
Version Control
Martin Kellogg

Version Control

Today’s agenda:

● How does a version control system work?
● How to use your VCS
● GitHub workflows
● Reading Quiz

Let’s share a file

Let’s share a file

Let’s share a file
These systems are fine
for “binary blobs”: files
that you don’t intend to
change once shared
● but not for code

Let’s share a file
These systems are fine
for “binary blobs”: files
that you don’t intend to
change once shared
● but not for code

Goals of version control

Goals of version control

● Keep a history of your work
○ Explain the purpose of each change
○ Checkpoint specific versions (known good state)
○ Recover specific state (fix bugs, test old versions)

Goals of version control

● Keep a history of your work
○ Explain the purpose of each change
○ Checkpoint specific versions (known good state)
○ Recover specific state (fix bugs, test old versions)

● Coordinate/merge work between team members
○ Or yourself, on multiple computers, or multiple features

What is version control

Definition: a version control system is a program that manages many
versions of one or more text-based documents by storing diffs
between them

What is version control

Definition: a version control system is a program that manages many
versions of one or more text-based documents by storing diffs
between them

● can be either centralized or distributed

What is version control

Definition: a version control system is a program that manages many
versions of one or more text-based documents by storing diffs
between them

● can be either centralized or distributed

one main repository, many
remotes with working copies

What is version control

Definition: a version control system is a program that manages many
versions of one or more text-based documents by storing diffs
between them

● can be either centralized or distributed

one main repository, many
remotes with working copies

What is version control

Definition: a version control system is a program that manages many
versions of one or more text-based documents by storing diffs
between them

● can be either centralized or distributed

one main repository, many
remotes with working copies

many repositories, each
repository has a working copy

What is version control

Definition: a version control system is a program that manages many
versions of one or more text-based documents by storing diffs
between them

● can be either centralized or distributed

one main repository, many
remotes with working copies

many repositories, each
repository has a working copy

What is version control

Definition: a version control system is a program that manages many
versions of one or more text-based documents by storing diffs
between them

● can be either centralized or distributed

one main repository, many
remotes with working copies

many repositories, each
repository has a working copy

Any two repos can talk
to each other

What is version control

Definition: a version control system is a program that manages many
versions of one or more text-based documents by storing diffs
between them

● can be either centralized or distributed

one main repository, many
remotes with working copies

many repositories, each
repository has a working copy

typical setup: distributed VCS
with a single, privileged main

Advantages of distributed VCS

● checkpoint work without publishing to teammates
● commit, examine history when not connected to the network
● more accurate history
● more effective merging algorithms

Advantages of distributed VCS

● checkpoint work without publishing to teammates
● commit, examine history when not connected to the network
● more accurate history
● more effective merging algorithms

Less important in CS 490:

● share changes selectively with teammates
● flexibility in repository organization and workflow
● faster performance

Advantages of distributed VCS

● checkpoint work without publishing to teammates
● commit, examine history when not connected to the network
● more accurate history
● more effective merging algorithms

Less important in CS 490:

● share changes selectively with teammates
● flexibility in repository organization and workflow
● faster performance

Distributed VCS is now
the industry standard
(e.g., git, hg). (Some
organizations do still use
centralized, though.)

Distributed VCS prevents some operations

● No update if uncommitted changes exist: must commit first
● No push if not ahead of remote: must pull & merge first
● No partial update (e.g., updating just one directory)

○ update gets all changes in a changeset (= a commit)

Distributed VCS prevents some operations

● No update if uncommitted changes exist: must commit first
● No push if not ahead of remote: must pull & merge first
● No partial update (e.g., updating just one directory)

○ update gets all changes in a changeset (= a commit)

Why might this be a problem in
a large company?
Monorepos

Distributed VCS prevents some operations

● No update if uncommitted changes exist: must commit first
● No push if not ahead of remote: must pull & merge first
● No partial update (e.g., updating just one directory)

○ update gets all changes in a changeset (= a commit)

Why might this be a problem in
a large company?
Monorepos

Distributed VCS prevents some operations

● No update if uncommitted changes exist: must commit first
● No push if not ahead of remote: must pull & merge first
● No partial update (e.g., updating just one directory)

○ update gets all changes in a changeset (= a commit)
● Rationale:

