Testing (Part 3/3)

Martin Kellogg

Testing (part 3)

Today’s agenda:

Finish up code level design discussion from lecture 2
Test input generation (fuzzing)

Test oracle generation

Test prioritization & test suite minimization

Reading Quiz

Testing (part 3)

Today’s agenda:

Finish up code level design discussion from lecture 2
Test input generation (fuzzing)

Test oracle generation

Test prioritization & test suite minimization

Reading Quiz

In-class exercise: rewrite to avoid magic numbers

function grossTax(income :) : {

if ((0 <= income) && (income <= 10000)) {
return 0

} else if ((10000 < income) && (income <= 20000)) {
return 0.10 * (income - 10000)

} else if ((20000 < income) && (income <= 50000)) {
return 1000 + 0.20 * (income - 20000)

} else {
return 7000 + 0.25 * (income - 50000)

In-class exercise: my solution, part 1

// defines the tax bracket for income lower < income <= upper.
// if upper is null, then lower < income (no upper bound)
type TaxBracket = {
lower: number,
upper: number | null,
base : number,
rate : number
}
let brackets : TaxBracket[] = [
{lower:0, upper:10000, base:0, rate:0},
{lower:10000, upper:20000, base:0, rate:0.10},
{lower:20000, upper:50000, base:1000, rate:0.20},
{lower:50000, upper: null, base:7000, rate:0.25}]

In-class exercise: my solution, part 2

function isInBracket (income : , bracket :)
return (bracket.upper == null) °?
(bracket.lower <= income)
((bracket.lower <= income) && (income < bracket.upper))
}
function income2bracket (income : ,
brackets : [1) : {
return brackets.find (b0 => isInBracket(income, b0))
}
function taxByBracket (income : , bracket :)
return bracket.base + bracket.rate * (income - bracket.lower)
}
function grossTax(income: , brackets: [1)
return taxByBracket(income, income2bracket(income, brackets))

Avoid magic numbers: another example

e Which of the two is simpler?

Avoid magic numbers: another example

e Which of the two is simpler?
e Answer depends on who you ask:
o code writer: magic numbers version is simpler

Avoid magic numbers: another example

e Which of the two is simpler?
e Answer depends on who you ask:
o code writer: magic numbers version is simpler
o : magic numbers version is shorter, but no magic
numbers version is better documented. Toss up.

Avoid magic numbers: another example

e Which of the two is simpler?
e Answer depends on who you ask:
o code writer: magic numbers version is simpler
o : magic numbers version is shorter, but no magic
numbers version is better documented. Toss up.
o code maintainer who needs to make a change: magic
number version is difficult to deal with, no magic numbers
makes the change trivial

Avoid magic numbers: another example

e Which of the two is simpler?
e Answer depends on who you ask:
o code writer: magic numbers version is simpler
o : magic numbers version is shorter, but no magic
numbers version is better documented. Toss up.
o code maintainer who needs to make a change: magic
number version is difficult to deal with, no magic numbers
makes the change trivial

{ Who to optimize for? }

Who to optimize for?

e The code writer: only if you expect to throw the code away after
you use it once.

Who to optimize for?

e The code writer: only if you expect to throw the code away after
you use it once.

Example: simple bash script to accomplish a specific, one-off task

Who to optimize for?

e The code writer: only if you expect to throw the code away after
you use it once.

e Thecode : any code you expect to keep. A good heuristic
that | use: am | going to check this into source control?

Who to optimize for?

e The code writer: only if you expect to throw the code away after
you use it once.

e Thecode : any code you expect to keep. A good heuristic
that | use: am | going to check this into source control?

e Thecode maintainer: any code that is likely to change. This is
most code that you're writing in the real world!

Who to optimize for?

e The code writer: only if you expect to throw the code away after
you use it once.

e Thecode : any code you expect to keep. A good heuristic
that | use: am | going to check this into source control?

e Thecode maintainer: any code that is likely to change. This is
most code that you're writing in the real world!

DANGER: premature optimization via over-engineering
don’t sacrifice readability or usability for maintainability!

Code-level Design

Lecture 2’s agenda:

Why does code-level design matter?
Some general principles, with examples
In-class exercise + break

Automation and linting

Our course style guide

Reading Quiz

A surprise: non-standard formatting

What's wrong with the following (Java) code?

public abstract class racecar {
private final Number of gears = 6;
public abstract wvoid DRIVE() ;

public GetNumberOfGears () {return Number of gears;}

}

A surprise: non-standard formatting

What's wrong with the following (Java) code?

public abstract class racecar {
private final Number of gears = 6;
public abstract wvoid DRIVE() ;

public GetNumberOfGears () {return Number of gears;}

}

A surprise: non-standard formatting

What's wrong with the following (Java) code?

public abstract class RaceCar {
private final NUMBER OF GEARS = 6;
public abstract void drive() ;

public getNumberOfGears () {
return NUMBER OF GEARS;

}

A surprise: non-standard formatting

e Doing this ourselves is time-consuming and error-prone
e How dowe decide which format is best?

A surprise: non-standard formatting

e Doing this ourselves is time-consuming and error-prone
e How do we decide which format is best?

Solution to both problems: use an automatic formatting tool

A surprise: non-standard formatting

e Doing this ourselves is time-consuming and error-prone
e How do we decide which format is best?

