
Build Systems
Martin Kellogg

Announcements

● IP2 grading in progress
○ remember you have two personal late days, so it’s not too

late to submit
● Revised project proposals due next Monday

○ this is a very important doc: it’s the contract between you and
I about what your project will entail

● Don’t forget about “Your Choice” readings
○ you’ll have to do a reading quiz for one of them as part of the

exam on October 27 (also: discuss exam review)

Build Systems

Today’s agenda:

● Finish slides on Languages
○ multilanguage projects, performance, team and process

factors, when to rewrite
● What is a build system? How does one work?
● How to choose a build system + best practices
● Reading Quiz

Multi-language projects

● In a given project, not all code needs to be written in the same
language!

● Multi-language projects allow you to choose the right language for
each part of your application
○ but complicate many parts of software engineering

● Traditional architecture:
○ Application kernel is written in a statically typed, optimized,

compiled language
○ Scripts are written in a dynamically typed, interpreted language

Examples: Emacs (C / Lisp), Adobe Lightroom (C++
/ Lua), NRAO Telescope (C / Python), Google
Android (C / Java), most games (C++ / Lua), etc.

C/C++ is a
lingua franca

Multi-language projects

● Another common approach: common language infrastructure
○ enables easy integration and interoperability

Multi-language projects

● Another common approach: common language infrastructure
○ enables easy integration and interoperability

● Examples:
○ .NET framework (Microsoft)

■ C++, C#, J#, F#, Visual Basic, etc.
○ Java bytecode + Java virtual machine

■ Java, Scala, Kotlin, Closure, etc.
○ LLVM bytecode
○ etc.

Multi-language projects: complications

Multi-language projects: complications

● Integrating data and control flow across languages can be difficult

Multi-language projects: complications

● Integrating data and control flow across languages can be difficult
● Debugging can be harder

○ Especially as values flow and control flow from language A to
language B

Multi-language projects: complications

● Integrating data and control flow across languages can be difficult
● Debugging can be harder

○ Especially as values flow and control flow from language A to
language B

● Build process (next week) becomes more complicated

Multi-language projects: complications

● Integrating data and control flow across languages can be difficult
● Debugging can be harder

○ Especially as values flow and control flow from language A to
language B

● Build process (next week) becomes more complicated
● Developer expertise is required in multiple languages

○ Must understand types (etc.) in all languages

Multi-language projects: complications

● Integrating data and control flow across languages can be difficult
● Debugging can be harder

○ Especially as values flow and control flow from language A to
language B

● Build process (next week) becomes more complicated
● Developer expertise is required in multiple languages

○ Must understand types (etc.) in all languages
● Most tools are language specific: testing frameworks (+ generation,

coverage, etc.), static analysis, build systems, debuggers, etc.

How can programming languages differ?

● programming paradigm
● whether they have a type system

○ and, if they do, what kind of type system they have
● library support

○ the standard library is especially important
● performance
● team/process factors

○ how well do you know the language
○ how easy it’ll be to hire other developers who do

Language performance

● Three main axes to trade-off between languages:

Language performance

● Three main axes to trade-off between languages:
○ Performance (“how fast do programs run”)

Language performance

● Three main axes to trade-off between languages:
○ Performance (“how fast do programs run”)
○ Safety (“how easy is it to make mistakes”)

Language performance

● Three main axes to trade-off between languages:
○ Performance (“how fast do programs run”)
○ Safety (“how easy is it to make mistakes”)
○ Developer Effort (“how hard do I have to think to write a

program in this language”)

Language performance

● Three main axes to trade-off between languages:
○ Performance (“how fast do programs run”)
○ Safety (“how easy is it to make mistakes”)
○ Developer Effort (“how hard do I have to think to write a

program in this language”)
● Different languages choose different trade-offs. Examples:

Language performance

● Three main axes to trade-off between languages:
○ Performance (“how fast do programs run”)
○ Safety (“how easy is it to make mistakes”)
○ Developer Effort (“how hard do I have to think to write a

program in this language”)
● Different languages choose different trade-offs. Examples:

○ Rust: good performance and safety, hard to write

Language performance

● Three main axes to trade-off between languages:
○ Performance (“how fast do programs run”)
○ Safety (“how easy is it to make mistakes”)
○ Developer Effort (“how hard do I have to think to write a

program in this language”)
● Different languages choose different trade-offs. Examples:

○ Rust: good performance and safety, hard to write
○ Python: easy to write, okay safety, slow

Language performance

● Three main axes to trade-off between languages:
○ Performance (“how fast do programs run”)
○ Safety (“how easy is it to make mistakes”)
○ Developer Effort (“how hard do I have to think to write a

program in this language”)
● Different languages choose different trade-offs. Examples:

○ Rust: good performance and safety, hard to write
○ Python: easy to write, okay safety, slow
○ C: good performance, easy-ish to write, very unsafe

What impacts performance

What impacts performance

● #1: safety features enforced at run time

What impacts performance

● #1: safety features enforced at run time
○ dynamic type checking: type safety
○ garbage collection: memory safety
○ exceptions: segfault safety

What impacts performance

● #1: safety features enforced at run time
○ dynamic type checking: type safety
○ garbage collection: memory safety
○ exceptions: segfault safety

● Also relevant: optimizations

What impacts performance

● #1: safety features enforced at run time
○ dynamic type checking: type safety
○ garbage collection: memory safety
○ exceptions: segfault safety

● Also relevant: optimizations
○ interpreted languages almost always slower: no optimizing

compiler

What impacts performance

● #1: safety features enforced at run time
○ dynamic type checking: type safety
○ garbage collection: memory safety
○ exceptions: segfault safety

● Also relevant: optimizations
○ interpreted languages almost always slower: no optimizing

compiler
○ JITs (just-in-time compilers) can produce surprisingly fast code

■ e.g., Java Virtual Machine

Trade-off: safety features

● #1 performance problem: safety features enforced at run time

Trade-off: safety features

● #1 performance problem: safety features enforced at run time
● So, why not enforce safety at compile time instead?

Trade-off: safety features

● #1 performance problem: safety features enforced at run time
● So, why not enforce safety at compile time instead?

○ requires static analysis (= there will be false positives)

Trade-off: safety features

● #1 performance problem: safety features enforced at run time
● So, why not enforce safety at compile time instead?

○ requires static analysis (= there will be false positives)
○ harder for programmers (trades off against effort)

Trade-off: safety features

● #1 performance problem: safety features enforced at run time
● So, why not enforce safety at compile time instead?

○ requires static analysis (= there will be false positives)
○ harder for programmers (trades off against effort)

■ the garbage collector in Java/Go/etc. is automatic
■ but writing Rust code requires follows its (complex) type

discipline

Trade-off: safety features

● #1 performance problem: safety features enforced at run time
● So, why not enforce safety at compile time instead?

○ requires static analysis (= there will be false positives)
○ harder for programmers (trades off against effort)

■ the garbage collector in Java/Go/etc. is automatic
■ but writing Rust code requires follows its (complex) type

discipline
○ bottom line: statically safe languages can be faster, but are

generally harder to program in

How can programming languages differ?

● programming paradigm
● whether they have a type system

○ and, if they do, what kind of type system they have
● library support

○ the standard library is especially important
● performance
● team/process factors

○ how well do you know the language
○ how easy it’ll be to hire other developers who do

Team/process factors

● Learning a new programming language takes time

Team/process factors

● Learning a new programming language takes time
○ Becoming productive shouldn’t take that long

■ but, this scales with how hard the language is to program
in (+ access to mentors, etc.)

Team/process factors

● Learning a new programming language takes time
○ Becoming productive shouldn’t take that long

■ but, this scales with how hard the language is to program
in (+ access to mentors, etc.)

○ Becoming an expert takes a long time!

Team/process factors

● Learning a new programming language takes time
○ Becoming productive shouldn’t take that long

■ but, this scales with how hard the language is to program
in (+ access to mentors, etc.)

○ Becoming an expert takes a long time!
● If you need performance, you usually need at least one expert

○ cf. AWS employs some JVM experts to tune the garbage
collector for AWS services that use Java

Team/process factors

● Learning a new programming language takes time
○ Becoming productive shouldn’t take that long

■ but, this scales with how hard the language is to program
in (+ access to mentors, etc.)