○ Maintain more accurate, complete history
○ Keep all users in sync
○ Avoid painful conflicts
○ Avoid loss of work

Coordinating with others

● pull incorporates others’ changes into your repository
○ (update brings changes into your working copy)
○ (N.b.: git pull does pull, merge, and update)

Coordinating with others

● pull incorporates others’ changes into your repository
○ (update brings changes into your working copy)
○ (N.b.: git pull does pull, merge, and update)

● If you are behind, nothing more to do
○ Behind = your history is a prefix of master history

Coordinating with others

● pull incorporates others’ changes into your repository
○ (update brings changes into your working copy)
○ (N.b.: git pull does pull, merge, and update)

● If you are behind, nothing more to do
○ Behind = your history is a prefix of master history

● If you have made changes in parallel, you must merge
○ Merge = create a new version incorporating all changes

Coordinating with others: rebasing

● rebase rewrites history

Coordinating with others: rebasing

● rebase rewrites history
reality rebased

Coordinating with others: rebasing

● rebase rewrites history
reality rebased

Similar diffs

Coordinating with others: rebasing

● rebase rewrites history
● Cleaner history, easier to read

reality rebased

Coordinating with others: rebasing

● rebase rewrites history
● Cleaner history, easier to read
● Mixes commits #3 and #7
● Does not show context for

change #3

reality rebased

Coordinating with others: rebasing

● rebase rewrites history
● Cleaner history, easier to read
● Mixes commits #3 and #7
● Does not show context for

change #3
● Squash-and-merge is a safer

form of rebasing

reality rebased

Coordinating with others: conflicts

Two changes can either be:
● Conflict-free:
● Conflicting:

Coordinating with others: conflicts

Two changes can either be:
● Conflict-free: changes are to different lines of a file
● Conflicting:

Coordinating with others: conflicts

Two changes can either be:
● Conflict-free: changes are to different lines of a file
● Conflicting:

○ Simultaneous changes to the same lines of a file
○ Requires manual conflict resolution

Coordinating with others: conflicts

Two changes can either be:
● Conflict-free: changes are to different lines of a file
● Conflicting:

○ Simultaneous changes to the same lines of a file
○ Requires manual conflict resolution

“Conflict-free” is a textual, not semantic, notion
● A heuristic about when to get the user involved
● Could yield compile errors or test failures

Aside: false positives and false negatives

Can X actually happen?

YES NO

Aside: false positives and false negatives

Can X actually happen?

D
id

 a
 t

o
o

l w
ar

n
 u

s
ab

o
u

t
X

?

Y
E

S
N

O

YES NO

Aside: false positives and false negatives

Can X actually happen?

D
id

 a
 t

o
o

l w
ar

n
 u

s
ab

o
u

t
X

?

Y
E

S
N

O

YES NO

True
positive

Aside: false positives and false negatives

Can X actually happen?

D
id

 a
 t

o
o

l w
ar

n
 u

s
ab

o
u

t
X

?

Y
E

S
N

O

YES NO

True
positive

False
positive

Aside: false positives and false negatives

Can X actually happen?

D
id

 a
 t

o
o

l w
ar

n
 u

s
ab

o
u

t
X

?

Y
E

S
N

O

YES NO

True
positive

False
positive

False
negative

Aside: false positives and false negatives

Can X actually happen?

D
id

 a
 t

o
o

l w
ar

n
 u

s
ab

o
u

t
X

?

Y
E

S
N

O

YES NO

True
positive

False
positive

True
negative

False
negative

Aside: false positives and false negatives

Can X actually happen?

D
id

 a
 t

o
o

l w
ar

n
 u

s
ab

o
u

t
X

?

Y
E

S
N

O

YES NO

True
positive

False
positive

True
negative

False
negative

Useful tool for
thinking about
anything that
might warn us

about a problem

Coordinating with others: conflicts

Two changes can either be:
● Conflict-free: changes are to different lines of a file
● Conflicting:

○ Simultaneous changes to the same lines of a file
○ Requires manual conflict resolution

“Conflict-free” is a textual, not semantic, notion
● A heuristic about when to get the user involved
● Could yield compile errors or test failures

False positives,
false negatives,

both, or neither?