Solution to both problems: use an automatic formatting tool

e avoids flamewars about e.g., tabs vs spaces
e automatically enforced = we don't have to think about it
e reduces surprises when reading code

Automated formatters

e There’s at least one for every language you are likely to be using

Automated formatters

e There’s at least one for every language you are likely to be using
o Eg.

o Javahas Spotless, GoogleJavaFormat, Checkstyle

o Python has black, autopep8, yapf

o Go has gofmt

o JavaScript has prettier (which we'll use in this class)

Automated formatters

e There’s at least one for every language you are likely to be using
o Eg.

o Javahas Spotless, GoogleJavaFormat, Checkstyle

o Python has black, autopep8, yapf

o Go has gofmt

o JavaScript has prettier (which we'll use in this class)
e Lesson: always use an automated formatter

Aside: “opinionated”

Definition: a tool is opinionated if it builds in assumptions about how
its target (e.g., your code for an automated formatter) should be

Aside: “opinionated”

Definition: a tool is opinionated if it builds in assumptions about how
its target (e.g., your code for an automated formatter) should be

A good automated formatter is opinionated: reduces intra-team
arguments about formatting.

Automated formatters vs linters

Definition: a linter is a static code style checker

Automated formatters vs linters

Definition: a linter is a static code style checker

e Linters style problems.
e Automated formatters fix style problems.

Automated formatters vs linters

Definition: a linter is a static code style checker

e Linters style problems.
e Automated formatters fix style problems.

You'll see both terms, and some linters also look for other mistakes.

We'll use both prettier (an automated formatter) and esnint (a
linter) in this course.

Testing (part 3)

Today’s agenda:

e Finish up code level design discussion from lecture 2
e Testinput generation (fuzzing)

e Testoracle generation

e Test prioritization & test suite minimization

e Reading Quiz

Test data

e What are all the inputs to a test?

Test data

e What are all the inputs to a test?
o Many programs (especially student programs) read from a file
or stdin...

Test data

e What are all the inputs to a test?
o Many programs (especially student programs) read from a file
or stdin...
o Butwhatelseis“readin” by a program and may influence its
behavior?

Test data

e What are all the inputs to a test?

Rt : le
NVhat else besides “input” can influence program behavior? \

e User Input (e.g., GUI)
e Environment Variables, Command-Line Args
e Scheduler Interleavings
e Datafrom the Filesystem
o User configuration, data files
e Datafrom the Network

\ o Server and service responses /

Test data: operating systems philosophy

Test data: operating systems philosophy

e “Everythingisafile’

Test data: operating systems philosophy

e “Everythingisafile’

e After afew libraries and levels of indirection, reading from the
user's keyboard boils down to opening a special device file (e.g.,
/dev/ttyS0O) and reading from it

o Similarly with mouse clicks, GUl commands, etc.

Test data: operating systems philosophy

e “Everythingisafile’

e After afew libraries and levels of indirection, reading from the

user's keyboard boils down to opening a special device file (e.g.,
/dev/ttyS0O) and reading from it

o Similarly with mouse clicks, GUl commands, etc.

e Ultimately programs can only interact with the outside world
through system calls

o open, read, write, socket, fork, gettimeofday

Test data: operating systems philosophy

e “Everythingisafile’

e After afew libraries and levels of indirection, reading from the
user's keyboard boils down to opening a special device file (e.g.,
/dev/ttyS0O) and reading from it

o Similarly with mouse clicks, GUl commands, etc.

e Ultimately programs can only interact with the outside world

through system calls
o open, read, write, socket, fork, gettimeofday
e System calls (plus OS scheduling, etc.) are the full inputs

Test data: operating systems philosophy

e “Everythingisafile/

e Afterafew Iibrarifl. Fully hermetic tests should
user's keyboard b{ include all these inputs
/dev/ttyS0) and re] 2. We want fully hermetic tests

o Similarly with

e Ultimately progra

through system cah\

\ the

 (e.g.,

jrld

o open, read, write, socket, fork, gettimeofday

e System calls (plus OS scheduling, etc.) are the full inputs

Test data: operating systems philosophy

e “Everythingis afile/

e Afterafew Iibrarifl Fully hermetic tests should \ the
user's kebeard bd include all these inpUtS h (e.g.’
/dev/ttySO) and rel 2. We Wgnt fully hgrmetic tests

o Similarly with L&2 |m.ply Sl oL

generation must also control

e Ultimately progra the environment rid
through system cah\

o open, read, write, socket, fork, gettimeofday
e System calls (plus OS scheduling, etc.) are the full inputs

Test input generation

Test input generation

e As ahuman, often choosing good test inputs is the hardest part
of writing a test

Test input generation

e Asahuman, often choosing good test inputs is the hardest part
of writing a test

For a computer, that’s not true: computers can pick inputs very
fast (given some policy)

Test input generation

e Asahuman, often choosing good test inputs is the hardest part
of writing a test

e For acomputer, that’s not true: computers can pick inputs very
fast (given some policy)

e Key problem: which inputs should we pick?

