it?

Mutation testing: equivalent mutant problem

● Detecting these “equivalent mutants” is a big deal. How hard is it?
● It is undecidable! (= there is no algorithm for it that can always

give the correct answer)

Mutation testing: equivalent mutant problem

● Detecting these “equivalent mutants” is a big deal. How hard is it?
● It is undecidable! (= there is no algorithm for it that can always

give the correct answer)
○ by direct reduction to the Halting Problem (or by Rice’s

theorem)

def foo(): # foo halts if and only if
if p1() == p2(): # p1 is equivalent to p2

return 0
foo()

Testing (part 2)

Today’s agenda:

● Test quality
● Test suite quality

○ lens of logic: coverage
○ lens of statistics: testing on real users
○ lens of adversity: mutation testing

● Reading Quiz

Reading Quiz: testing (part 2)

Q1: TRUE or FALSE: The author’s mutation testing tool reports at
most three mutants per line of code.

Q2: TRUE or FALSE: Mutation testing relies on the coupling
hypothesis: mutants are coupled with real bugs if a test suite that is
sensitive enough to detect mutants is also sensitive enough to detect
the more complex real bugs.

Reading Quiz: testing (part 2)

Q1: TRUE or FALSE: The author’s mutation testing tool reports at
most three mutants per line of code.

Q2: TRUE or FALSE: Mutation testing relies on the coupling
hypothesis: mutants are coupled with real bugs if a test suite that is
sensitive enough to detect mutants is also sensitive enough to detect
the more complex real bugs.

Reading Quiz: testing (part 2)

Q1: TRUE or FALSE: The author’s mutation testing tool reports at
most three mutants per line of code.

Q2: TRUE or FALSE: Mutation testing relies on the coupling
hypothesis: mutants are coupled with real bugs if a test suite that is
sensitive enough to detect mutants is also sensitive enough to detect
the more complex real bugs.

Takeaways

● Individual tests should be hermetic and focused
○ avoid flaky and brittle tests

● Three lenses for test suite quality: logic, statistics, and adversity
● Lens of Logic: “no visit X → no find bug in X”

○ leads to statement and branch coverage.
● Lens of Statistics: “sample the inputs the users will make”

○ leads to beta testing, A/B testing.
● Lens of Adversity: “poke realistic holes in the program and see if

you find them”
○ leads to mutation testing.