Coordinating with others: conflicts

Two changes can either be:
● Conflict-free: changes are to different lines of a file
● Conflicting:

○ Simultaneous changes to the same lines of a file
○ Requires manual conflict resolution

“Conflict-free” is a textual, not semantic, notion
● A heuristic about when to get the user involved
● Could yield compile errors or test failures

False positives,
false negatives,

both, or neither?

Coordinating with others: resolving conflicts

● There are three versions of the file:
● You decide which version to keep or how

to merge them

Coordinating with others: resolving conflicts

● There are three versions of the file:
● You decide which version to keep or how

to merge them
● Many merge tools exist
● Configure your DVCS to use the merge tool that you prefer

○ Practice this ahead of time!

Coordinating with others: resolving conflicts

● There are three versions of the file:
● You decide which version to keep or how

to merge them
● Many merge tools exist
● Configure your DVCS to use the merge tool that you prefer

○ Practice this ahead of time!

● Don’t panic! Instead, think.

● You can always bail out of the merge and start over

○ You have the full local and remote history

Version Control

Today’s agenda:

● How does a version control system work?
● How to use your VCS
● GitHub workflows
● Reading Quiz

Version Control: advice and best practices

Best practice: don’t commit binary files

Best practice: don’t commit binary files

● The history database records changes, not the entire file every
time you commit

Best practice: don’t commit binary files

● The history database records changes, not the entire file every
time you commit

● Avoid binary files for content (especially simultaneous editing)
○ Word .docx files, Excel .xlsx files, other proprietary formats

Best practice: don’t commit binary files

● The history database records changes, not the entire file every
time you commit

● Avoid binary files for content (especially simultaneous editing)
○ Word .docx files, Excel .xlsx files, other proprietary formats

● Do not commit generated files, such as:
■ Binaries (e.g., .class files), etc.
■ IDE files (your teammates might use other tooling)

Best practice: don’t commit binary files

● The history database records changes, not the entire file every
time you commit

● Avoid binary files for content (especially simultaneous editing)
○ Word .docx files, Excel .xlsx files, other proprietary formats

● Do not commit generated files, such as:
■ Binaries (e.g., .class files), etc.
■ IDE files (your teammates might use other tooling)

○ Wastes space in repository
○ Causes merge conflicts

Best practice: feature branch development

● Whenever you start working on something new, create a branch
○ colloquially called a feature branch, even when it’s not a

feature

Best practice: feature branch development

● Whenever you start working on something new, create a branch
○ colloquially called a feature branch, even when it’s not a

feature
● Pros:

○ features developed in isolation (less risk of main being broken)
○ encourages small PRs

● Cons:
○ large features can make integration difficult

Best practice: feature branch development

● Whenever you start working on something new, create a branch
○ colloquially called a feature branch, even when it’s not a

feature
● Pros:

○ features developed in isolation (less risk of main being broken)
○ encourages small PRs

● Cons:
○ large features can make integration difficult

Advice: use feature branch
development model iff
your team typically ships
features quickly

Advice: synchronize with teammates often

● Pull often

Advice: synchronize with teammates often

● Pull often
○ Avoid getting behind the main repo or your teammates
○ Avoid difficult and/or complex merges

Advice: synchronize with teammates often

● Pull often
○ Avoid getting behind the main repo or your teammates
○ Avoid difficult and/or complex merges

● Push as often as practical

Advice: synchronize with teammates often

● Pull often
○ Avoid getting behind the main repo or your teammates
○ Avoid difficult and/or complex merges

● Push as often as practical
○ Don’t let your teammates get behind you!
○ Don’t destabilize the main build
○ Avoid long periods working on a branch

■ but do work in a feature branch - don’t work directly on
main!

Advice: commit messages

● Always write a commit message yourself

Advice: commit messages

● Always write a commit message yourself
○ never use an auto-generated message from a tool like

“update filename(s)” from GitHub’s GUI

Advice: commit messages

● Always write a commit message yourself
○ never use an auto-generated message from a tool like

“update filename(s)” from GitHub’s GUI
● Commit messages should be descriptive

Advice: commit messages

● Always write a commit message yourself
○ never use an auto-generated message from a tool like

“update filename(s)” from GitHub’s GUI
● Commit messages should be descriptive
● Don’t write a novel: summarize. The code documentation in the

commit should cover the rest.

Advice: commit messages: good or bad?

Advice: commit messages: good or bad?