Test input generation

e Asahuman, often choosing good test inputs is the hardest part
of writing a test

e For acomputer, that’s not true: computers can pick inputs very
fast (given some policy)

e Key problem: which inputs should we pick?
o Lens of Logic: choose inputs that will maximize coverage

Test input generation

e Asahuman, often choosing good test inputs is the hardest part
of writing a test

e For acomputer, that’s not true: computers can pick inputs very
fast (given some policy)
e Key problem: which inputs should we pick?

o Lens of Logic: choose inputs that will maximize coverage
o Lens of Statistics: choose inputs “at random”

Test input generation

e Asahuman, often choosing good test inputs is the hardest part
of writing a test

e For acomputer, that’s not true: computers can pick inputs very
fast (given some policy)
e Key problem: which inputs should we pick?

o Lens of Logic: choose inputs that will maximize coverage
o Lens of Statistics: choose inputs “at random”

o Lens of : choose inputs that kill mutants

Lens of Logic: maximize coverage

Lens of Logic: maximize coverage

foo(a,b,c,d,e,f):
if a < b: this
else: that
if ¢ < d: foo
else: bar
if e < f: baz
else: quoz

Lens of Logic: maximize coverage

foo(a,b,c,d,e,f):
if a < b: this
else: that
if ¢ < d: foo
else: bar
if e < f: baz
else: quoz

if
a<b
A/\
this that
\A'f‘/
i
c<d
/\

foo bar

\‘/
if
e<f
4 a
baz quoz

\/

Lens of Logic: maximize coverage

if

foo(a,b,c,d,e,f): <
.< P N
if a < b: this this) (that How would you
else: that Ny choose inputs that
if ¢ < d: foo = maximize:
else: bar foo bar e line coverage?
if e < f: baz -
e<f

else: quoz a a
baz quoz \ /

\/

Lens of Logic: maximize coverage

if

foofa,b,c,d,e,f?. ‘jﬁl‘ //* ‘\\
if a < b: this this that How would you
else: that Ny choose inputs that
if ¢ < d: foo = maximize:
else: bar foo bar e line coverage?
if e < f: baz \\‘ﬁ// ® coverage?
o=

else: quoz a a
baz quoz \ /

\/

Lens of Logic: maximize coverage

foo(a,b,c,d,e,f):
if a < b: this

else:

if ¢ < d: foo

else:

if e < f£f: baz

else:

that

bar

quoz

if
a<b
A/\
this that
\A'f‘/
i
c<d
/\

foo bar

\‘/
if
e<f
A/\
baz quoz

\/

[)

How would you
choose inputs that

maximize:
e line coverage?
° coverage?

° coverage?
N /

Lens of Logic: maximize coverage

If you have N sequential (or serial) if statements...

if
a<b
e

[this that

\f‘/
i

c<d
4o A

[foo bar

\.fA/
|

e<f
P

baz quoz

\‘/

Lens of Logic: maximize coverage

e If you have N sequential (or serial) if statements...
e Thereare 2N branch edges

if
a<b
e

[this that

\f‘/
i

c<d
4o A

[foo bar

\.fA/
|

e<f
P

baz quoz

\‘/

Lens of Logic: maximize coverage

e If you have N sequential (or serial) if statements...
e Thereare 2N branch edges
o Which you could cover in 2 tests!

if
a<b
e

[this that

\f‘/
i

c<d
4o A

[foo bar

\.fA/
|

e<f
P

baz quoz

\‘/

Lens of Logic: maximize coverage

e If you have N sequential (or serial) if statements...
e Thereare 2N branch edges
o Which you could cover in 2 tests!
m One always goes left, one always right

if
a<b
e

[this that

\f‘/
i

c<d
4o A

[foo bar

\.fA/
|

e<f
P

baz quoz

\‘/

Lens of Logic: maximize coverage

e If you have N sequential (or serial) if statements...
e Thereare 2N branch edges
o Which you could cover in 2 tests!
m One always goes left, one always right
e Butthere are 2N paths

if
a<b
e

[this that

\f‘/
i

c<d
4o A

[foo bar

\.fA/
|

e<f
P

baz quoz

\‘/

Lens of Logic: maximize coverage

e If you have N sequential (or serial) if statements...

e Thereare 2N branch edges
o Which you could cover in 2 tests!
m One always goes left, one always right
e Butthere are 2N paths
o You need 2N tests to cover them

if
a<b
e

[this that

\f‘/
i

c<d
4o A

[foo bar

\.fA/
|

e<f
P

baz quoz

\‘/

Lens of Logic: maximize coverage

e If you have N sequential (or serial) if statements...

e Thereare 2N branch edges
o Which you could cover in 2 tests!
m One always goes left, one always right
e Butthere are 2N paths
o You need 2N tests to cover them
e Path coverage subsumes branch coverage

if
a<b
e

[this that

\]“/
|

c<d
A/\

[foo bar

\.fA/
|

e<f
P

baz quoz

\A/

Lens of Logic: maximize coverage

e Consider generating test inputs to cover a path

Lens of Logic: maximize coverage

e Consider generating test inputs to cover a path
o |f we could do that, branch/statement/etc coverage is easy

Lens of Logic: maximize coverage

e Consider generating test inputs to cover a path
o |f we could do that, branch/statement/etc coverage is easy
e Key idea: solve this problem with

Lens of Logic: maximize coverage

e Consider generating test inputs to cover a path
o |f we could do that, branch/statement/etc coverage is easy
e Key idea: solve this problem with math

Definition: a path predicate (or path condition, or path constraint) is a
boolean formula over program variables that is true when the
program executes the given path

Lens of Logic: path predicate example

e Consider the highlighted (in pink) path
o i.e., “false, false, true”
e Whatisits path predicate?

if
a<b
4 a

this that

Lens of Logic: path predicate example

i
e Consider the highlighted (in pink) path a4

o i.e., “false, false, true” this that
e What s its path predicate? -
O a >= Db && ¢ > d && e < £ .

Consider the highlighted (in pink) path

o i.e., “false, false, true”
What is its path predicate?