○ Becoming an expert takes a long time!
● If you need performance, you usually need at least one expert

○ cf. AWS employs some JVM experts to tune the garbage
collector for AWS services that use Java

Implication: if you’re going to need an expert,
make sure you have one! This often seriously limits
your choice of languages in practice :(

Team/process factors

● Because learning a new language takes time, the popularity of a
language is also a plus:

Team/process factors

● Because learning a new language takes time, the popularity of a
language is also a plus:
○ it’s easier to hire new engineers who already know the

language, and therefore can ramp up faster

Team/process factors

● Because learning a new language takes time, the popularity of a
language is also a plus:
○ it’s easier to hire new engineers who already know the

language, and therefore can ramp up faster
○ but this impact is relatively small over a typical engineer’s

tenure at a company

Team/process factors

● Because learning a new language takes time, the popularity of a
language is also a plus:
○ it’s easier to hire new engineers who already know the

language, and therefore can ramp up faster
○ but this impact is relatively small over a typical engineer’s

tenure at a company
● Implication: if all else is equal, choose the more popular language

When to rewrite

● the reading talked about moving a service from one language to
another
○ why?

When to rewrite

● the reading talked about moving a service from one language to
another
○ why? Performance problems.

When to rewrite

● the reading talked about moving a service from one language to
another
○ why? Performance problems.

● This is usually a risky thing to do:
○ you’re not building new features
○ integration problems
○ will the benefits be worth it?

When to rewrite

● the reading talked about moving a service from one language to
another
○ why? Performance problems.

● This is usually a risky thing to do:
○ you’re not building new features
○ integration problems
○ will the benefits be worth it?Implication: rewriting is a good idea if you’re

confident that the benefits of the new language are
worthwhile, but be cautious: it can expensive!

Takeaways

● there is a wider world of languages than just imperative and
object-oriented (but those are the most popular)
○ learning to write functional code can make you a better

programmer
● different programming languages have different trade-offs

○ performance vs safety vs ease of use vs …
● when starting a new project, think carefully about the requirements

before choosing a language
● rewrite a project in a new language only after careful consideration

Build Systems

Today’s agenda:

● Finish slides on Languages
○ multilanguage projects, performance, team and process

factors, when to rewrite
● What is a build system? How does one work?
● How to choose a build system + best practices
● Reading Quiz

What does a developer do?

What does a developer do?

● Get the source code
● Install dependencies
● Compile the code
● Run static analysis
● Generate documentation
● Run tests
● Create artifacts for customers
● Ship!

What does a developer do?

● Get the source code
● Install dependencies
● Compile the code
● Run static analysis
● Generate documentation
● Run tests
● Create artifacts for customers
● Ship!

Which should be
handled manually?

What does a developer do?

● Get the source code
● Install dependencies
● Compile the code
● Run static analysis
● Generate documentation
● Run tests
● Create artifacts for customers
● Ship!

Which should be
handled manually?

NONE!

From the reading

“Here's how most clients I work with build a project:

1. Open the IDE

2. Load the solution

3. Get latest

4. Press F5 (or CTRL+SHIFT+B)”

From the reading

“Here's how most clients I work with build a project:

1. Open the IDE

2. Load the solution

3. Get latest

4. Press F5 (or CTRL+SHIFT+B)”

“The F5 key is not a build process. It's a
quick and dirty substitute. If that's how
you build your software, I regret that I
have to be the one to tell you this, but
your project is not based on solid software
engineering practices.”

From the reading

“Here's how most clients I work with build a project:

1. Open the IDE

2. Load the solution

3. Get latest

4. Press F5 (or CTRL+SHIFT+B)”

“The F5 key is not a build process. It's a
quick and dirty substitute. If that's how
you build your software, I regret that I
have to be the one to tell you this, but
your project is not based on solid software
engineering practices.”

Key objective of a build system: avoid this problem!

What to do instead?

What to do instead?

Orchestrate with a build system!

What is a build system?

What is a build system?

Definition: A build system is a tool for orchestrating software
engineering tasks

What is a build system?