GOOD: short and to the
point. Contains link to
the PR it was merged in

Advice: commit messages: good or bad?

Advice: commit messages: good or bad?

NOT SO GOOD:
description is vague
(looks auto-generated!)

Advice: commit messages: good or bad?

Advice: commit messages: good or bad?

NOT SO GOOD: I know
writing jokes is fun, but
try to keep commit
messages serious

Advice: commit early and often

Advice: commit early and often

● Make many small commits, not one big one

Advice: commit early and often

● Make many small commits, not one big one
○ Easier to understand, review, merge, revert

Advice: commit early and often

● Make many small commits, not one big one
○ Easier to understand, review, merge, revert

● How to make many small commits:

Advice: commit early and often

● Make many small commits, not one big one
○ Easier to understand, review, merge, revert

● How to make many small commits:
○ Do only one task at a time and commit after each one

Advice: commit early and often

● Make many small commits, not one big one
○ Easier to understand, review, merge, revert

● How to make many small commits:
○ Do only one task at a time and commit after each one
○ Do multiple tasks in one working copy

■ Commit only a subset of files (use git’s staging area)
■ Error-prone

Advice: commit early and often

● Make many small commits, not one big one
○ Easier to understand, review, merge, revert

● How to make many small commits:
○ Do only one task at a time and commit after each one
○ Do multiple tasks in one working copy

■ Commit only a subset of files (use git’s staging area)
■ Error-prone

○ Create a branch for each simultaneous task
■ Need to keep track of all your branches, merge
■ Easier to share unfinished work with teammates

Advice: ways to avoid merge conflicts

● Modularize your work
○ Divide work so that individuals or subteams “own” a module
○ Other team members only need to understand its

specification (abstractions!)
○ Requires good documentation and testing

Advice: ways to avoid merge conflicts

● Modularize your work
○ Divide work so that individuals or subteams “own” a module
○ Other team members only need to understand its

specification (abstractions!)
○ Requires good documentation and testing

Bonus: this kind of modularization
improves observability for management:
it’s easier to see who is being productive

Advice: ways to avoid merge conflicts

● Modularize your work
○ Divide work so that individuals or subteams “own” a module
○ Other team members only need to understand its

specification (abstractions!)
○ Requires good documentation and testing

● Communicate about changes that may conflict
○ Don’t overwhelm the team with such messages

Advice: always use version control

Advice: always use version control

● Still worthwhile, even when working alone
○ backups
○ feature branches are still useful when working on multiple

parts of a system in parallel
○ sharing work across multiple computers

Advice: always use version control

● Still worthwhile, even when working alone
○ backups
○ feature branches are still useful when working on multiple

parts of a system in parallel
○ sharing work across multiple computers

● Use private repos for things that should be private (e.g., your
IP0/1/2 solutions…)
○ GitHub will give you free private repos because you’re

students

Advice: always use version control

● Still worthwhile, even when working alone
○ backups
○ feature branches are still useful when working on multiple

parts of a system in parallel
○ sharing work across multiple computers

● Use private repos for things that should be private (e.g., your
IP0/1/2 solutions…)
○ GitHub will give you free private repos because you’re

students

I use text-based
formats for many files
so that I can version
control them

Version Control

Today’s agenda:

● How does a version control system work?
● How to use your VCS
● GitHub workflows
● Reading Quiz

How to make a PR on GitHub

● start by creating a fork of the project
○ a new repository controlled by you, connected to the main

How to make a PR on GitHub

● start by creating a fork of the project
○ a new repository controlled by you, connected to the main

● in your fork, create a feature branch

How to make a PR on GitHub

● start by creating a fork of the project
○ a new repository controlled by you, connected to the main

● in your fork, create a feature branch
● write code + tests

How to make a PR on GitHub

● start by creating a fork of the project
○ a new repository controlled by you, connected to the main

● in your fork, create a feature branch
● write code + tests
● commit early and often, push to your fork

How to make a PR on GitHub

● start by creating a fork of the project
○ a new repository controlled by you, connected to the main

● in your fork, create a feature branch
● write code + tests
● commit early and often, push to your fork
● prepare for code review: follow code review author’s best

practices

How to make a PR on GitHub

● start by creating a fork of the project
○ a new repository controlled by you, connected to the main