O a >=

When the path predicate is true, control flow

b &&

cC >=

d &&

will follow the given path

Lens of Logic: path predicate example

e < f

if
a<b
4 a

this that

Lens of Logic: path predicate example

e Consider the highlighted (in pink) path
o i.e., “false, false, true”

e Whatisits path predicate?
O a >= Db && ¢ > d && e < £

e When the path predicate is true, control flow
will follow the given path

e So,given apath predicate, how do we choose
a test input that covers the path?

if
a<b
4 a

this that

Lens of Logic: solving path predicates

Definition: A satisfying assignment is a mapping from variables to
values that makes a predicate true.

Lens of Logic: solving path predicates

Definition: A satisfying assignment is a mapping from variables to
values that makes a predicate true.

e \Whatis asatisfying assignment for
O a > Db && c > d && e < £7?

Lens of Logic: solving path predicates

Definition: A satisfying assignment is a mapping from variables to
values that makes a predicate true.

e \Whatis asatisfying assignment for
O a > Db && c > d && e < £7?
B a=5, b=4, c=3, d=2, e=1, f=2
m 2=0, b=0, c¢=0, d=0, e=0, f=1
E ...Mmany more

Lens of Logic: solving path predicates

e How do we find satisfying assignments in general?

Lens of Logic: solving path predicates

e How do we find satisfying assignments in general?
o Option 1:
m labor-intensive, slow, expensive, etc.

Lens of Logic: solving path predicates

e How do we find satisfying assignments in general?
o Option 1:
m labor-intensive, slow, expensive, etc.
o Option 2: repeatedly
m works surprisingly well (when answers are not sparse)

Lens of Logic: solving path predicates

e How do we find satisfying assignments in general?
o Option 1:
m labor-intensive, slow, expensive, etc.
o Option 2: repeatedly
m works surprisingly well (when answers are not sparse)
o Option 3: use an automated theorem prover
m cf. Wolfram Alpha, MatLab, Mathematica, Z3, etc.
m works very well for arestricted class of equations (e.g.,
linear but not arbitrary polynomials, etc.)

Lens of Logic: test input generation plan

e Consider generating high-branch-coverage tests for a method:

Lens of Logic: test input generation plan

e Consider generating high-branch-coverage tests for a method:
e Enumerate “all” paths in the method

Lens of Logic: test input generation plan

e Consider generating high-branch-coverage tests for a method:
e Enumerate “all” paths in the method
e For each path, collect the path predicate

Lens of Logic: test input generation plan

Consider generating high-branch-coverage tests for a method:
Enumerate “all” paths in the method

For each path, collect the path predicate

For each path predicate, it

Lens of Logic: test input generation plan

Consider generating high-branch-coverage tests for a method:

Enumerate “all” paths in the method

For each path, collect the path predicate

For each path predicate, it

o Asolutionis a satisfying assignment of values to input variables
— those are your test input

Lens of Logic: test input generation plan

Consider generating high-branch-coverage tests for a method:

Enumerate “all” paths in the method

For each path, collect the path predicate

For each path predicate, it

o Asolutionis a satisfying assignment of values to input variables
— those are your test input

o None found? Dead code, tough predicate, etc.

Lens of Logic: enumerating paths

e What could with enumerating paths in a method?

Lens of Logic: enumerating paths

e What could with enumerating paths in a method?
e There could be infinitely many!

while a < b:
a=a+1
return a

Lens of Logic: enumerating paths

e What could with enumerating paths in a method?
e There could be infinitely many!

while a < b:
a=a+1
return a

e One path corresponds to executing the loop once, another to
twice, another to three times, etc.

Lens of Logic: enumerating paths: approximation

e Key idea: don’'t enumerate all paths, approximate instead

Lens of Logic: enumerating paths: approximation

e Key idea: don’'t enumerate all paths, approximate instead
e Typical Approximations:

Lens of Logic: enumerating paths: approximation

e Key idea: don’'t enumerate all paths, approximate instead
e Typical Approximations:
o Consider only acyclic paths (corresponds to taking each loop
zero times or one time)

Lens of Logic: enumerating paths: approximation

e Key idea: don’'t enumerate all paths, approximate instead
e Typical Approximations:
o Consider only acyclic paths (corresponds to taking each loop
zero times or one time)
o Consider only taking each loop at most k times

Lens of Logic: enumerating paths: approximation

e Key idea: don’'t enumerate all paths, approximate instead
e Typical Approximations:
o Consider only acyclic paths (corresponds to taking each loop
zero times or one time)
o Consider only taking each loop at most k times
o Enumerate paths breadth-first or depth-first and
paths have been enumerated

Lens of Logic: enumerating paths: approximation

e Key idea: don’'t enumerate all paths, approximate instead
e Typical Approximations:
o Consider only acyclic paths (corresponds to taking each loop
zero times or one time)
o Consider only taking each loop at most k times
o Enumerate paths breadth-first or depth-first and
paths have been enumerated
e For more on this topic, take a graduate-level course on program
analysis or compilers

Lens of Logic: test input generation plan

Consider generating high-branch-coverage tests for a method:

Enumerate “all” paths in the method

For each path, collect the path predicate

For each path predicate, it

o Asolutionis a satisfying assignment of values to input variables
— those are your test input

o None found? Dead code, tough predicate, etc.

