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Version Control

Today’s agenda:

● How does a version control system work?
● How to use your VCS
● GitHub workflows
● Reading Quiz
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Goals of version control

● Keep a history of your work
○ Explain the purpose of each change
○ Checkpoint specific versions (known good state)
○ Recover specific state (fix bugs, test old versions)

● Coordinate/merge work between team members
○ Or yourself, on multiple computers, or multiple features
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What is version control

Definition: a version control system is a program that manages many 
versions of one or more text-based documents by storing diffs 
between them

● can be either centralized or distributed

one main repository, many 
remotes with working copies

many repositories, each 
repository has a working copy

typical setup: distributed VCS 
with a single, privileged main
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Advantages of distributed VCS

● checkpoint work without publishing to teammates 
● commit, examine history when not connected to the network
● more accurate history 
● more effective merging algorithms 

Less important in CS 490: 

● share changes selectively with teammates 
● flexibility in repository organization and workflow 
● faster performance

Distributed VCS is now 
the industry standard 
(e.g., git, hg). (Some 
organizations do still use 
centralized, though.)
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Distributed VCS prevents some operations

● No update if uncommitted changes exist: must commit first 
● No push if not ahead of remote: must pull & merge first 
● No partial update (e.g., updating just one directory) 

○ update gets all changes in a changeset (= a commit) 
● Rationale: 

○ Maintain more accurate, complete history
○ Keep all users in sync 
○ Avoid painful conflicts  
○ Avoid loss of work
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Coordinating with others

● pull incorporates others’ changes into your repository 
○ (update brings changes into your working copy) 
○ (N.b.: git pull does pull, merge, and update)

● If you are behind, nothing more to do 
○ Behind = your history is a prefix of master history

● If you have made changes in parallel, you must merge 
○ Merge = create a new version incorporating all changes
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Coordinating with others: rebasing

● rebase rewrites history
● Cleaner history, easier to read
● Mixes commits #3 and #7 
● Does not show context for 

change #3 
● Squash-and-merge is a safer 

form of rebasing

reality                       rebased
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Two changes can either be:
● Conflict-free: changes are to different lines of a file
● Conflicting:

○  Simultaneous changes to the same lines of a file
○  Requires manual conflict resolution

“Conflict-free” is a textual, not semantic, notion
● A heuristic about when to get the user involved 
● Could yield compile errors or test failures
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Useful tool for 
thinking about 
anything that 
might warn us 

about a problem
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Coordinating with others: resolving conflicts

● There are three versions of the file: 
● You decide which version to keep or how 

to merge them 
● Many merge tools exist 
● Configure your DVCS to use the merge tool that you prefer 

○ Practice this ahead of time! 

● Don’t panic! Instead, think.  

● You can always bail out of the merge and start over 

○ You have the full local and remote history



Version Control

Today’s agenda:

● How does a version control system work?
● How to use your VCS
● GitHub workflows
● Reading Quiz
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Best practice: don’t commit binary files

● The history database records changes, not the entire file every 
time you commit 

● Avoid binary files for content (especially simultaneous editing) 
○ Word .docx files, Excel .xlsx files, other proprietary formats

● Do not commit generated files, such as:
■ Binaries (e.g., .class files), etc.
■ IDE files (your teammates might use other tooling)

○ Wastes space in repository 
○ Causes merge conflicts
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Best practice: feature branch development

● Whenever you start working on something new, create a branch
○ colloquially called a feature branch, even when it’s not a 

feature
● Pros:

○ features developed in isolation (less risk of main being broken)
○ encourages small PRs

● Cons:
○ large features can make integration difficult

Advice: use feature branch 
development model iff 
your team typically ships 
features quickly
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Advice: synchronize with teammates often

● Pull often
○ Avoid getting behind the main repo or your teammates
○ Avoid difficult and/or complex merges

● Push as often as practical
○ Don’t let your teammates get behind you!
○ Don’t destabilize the main build
○ Avoid long periods working on a branch

■ but do work in a feature branch - don’t work directly on 
main!
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Advice: commit messages

● Always write a commit message yourself
○ never use an auto-generated message from a tool like 

“update filename(s)” from GitHub’s GUI
● Commit messages should be descriptive
● Don’t write a novel: summarize. The code documentation in the 

commit should cover the rest.
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Advice: commit messages: good or bad?

NOT SO GOOD: I know 
writing jokes is fun, but 
try to keep commit 
messages serious
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Advice: commit early and often

● Make many small commits, not one big one
○ Easier to understand, review, merge, revert

● How to make many small commits: 
○ Do only one task at a time and commit after each one
○ Do multiple tasks in one working copy

■ Commit only a subset of files (use git’s staging area)
■ Error-prone

○ Create a branch for each simultaneous task
■ Need to keep track of all your branches, merge 
■ Easier to share unfinished work with teammates
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Advice: ways to avoid merge conflicts

● Modularize your work
○ Divide work so that individuals or subteams “own” a module
○ Other team members only need to understand its 

specification (abstractions!)
○ Requires good documentation and testing

● Communicate about changes that may conflict
○ Don’t overwhelm the team with such messages
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Advice: always use version control

● Still worthwhile, even when working alone
○ backups
○ feature branches are still useful when working on multiple 

parts of a system in parallel
○ sharing work across multiple computers

● Use private repos for things that should be private (e.g., your 
IP0/1/2 solutions…)
○ GitHub will give you free private repos because you’re 

students

I use text-based 
formats for many files 
so that I can version 
control them
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How to make a PR on GitHub

● start by creating a fork of the project
○ a new repository controlled by you, connected to the main

● in your fork, create a feature branch
● write code + tests
● commit early and often, push to your fork
● prepare for code review: follow code review author’s best 

practices
○ we’ll discuss how to do a code review in a few weeks (10/11)

● open PR against “main” repository from your fork’s feature branch
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How NOT to make a PR on GitHub

● start by creating a hard fork of the project
○ a new repository controlled by you, unconnected to the main

● do all of your work on the repository’s main branch
● write code (if there are already tests, don’t bother to run them)
● commit all of your code at once, when you’re done
● don’t bother to check if you’ve followed best practices
● email your changes to the maintainer of the original project

○ bonus points: email the full working copy, not just the diffs

I’ve seen people make 
all of these mistakes 
(and more)!
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Takeaways: version control

● Understand what your VCS is good for (storing text files, 
collaboration) and what it isn’t good for (storing binaries!)

● Understand your VCS: don’t just thoughtlessly use the GUI
● Follow best practices when using your VCS:

○ don’t push straight to main
○ practice resolving merge conflicts
○ use process to try to avoid merge conflicts, if possible
○ commit early and often
○ pull as often as you can