Definition: A build system is a tool for orchestrating software
engineering tasks

○ Getting the source code
○ Installing dependencies
○ Compiling the code
○ Running static analysis
○ Generating documentation
○ Running tests
○ Creating artifacts for customers
○ Shipping!

What is a build system?

Definition: A build system is a tool for orchestrating software
engineering tasks

○ Getting the source code
○ Installing dependencies
○ Compiling the code
○ Running static analysis
○ Generating documentation
○ Running tests
○ Creating artifacts for customers
○ Shipping!

A good build system
handles all these

Tasks

Definition: a task is anything that the build system can do

Tasks

Definition: a task is anything that the build system can do
● Getting the source code
● Installing dependencies
● Compiling the code
● Running static analysis
● Generating documentation
● Running tests
● Creating artifacts for customers
● Shipping!

Tasks

Definition: a task is anything that the build system can do
● Getting the source code
● Installing dependencies
● Compiling the code
● Running static analysis
● Generating documentation
● Running tests
● Creating artifacts for customers
● Shipping!

All tasks!

Tasks

● #1 thing to know about tasks: tasks are code, too!

Tasks

● #1 thing to know about tasks: tasks are code, too!
○ Should be checked into version control
○ Should be code-reviewed
○ Should be tested

Tasks

● #1 thing to know about tasks: tasks are code, too!
○ Should be checked into version control
○ Should be code-reviewed
○ Should be tested

● Tasks also commonly have dependencies

Tasks

● #1 thing to know about tasks: tasks are code, too!
○ Should be checked into version control
○ Should be code-reviewed
○ Should be tested

● Tasks also commonly have dependencies
○ Dependency management is a key build system

responsibility!

Dependencies between tasks

> ls src/

Lib.java LibTest.java Main.java SystemTest.java

Dependencies between tasks

compile
Main

compile
Lib

run lib
test

run
system
test

Dependencies between tasks

compile
Main

compile
Lib

run lib
test

run
system
test

Dependencies between tasks

● A large project may have thousands of tasks

Dependencies between tasks

● A large project may have thousands of tasks
○ What order to run in?
○ How to speed up?

Dependencies between tasks

● A large project may have thousands of tasks
○ What order to run in?
○ How to speed up?

Determining task ordering

● Dependencies between tasks form a directed acyclic graph

Determining task ordering

● Dependencies between tasks form a directed acyclic graph

Topological sort!

Topological sort

● Any ordering on the nodes such that all dependencies are
satisfied

Topological sort

● Any ordering on the nodes such that all dependencies are
satisfied

● Implement by computing indegree (number of incoming edges)
for each node

Topological sort

compile
Main

compile
Lib

run lib
test

run
system
test

Topological sort

compile
Main

compile
Lib

run lib
test

run
system
test

0

0

1

3

Topological sort

compile
Main

compile
Lib

run lib
test

run
system
test

0

0

0

2

Topological sort

compile
Main

compile
Lib

run lib
test

run
system
test

0

0

0

1

Topological sort

compile
Main

compile
Lib

run lib
test

run
system
test

0

0

0

0

Topological sort

compile
Main

compile
Lib

run lib
test

run
system
test

0

0

0

0

Topological sort

compile
Main

compile
Lib

run lib
test

run
system
test

Valid sorts:

1. compile Lib, run lib test,
compile Main, run system test

Topological sort

compile
Main

compile
Lib

run lib
test

run
system
test

Valid sorts:

1. compile Lib, run lib test,
compile Main, run system test

2. compile Main, compile Lib,
run lib test, run system test

Topological sort

compile
Main

compile
Lib

run lib
test

run
system
test

Valid sorts:

1. compile Lib, run lib test,
compile Main, run system test

2. compile Main, compile Lib,
run lib test, run system test

3. compile Lib, compile Main,
run lib test, run system test

Topological sort

compile
Main

compile
Lib

run lib
test

run
system
test

Valid sorts:

1. compile Lib, run lib test,
compile Main, run system test

2. compile Main, compile Lib,
run lib test, run system test

3. compile Lib, compile Main,
run lib test, run system test

Why is this order silly?