Lens of Logic: collecting path predicates

e Now we have a path through the program
e What could go wrong with collecting the path
predicate?

if
a<b

/ a
this that
\A /
if
c<d
A/ |
foo bar

A
if
e<f
Py T
baz quoz

Lens of Logic: collecting path predicates

e Now we have a path through the program
e What could go wrong with collecting the path
predicate?
o The path predicate may not be expressible in
terms of the inputs we control

if
a<b
4 a

this that

Lens of Logic: collecting path predicates

if

e Now we have a path through the program AN
e What could go wrong with collecting the path this that

predicate? Tas

o The path predicate may not be expressible in ‘/“d .
terms of the inputs we control foo bar

Tad

foo (a,b) :) eﬁ\t
strl = read from url (“abc.com”) baz quoz

str2 = read from url(“xyz.com”) e

if (strl == str2): bar()

Lens of Logic: collecting path predicates

e Now we have a path through the program =
e What could go wrong with collecting thy”_

predicate?
o The path predicate may not be expr
terms of the inputs we control

if
a<b
| N

~

Suppose we want to
exercise the path that
calls bar. One predicate
isstrl==str2.Whatdo

foo(a,b):
strl = read from url (“abc.com”)
str2 = read from url (“xyz.com”)

if (strl == str2): bar()

ou assignto a and b?
(youassigntosands?

- A
baz quoz
Aa

Lens of Logic: path predicate woes

e When we can’t solve for a path predicate, what can we do?

Lens of Logic: path predicate woes

e When we can’t solve for a path predicate, what can we do?
o lIgnore the problem (i.e.,don’'t generate a test)

Lens of Logic: path predicate woes

e When we can’t solve for a path predicate, what can we do?
o lIgnore the problem (i.e.,don’'t generate a test)

e Remember, testing can show the presence of bugs, but not their
absence — no guarantee either way

Lens of Logic: path predicate woes

e When we can’t solve for a path predicate, what can we do?
o lIgnore the problem (i.e.,don’'t generate a test)

e Remember, testing can show the presence of bugs, but not their
absence — no guarantee either way

e S0, we make a best effort:

Lens of Logic: path predicate woes

e When we can’t solve for a path predicate, what can we do?
o lIgnore the problem (i.e.,don’'t generate a test)

e Remember, testing can show the presence of bugs, but not their
absence — no guarantee either way

e S0, we make a best effort:
o Collect the path predicates as best we can

Lens of Logic: path predicate woes

e When we can’t solve for a path predicate, what can we do?
o lIgnore the problem (i.e.,don’'t generate a test)
e Remember, testing can show the presence of bugs, but not their
absence — no guarantee either way
e S0, we make a best effort:
o Collect the path predicates as best we can
o Ask the solver to find a solution in terms of the input variables

Lens of Logic: path predicate woes

e When we can’t solve for a path predicate, what can we do?
o lIgnore the problem (i.e.,don’'t generate a test)

e Remember, testing can show the presence of bugs, but not their
absence — no guarantee either way

e S0, we make a best effort:
o Collect the path predicates as best we can
o Ask the solver to find a solution in terms of the input variables
o Ifitcan’t (because the math is too hard, we don’t control the

input, etc.), we give up

Lens of Logic: test input generation plan

Consider generating high-branch-coverage tests for a method:

Enumerate “all” paths in the method

For each path, collect the path predicate

For each path predicate, it

o Asolutionis a satisfying assignment of values to input variables
— those are your test input

o None found? Dead code, tough predicate, etc.

Lens of Logic: test input generation plan

e Recall: we want to automatically generate test cases

Lens of Logic: test input generation plan

e Recall: we want to automatically generate test cases
e We have an approach that works well in practice:

o Enumerate some paths

o Extract their path constraints

e those path constraints

Lens of Logic: test input generation plan

e Recall: we want to automatically generate test cases
e We have an approach that works well in practice:

o Enumerate some paths

o Extract their path constraints

e those path constraints
e Whatarewe ?

Lens of Logic: test input generation plan

e Recall: we want to automatically generate test cases
e We have an approach that works well in practice:

o Enumerate some paths

o Extract their path constraints

e those path constraints
e Whatarewe ?

o Oracles!

Testing (part 3)

Today’s agenda:

Finish up code level design discussion from lecture 2
Test input generation (fuzzing)

Test oracle generation

Test prioritization & test suite minimization

Reading Quiz

Oracle generation

e Generating input is of limited value if we don’t know what the
program is supposed to do with that input

Oracle generation

e Generating input is of limited value if we don’t know what the
program is supposed to do with that input
e Key question: if we generate an input for a given path,
if the program behaved correctly?

Oracle generation: difficulty

e Oracles are tricky.

Oracle generation: difficulty

e Oracles are tricky.
o Many believe that formally writing down what a program
should dois as coding it.

Oracle generation: difficulty

e Oracles are tricky.
o Many believe that formally writing down what a program
should dois as coding it.
e The Oracle Problem is the difficulty and cost of determining the
correct test oracle (i.e., output) for a given input.

Oracle generation: difficulty

e Oracles are tricky.
o Many believe that formally writing down what a program
should dois as coding it.
e The Oracle Problem is the difficulty and cost of determining the
correct test oracle (i.e., output) for a given input.
o “What should the program do?”

Oracle generation: difficulty

e Oracles are tricky.
o Many believe that formally writing down what a program
should dois as coding it.
e The Oracle Problem is the difficulty and cost of determining the
correct test oracle (i.e., output) for a given input.
o “What should the program do?”
o |tisexpensive both for humans and for machines.