● in your fork, create a feature branch
● write code + tests
● commit early and often, push to your fork
● prepare for code review: follow code review author’s best

practices
○ we’ll discuss how to do a code review in a few weeks (10/11)

How to make a PR on GitHub

● start by creating a fork of the project
○ a new repository controlled by you, connected to the main

● in your fork, create a feature branch
● write code + tests
● commit early and often, push to your fork
● prepare for code review: follow code review author’s best

practices
○ we’ll discuss how to do a code review in a few weeks (10/11)

● open PR against “main” repository from your fork’s feature branch

How NOT to make a PR on GitHub

● start by creating a hard fork of the project
○ a new repository controlled by you, unconnected to the main

How NOT to make a PR on GitHub

● start by creating a hard fork of the project
○ a new repository controlled by you, unconnected to the main

● do all of your work on the repository’s main branch

How NOT to make a PR on GitHub

● start by creating a hard fork of the project
○ a new repository controlled by you, unconnected to the main

● do all of your work on the repository’s main branch
● write code (if there are already tests, don’t bother to run them)

How NOT to make a PR on GitHub

● start by creating a hard fork of the project
○ a new repository controlled by you, unconnected to the main

● do all of your work on the repository’s main branch
● write code (if there are already tests, don’t bother to run them)
● commit all of your code at once, when you’re done

How NOT to make a PR on GitHub

● start by creating a hard fork of the project
○ a new repository controlled by you, unconnected to the main

● do all of your work on the repository’s main branch
● write code (if there are already tests, don’t bother to run them)
● commit all of your code at once, when you’re done
● don’t bother to check if you’ve followed best practices

How NOT to make a PR on GitHub

● start by creating a hard fork of the project
○ a new repository controlled by you, unconnected to the main

● do all of your work on the repository’s main branch
● write code (if there are already tests, don’t bother to run them)
● commit all of your code at once, when you’re done
● don’t bother to check if you’ve followed best practices
● email your changes to the maintainer of the original project

How NOT to make a PR on GitHub

● start by creating a hard fork of the project
○ a new repository controlled by you, unconnected to the main

● do all of your work on the repository’s main branch
● write code (if there are already tests, don’t bother to run them)
● commit all of your code at once, when you’re done
● don’t bother to check if you’ve followed best practices
● email your changes to the maintainer of the original project

○ bonus points: email the full working copy, not just the diffs

How NOT to make a PR on GitHub

● start by creating a hard fork of the project
○ a new repository controlled by you, unconnected to the main

● do all of your work on the repository’s main branch
● write code (if there are already tests, don’t bother to run them)
● commit all of your code at once, when you’re done
● don’t bother to check if you’ve followed best practices
● email your changes to the maintainer of the original project

○ bonus points: email the full working copy, not just the diffs

I’ve seen people make
all of these mistakes
(and more)!

Reading Quiz: version control

Reading Quiz: version control

Q1: TRUE or FALSE: the author advises that it is best to avoid
frequently integrating others’ changes (e.g., by running git pull),
because each time you do so you run the risk of triggering an
unpleasant merge conflict

Q2: The author uses three version control systems as examples.
Which of them is not a distributed version control system?
A. git
B. subversion (svn)
C. mercurial (hg)

Reading Quiz: version control

Q1: TRUE or FALSE: the author advises that it is best to avoid
frequently integrating others’ changes (e.g., by running git pull),
because each time you do so you run the risk of triggering an
unpleasant merge conflict

Q2: The author uses three version control systems as examples.
Which of them is not a distributed version control system?
A. git
B. subversion (svn)
C. mercurial (hg)

Reading Quiz: version control

Q1: TRUE or FALSE: the author advises that it is best to avoid
frequently integrating others’ changes (e.g., by running git pull),
because each time you do so you run the risk of triggering an
unpleasant merge conflict

Q2: The author uses three version control systems as examples.
Which of them is not a distributed version control system?
A. git
B. subversion (svn)
C. mercurial (hg)

Takeaways: version control

● Understand what your VCS is good for (storing text files,
collaboration) and what it isn’t good for (storing binaries!)

● Understand your VCS: don’t just thoughtlessly use the GUI
● Follow best practices when using your VCS:

○ don’t push straight to main
○ practice resolving merge conflicts
○ use process to try to avoid merge conflicts, if possible
○ commit early and often
○ pull as often as you can