Examples of modern build systems

gradle

Apache’s open-source successor to ant, maven

bazel

Google’s internal build tool, open-sourced

https://gradle.org/

https://www.bazel.build/

https://gradle.org/
https://www.bazel.build/

Example task: gradle

task reformat(type: Exec, dependsOn: getCodeFormatScripts, group: 'Format') {
 description 'Format the Java source code'
 // jdk8 and checker-qual have no source, so skip
 onlyIf { !project.name.is('jdk8') && !project.name.is('checker-qual') }
 executable 'python'
 doFirst {
 args += "${formatScriptsHome}/run-google-java-format.py"
 args += "--aosp" // 4 space indentation
 args += getJavaFilesToFormat(project.name)
 }
}

Example task: gradle

task reformat(type: Exec, dependsOn: getCodeFormatScripts, group: 'Format') {
 description 'Format the Java source code'
 // jdk8 and checker-qual have no source, so skip
 onlyIf { !project.name.is('jdk8') && !project.name.is('checker-qual') }
 executable 'python'
 doFirst {
 args += "${formatScriptsHome}/run-google-java-format.py"
 args += "--aosp" // 4 space indentation
 args += getJavaFilesToFormat(project.name)
 }
}

kind of rule

Example task: gradle

task reformat(type: Exec, dependsOn: getCodeFormatScripts, group: 'Format') {
 description 'Format the Java source code'
 // jdk8 and checker-qual have no source, so skip
 onlyIf { !project.name.is('jdk8') && !project.name.is('checker-qual') }
 executable 'python'
 doFirst {
 args += "${formatScriptsHome}/run-google-java-format.py"
 args += "--aosp" // 4 space indentation
 args += getJavaFilesToFormat(project.name)
 }
}

explicitly specified
dependencies

Example task: gradle

task reformat(type: Exec, dependsOn: getCodeFormatScripts, group: 'Format') {
 description 'Format the Java source code'
 // jdk8 and checker-qual have no source, so skip
 onlyIf { !project.name.is('jdk8') && !project.name.is('checker-qual') }
 executable 'python'
 doFirst {
 args += "${formatScriptsHome}/run-google-java-format.py"
 args += "--aosp" // 4 space indentation
 args += getJavaFilesToFormat(project.name)
 }
}

code!

Example task: bazel

java_binary(
 name = "dux",
 main_class = "org.dux.cli.DuxCLI",
 deps = ["@google_options//:compile",
 "@checker_qual//:compile",
 "@google_cloud_storage//:compile",
 "@slf4j//:compile",
 "@logback_classic//:compile"],
 srcs = glob(["src/org/dux/cli/*.java",
 "src/org/dux/backingstore/*.java"),
)

Example task: bazel

java_binary(
 name = "dux",
 main_class = "org.dux.cli.DuxCLI",
 deps = ["@google_options//:compile",
 "@checker_qual//:compile",
 "@google_cloud_storage//:compile",
 "@slf4j//:compile",
 "@logback_classic//:compile"],
 srcs = glob(["src/org/dux/cli/*.java",
 "src/org/dux/backingstore/*.java"),
)

kind of rule

Example task: bazel

java_binary(
 name = "dux",
 main_class = "org.dux.cli.DuxCLI",
 deps = ["@google_options//:compile",
 "@checker_qual//:compile",
 "@google_cloud_storage//:compile",
 "@slf4j//:compile",
 "@logback_classic//:compile"],
 srcs = glob(["src/org/dux/cli/*.java",
 "src/org/dux/backingstore/*.java"),
)

explicitly specified
dependencies

Example task: bazel

java_binary(
 name = "dux",
 main_class = "org.dux.cli.DuxCLI",
 deps = ["@google_options//:compile",
 "@checker_qual//:compile",
 "@google_cloud_storage//:compile",
 "@slf4j//:compile",
 "@logback_classic//:compile"],
 srcs = glob(["src/org/dux/cli/*.java",
 "src/org/dux/backingstore/*.java"),
)

explicitly specified
dependencies
(also bazel tasks)

External and internal dependencies

● A list of tasks (internal) or libraries (external)

External and internal dependencies

● A list of tasks (internal) or libraries (external)

deps = ["@google_options//:compile",
 "@checker_qual//:compile",
 "@google_cloud_storage//:compile",
 "@slf4j//:compile",
 "@logback_classic//:compile"],

https://docs.gradle.org/current/userguide/artifact dependencies tutorial.html

https://docs.gradle.org/current/userguide/artifact

Why list dependencies?