Oracle generation: difficulty

e Oracles are tricky.
o Many believe that formally writing down what a program
should dois as coding it.
e The Oracle Problem is the difficulty and cost of determining the
correct test oracle (i.e., output) for a given input.
o “What should the program do?”
o |tisexpensive both for humans and for machines.
m and, for machines, sometimes impossible!

Oracle generation: implicit oracles

Observation: there are some things programs definitely shouldn’t do
given any input

Oracle generation: implicit oracles

Observation: there are some things programs definitely shouldn’t do
given any input
e crash, segfault, loop forever, exfiltrate user data, etc.

Oracle generation: implicit oracles

Observation: there are some things programs definitely shouldn’t do

given any input

e crash, segfault, loop forever, exfiltrate user data, etc.

e keyidea: runthe program and check if it does any of these
definitely bad things

Oracle generation: implicit oracles

Observation: there are some things programs definitely shouldn’t do

given any input

e crash, segfault, loop forever, exfiltrate user data, etc.

e keyidea: runthe program and check if it does any of these
definitely bad things

Definition: an implicit oracle is one associated with the language or
architecture, rather than program-specific semantics (e.g., “don't

) «

segfault” “don't loop forever”).

Oracle generation: implicit oracles
4)

Observation: there are some things progran Implicit oracles like

given any input these are used by

e crash, segfault, loop forever, exfiltrate us

e keyidea: runthe program and check if it in the real world.
definitely bad things N\ J

Definition: an implicit oracle is one associated with the language or
architecture, rather than program-specific semantics (e.g., “don't

) «

segfault” “don't loop forever”).

Oracle generation: invariants as oracles

Observation: programs usually behave correctly

Oracle generation: invariants as oracles

Observation: programs usually behave correctly
e e.g. if | have a human-written test suite with ten tests, and we have
index == array len - 1inevery test

Oracle generation: invariants as oracles

Observation: programs usually behave correctly

e e.g. if | have a human-written test suite with ten tests, and we have
index == array len - 1inevery test

e then maybe the correct oracle is that on every input we should
have index == array len - 1

Oracle generation: invariants as oracles

Observation: programs usually behave correctly

e e.g. if | have a human-written test suite with ten tests, and we have
index == array len - 1inevery test

e then maybe the correct oracle is that on every input we should
have index == array len - 1

Definition: an invariant is a predicate over program expressions that is
true on every execution

Oracle generation: invariants as oracles

Observation: programs usually behave correctly

e e.g. if | have a human-written test suite with ten tests, and we have
index == array len - 1inevery test

e then maybe the correct oracle is that on every input we should
have index == array len - 1

Definition: an invariant is a predicate over program expressions that is
true on every execution
e high-quality invariants can serve as test oracles

Oracle generation: dynamic invariant detection

e There are tools for invariant detection called dynamic invariant
detectors

Oracle generation: dynamic invariant detection

e There are tools for invariant detection called dynamic invariant
detectors
o Key idea: find invariants that are true on the human-written
test suite, then apply those to the test inputs we generate

Oracle generation: dynamic invariant detection

e There are tools for invariant detection called dynamic invariant
detectors
o Key idea: find invariants that are true on the human-written
test suite, then apply those to the test inputs we generate
m reportany violation to a human

Oracle generation: dynamic invariant detection

e There are tools for invariant detection called dynamic invariant

detectors

o Key idea: find invariants that are true on the human-written
test suite, then apply those to the test inputs we generate
m reportany violation to a human

o For more information (e.g., how to build one) take a
graduate-level class on program analysis or read the Daikon
paper (September 27 optional reading!)

Oracle generation: differential testing

Observation: there are many programs with similar or identical
specifications

Oracle generation: differential testing

Observation: there are many programs with similar or identical

specifications

e if weare building such a program, we can use another
implementation as an oracle

Oracle generation: differential testing

Observation: there are many programs with similar or identical

specifications

e if weare building such a program, we can use another
implementation as an oracle

e e.g,if we'rewriting a C compiler, we can compare our output to gcc

Oracle generation: differential testing

Observation: there are many programs with similar or identical

specifications

e if weare building such a program, we can use another
implementation as an oracle

e e.g,if we'rewriting a C compiler, we can compare our output to gcc

Definition: differential testing is a technique for testing two related
programs by comparing their output on generated test inputs. Any
difference indicates non-conformance in one of the two.

Oracle generation: differential testing

Advantages and disadvantages of differential testing:

Oracle generation: differential testing

Advantages and disadvantages of differential testing:
e only applicable in limited situations: need another implementation

Oracle generation: differential testing

Advantages and disadvantages of differential testing:
e only applicable in limited situations: need another implementation
o but useful more often than you might think - for example,
when writing a “fast” version of a routine, you can compare its
output to a “slow” but easy-to-implement version

Oracle generation: differential testing

Advantages and disadvantages of differential testing:
e only applicable in limited situations: need another implementation
o but useful more often than you might think - for example,
when writing a “fast” version of a routine, you can compare its
output to a “slow” but easy-to-implement version
e ahuman needs to decide which of the two is correct

Oracle generation: differential testing

Advantages and disadvantages of differential testing:
e only applicable in limited situations: need another implementation
o but useful more often than you might think - for example,
when writing a “fast” version of a routine, you can compare its
output to a “slow” but easy-to-implement version
e ahuman needs to decide which of the two is correct
o and sometimes neither is!

Oracle generation: differential testing

Advantages and disadvantages of differential testing:
e only applicable in limited situations: need another implementation
o but useful more often than you might think - for example,
when writing a “fast” version of a routine, you can compare its
output to a “slow” but easy-to-implement version
e ahuman needs to decide which of the two is correct
o and sometimes neither is!
e but, differential testing provides a than
other automated techniques

Testing (part 3)

Today’s agenda:

Finish up code level design discussion from lecture 2
Test input generation (fuzzing)

Test oracle generation

Test prioritization & test suite minimization

Reading Quiz

Test input generation

e Asahuman, often choosing good test inputs is the hardest part
of writing a test

e For acomputer, that’s not true: computers can pick inputs very
fast (given some policy)
e Key problem: which inputs should we pick?

o Lens of Logic: choose inputs that will maximize coverage
o Lens of Statistics: choose inputs “at random”

o Lens of : choose inputs that kill mutants

Lens of Statistics: fuzzing and random testing

Key idea: provide inputs “at random” to the program and use an
implicit oracle

Lens of Statistics: fuzzing and random testing

Key idea: provide inputs “at random” to the program and use an
implicit oracle

w0019[a%#

%

Lens of Statistics: fuzzing and random testing

Definition: fuzzing (or fuzz testing) is an automated testing technique
that involves providing random or semi-random inputs to a program
and monitoring for violations of an implicit oracle.

Lens of Statistics: fuzzing and random testing

Definition: fuzzing (or fuzz testing) is an automated testing technique
that involves providing random or semi-random inputs to a program
and monitoring for violations of an implicit oracle.

e typical oracle:

Lens of Statistics: fuzzing and random testing

Definition: fuzzing (or fuzz testing) is an automated testing technique
that involves providing random or semi-random inputs to a program
and monitoring for violations of an implicit oracle.

e typical oracle:
e totally random input rarely works well

Lens of Statistics: fuzzing and random testing

Definition: fuzzing (or fuzz testing) is an automated testing technique
that involves providing random or semi-random inputs to a program
and monitoring for violations of an implicit oracle.
e typical oracle:
e totally random input rarely works well
o most programs have structured input

Lens of Statistics: fuzzing and random testing

Definition: fuzzing (or fuzz testing) is an automated testing technique
that involves providing random or semi-random inputs to a program
and monitoring for violations of an implicit oracle.
e typical oracle:
e totally random input rarely works well
o most programs have structured input
o so modern fuzzers use some kind of semi-random, directed

search

Lens of Statistics: fuzzing: input structure

Modern fuzzers deal with structured input in a few ways:

Lens of Statistics: fuzzing: input structure

Modern fuzzers deal with structured input in a few ways:
e mutating seed inputs:

Lens of Statistics: fuzzing: input structure

Modern fuzzers deal with structured input in a few ways:
e mutating seed inputs:
o start with a seed pool of valid or useful inputs

Lens of Statistics: fuzzing: input structure

Modern fuzzers deal with structured input in a few ways:
e mutating seed inputs:

o start with a seed pool of valid or useful inputs

o new test cases are from old ones

Lens of Statistics: fuzzing: input structure

Modern fuzzers deal with structured input in a few ways:
e mutating seed inputs:

o start with a seed pool of valid or useful inputs

o new test cases are from old ones
e reward or fitness functions:

Lens of Statistics: fuzzing: input structure

Modern fuzzers deal with structured input in a few ways:
e mutating seed inputs:
o start with a seed pool of valid or useful inputs

o new test cases are from old ones
e reward or fithess functions:
o when aninput (or some other test goal),

choose more inputs like that (e.g., add it to the seed pool)

Lens of Statistics: fuzzing: input structure

Modern fuzzers deal with structured input in a few ways:
e mutating seed inputs:
o start with a seed pool of valid or useful inputs
o new test cases are from old ones
e reward or fitness functions:
o when aninput increases coverage (or some other test goal),
choose more inputs like that (e.g., add it to the seed pool)
e combination with path predicates:

Lens of Statistics: fuzzing: input structure

Modern fuzzers deal with structured input in a few ways:
e mutating seed inputs:
o start with a seed pool of valid or useful inputs
o new test cases are from old ones
e reward or fitness functions:
o when aninput increases coverage (or some other test goal),
choose more inputs like that (e.g., add it to the seed pool)
e combination with path predicates:
o add inputs that are guaranteed to increase coverage to the
seed pool

Lens of Statistics: fuzzing in practice

Lens of Statistics: fuzzing in practice

e Fuzzingis
o AFL (most famous coverage-guided fuzzer) was built at Google
o o0ss-fuzz project fuzzes many important open-source projects
constantly using industry resources

Lens of Statistics: fuzzing in practice

e Fuzzingis
o AFL (most famous coverage-guided fuzzer) was built at Google
o o0ss-fuzz project fuzzes many important open-source projects
constantly using industry resources
e Fuzzingis machine-intensive
o most inputs aren’t useful

Lens of Statistics: fuzzing in practice

e Fuzzingis
o AFL (most famous coverage-guided fuzzer) was built at Google
o o0ss-fuzz project fuzzes many important open-source projects
constantly using industry resources
e Fuzzingis machine-intensive
o most inputs aren’t useful
e Fuzzing finds real bugs
o especially useful for finding security bugs

Test input generation

e Asahuman, often choosing good test inputs is the hardest part
of writing a test

e For acomputer, that’s not true: computers can pick inputs very
fast (given some policy)
e Key problem: which inputs should we pick?

o Lens of Logic: choose inputs that will maximize coverage
o Lens of Statistics: choose inputs “at random”

o Lens of : choose inputs that kill mutants

Lens of Adversity: killing mutants

e Actually, for automatic test generation
o still need to use either path predicates or fuzzing to choose
inputs

Lens of Adversity: killing mutants

e Actually, for automatic test generation
o still need to use either path predicates or fuzzing to choose
inputs

e Canbe auseful fitness function or guide for other automated test
input generation approaches

Testing (part 3)

Today’s agenda:

Finish up code level design discussion from lecture 2
Test input generation (fuzzing)

Test oracle generation

Test prioritization & test suite minimization

Reading Quiz

Too many tests

e At this point, we may actually have too many test cases

Too many tests

e At this point, we may actually have too many test cases
o Surprisingly, this is normal in industry: you almost always
have far too few or far too many!

Too many tests

e At this point, we may actually have too many test cases
o Surprisingly, this is normal in industry: you almost always
have far too few or far too many!
e Thisisespecially true when using automated test generation
tools

Too many tests

e At this point, we may actually have too many test cases
o Surprisingly, this is normal in industry: you almost always
have far too few or far too many!
e Thisisespecially true when using automated test generation
tools
o Which many produce many tests but ones than
humans would produce

Too many tests

e At this point, we may actually have too many test cases
o Surprisingly, this is normal in industry: you almost always
have far too few or far too many!
e Thisisespecially true when using automated test generation
tools
o Which many produce many tests but ones than
humans would produce
o Abigcost problem!

Test suite minimization

Definition: given a set of test cases and coverage information for
each one, the test suite minimization problem is to find the minimal
number of test cases that still have the maximum coverage.

Test suite minimization

Definition: given a set of test cases and coverage information for
each one, the test suite minimization problem is to find the minimal
number of test cases that still have the maximum coverage.

Example:

T1 coverslines 1,2,3

T2 coverslines 2,3,4,5
T3 coverslines 1,2

T4 covers lines 1, 6

Test suite minimization

Definition: given a set of test cases and coverage information for
each one, the test suite minimization problem is to find the minimal
number of test cases that still have the maximum coverage.

Example:

T1 coverslines 1,2,3

T2 coverslines 2,3,4,5
T3 coverslines 1,2

T4 covers lines 1,

-

Which of these tests
would you pick to
minimize the number
that need to be run?

_

~

J

Test suite minimization

Definition: given a set of test cases and coverage information for
each one, the test suite minimization problem is to find the minimal
number of test cases that still have the maximum coverage.

Example: 4)
Which of these tests

o—Heoverstines1:23 would you pick to

° covers lines 2,3,4,5 minimize the number

o—TF3coverstinest2 that need to be run?

° covers lines 1, 6 - /

Test suite prioritization

Definition: given a budget of time, number of tests to run, or similar,
the test suite prioritization problem is deciding which tests to run to
maximize coverage while staying within the budget

Test suite prioritization

Definition: given a budget of time, number of tests to run, or similar,
the test suite prioritization problem is deciding which tests to run to
maximize coverage while staying within the budget

e very similar to test suite minimization (same techniques are
useful for both)

Test suite prioritization

Definition: given a budget of time, number of tests to run, or similar,
the test suite prioritization problem is deciding which tests to run to
maximize coverage while staying within the budget

e very similar to test suite minimization (same techniques are
useful for both)

e question: how hard are these problems?

Test suite prioritization

Definition: given a budget of time, number of tests to run, or similar,
the test suite prioritization problem is deciding which tests to run to
maximize coverage while staying within the budget

e very similar to test suite minimization (same techniques are
useful for both)

e question: how hard are these problems?
o theory strikes again!

Test suite prioritization

Definition: given a budget of time, number of tests to run, or similar,
the test suite prioritization problem is deciding which tests to run to
maximize coverage while staying within the budget

e very similar to test suite minimization (same techniques are
useful for both)

e question: how hard are these problems?
o theory strikes again!
o answer:it's “hard” (similar “traditional” problem that you
might consider a reduction to: knapsack)

Reading quiz

Q1: Approximately what is the ratio of source to test code in SQLite?

A. about 590 lines of source code to 1 line of test code
B. about 1 line of source code to 1 line of test code
C. about 1 line of source code to 590 lines of test code

Q2: TRUE or FALSE: A well-written C program will typically contain
some defensive conditionals which in practice are always true or
always false. This leads to a programming dilemma: does SQLite
remove defensive code in order to obtain 100% branch coverage?

Reading quiz

Q1: Approximately what is the ratio of source to test code in SQLite?

A. about 590 lines of source code to 1 line of test code
B. about 1 line of source code to 1 line of test code
about 1 line of source code to 590 lines of test code

Q2: TRUE or FALSE: A well-written C program will typically contain
some defensive conditionals which in practice are always true or
always false. This leads to a programming dilemma: does SQLite
remove defensive code in order to obtain 100% branch coverage?

Reading quiz

Q1: Approximately what is the ratio of source to test code in SQLite?

A. about 590 lines of source code to 1 line of test code
B. about 1 line of source code to 1 line of test code
about 1 line of source code to 590 lines of test code

Q2: TRUE or FALSE: A well-written C program will typically contain
some defensive conditionals which in practice are always true or
always false. This leads to a programming dilemma: does SQLite
remove defensive code in order to obtain 100% branch coverage?

Takeaways

e two typical ways to generate test inputs:
o solve path constraints
o “atrandom” viafuzzing
e both common in practice
e both suffer from the oracle problem
o implicit oracles are most common solution
o invariants, differential testing, etc. also options
e in practice, you often have too many tests
o deciding whichtorunis ahard problem, too