● Reproducibility!

Why list dependencies?

● Reproducibility!
● Hermetic builds: “they are insensitive to the libraries and other

software installed on the build machine”¹

¹https://landing.google.com/sre/sre-book/chapters/release-engineering/

https://landing.google.com/sre/sre-book/chapters/release-engineering/

Why list dependencies?

● Reproducibility!
● Hermetic builds: “they are insensitive to the libraries and other

software installed on the build machine”¹
○ critical if you want to get new developers working quickly

(remember the reading!)
○ useful for debugging problems users encounter with old

versions (can always get back to exactly the code they’re using)
○ prevents “it works on my machine” syndrome

¹https://landing.google.com/sre/sre-book/chapters/release-engineering/

https://landing.google.com/sre/sre-book/chapters/release-engineering/

Dependencies between tasks

● A large project may have thousands of tasks
○ What order to run in?
○ How to speed up?

How to speed up builds?

How to speed up builds?

● Incrementalize - only rebuild what you have to

Incrementalization

Main.class

Lib.class

Main.java

Lib.java

Incrementalization: time stamps

Main.class

Lib.class

Main.java

Lib.java

modified 10:45 AM

modified 1:30 PM

1:31 PMmodified 11:06 AM

modified 11:06 AM

Incrementalization: time stamps

Main.class

Lib.class

Main.java

Lib.java

modified 10:45 AM

modified 1:30 PM

1:31 PMmodified 11:06 AM

modified 11:06 AM

only this file must
be rebuilt

Incrementalization: hashing

Incrementalization: hashing

● Compute hash codes for inputs to each task
● When about to execute a task, check input hashes - if they match

the last time the task was executed, skip it!

How to speed up builds?

● Incrementalize - only rebuild what you have to
● Execute many tasks in parallel

How to speed up builds?

● Incrementalize - only rebuild what you have to
● Execute many tasks in parallel

○ some build system tasks are embarassingly parallel: they can
be re-ordered without explicit synchonization
■ is this true of all tasks?

How to speed up builds?

● Incrementalize - only rebuild what you have to
● Execute many tasks in parallel

○ some build system tasks are embarassingly parallel: they can
be re-ordered without explicit synchonization
■ is this true of all tasks? No: some tasks depend on each

other. The problem of scheduling tasks with no unbuilt
dependencies is embarassingly parallel, though.

How to speed up builds?

● Incrementalize - only rebuild what you have to
● Execute many tasks in parallel

○ some build system tasks are embarassingly parallel: they can
be re-ordered without explicit synchonization
■ is this true of all tasks? No: some tasks depend on each

other. The problem of scheduling tasks with no unbuilt
dependencies is embarassingly parallel, though.

● Cache artifacts in the cloud

How do build systems differ

How do build systems differ

● Scheduling algorithm

How do build systems differ

● Scheduling algorithm
○ We’ve already seen topological scheduling (used by e.g.

make), which is a static scheduling algorithm

How do build systems differ

● Scheduling algorithm
○ We’ve already seen topological scheduling (used by e.g.

make), which is a static scheduling algorithm
○ Dynamic scheduling algorithms are also possible

How do build systems differ

● Scheduling algorithm
○ We’ve already seen topological scheduling (used by e.g.

make), which is a static scheduling algorithm
○ Dynamic scheduling algorithms are also possible

■ Key idea: compute what dependencies are necessary as
you go

How do build systems differ

● Scheduling algorithm
○ We’ve already seen topological scheduling (used by e.g.

make), which is a static scheduling algorithm
○ Dynamic scheduling algorithms are also possible

■ Key idea: compute what dependencies are necessary as
you go

■ this is how e.g., Bazel actually schedules tasks

How do build systems differ

● Rebuilding strategy

How do build systems differ

● Rebuilding strategy
○ We’ve seen two:

How do build systems differ

● Rebuilding strategy
○ We’ve seen two:

■ a dirty bit strategy (make’s timestamps)

How do build systems differ

● Rebuilding strategy
○ We’ve seen two:

■ a dirty bit strategy (make’s timestamps)
■ a verifying trace strategy (storing hashes of each object)

How do build systems differ

● Rebuilding strategy
○ We’ve seen two:

■ a dirty bit strategy (make’s timestamps)
■ a verifying trace strategy (storing hashes of each object)

○ Other options:
■ constructive traces: store all intermediate objects (usually

in the cloud) along with the hashes of the inputs used to
produce them. If we ever see the same input hashes
again, just return the intermediate object

How do build systems differ

● How are tasks expressed?

How do build systems differ

● How are tasks expressed?
○ traditionally declarative (e.g., make, Ant, Maven)

■ “declarative” = you tell the build system what you want, it
figures out how to build that thing

■ call back to last class: programming languages can also be
from the declarative paradigm (e.g., Prolog)

How do build systems differ

● How are tasks expressed?
○ traditionally declarative (e.g., make, Ant, Maven)

■ “declarative” = you tell the build system what you want, it
figures out how to build that thing

■ call back to last class: programming languages can also be
from the declarative paradigm (e.g., Prolog)

○ most modern build systems have scripting languages
■ e.g., Groovy in Gradle, Starlark in Bazel, etc.
■ enables us to write tasks as if they are other code

How to choose a build system

How to choose a build system

High level idea: same rules apply to choosing a language

How to choose a build system

High level idea: same rules apply to choosing a language

● don’t change what’s already there unless there is a good reason

How to choose a build system

High level idea: same rules apply to choosing a language

● don’t change what’s already there unless there is a good reason
● follow convention and prefer the tooling that’s “idiomatic” to

your language
○ e.g., use Gradle or Maven when working in Java

When to switch build systems

● developers rarely choose to change build systems except when
build performance is a problem

When to switch build systems

● developers rarely choose to change build systems except when
build performance is a problem
○ common causes include:

When to switch build systems

● developers rarely choose to change build systems except when
build performance is a problem
○ common causes include:

■ poor incrementalization (e.g., Maven’s per-module
incremental compilations)

When to switch build systems

● developers rarely choose to change build systems except when
build performance is a problem
○ common causes include:

■ poor incrementalization (e.g., Maven’s per-module
incremental compilations)

■ lack of support for artifact caching (= cloud builds)

When to switch build systems

● developers rarely choose to change build systems except when
build performance is a problem
○ common causes include:

■ poor incrementalization (e.g., Maven’s per-module
incremental compilations)

■ lack of support for artifact caching (= cloud builds)
■ build has become too complex for a declarative task

language

When to switch build systems

● developers rarely choose to change build systems except when
build performance is a problem
○ common causes include:

■ poor incrementalization (e.g., Maven’s per-module
incremental compilations)

■ lack of support for artifact caching (= cloud builds)
■ build has become too complex for a declarative task

language
○ most projects keep the same build system forever

Best practices

● Automate everything

Best practices

● Automate everything
● Always use a build tool

Best practices

● Automate everything
● Always use a build tool
● Have a build server that builds and tests your code on every

commit (continuous integration)

Best practices

● Automate everything
● Always use a build tool
● Have a build server that builds and tests your code on every

commit (continuous integration)

Your CI server is a good place to
test that your build is hermetic.
Standard practice: spin up a new
CI server for each build.

Best practices

● Automate everything
● Always use a build tool
● Have a build server that builds and tests your code on every

commit (continuous integration)
● Don’t depend on anything that’s not in the build file (hermetic)

Best practices

● Automate everything
● Always use a build tool
● Have a build server that builds and tests your code on every

commit (continuous integration)
● Don’t depend on anything that’s not in the build file (hermetic)
● Don’t break the build

Best practices

● Automate everything
● Always use a build tool
● Have a build server that builds and tests your code on every

commit (continuous integration)
● Don’t depend on anything that’s not in the build file (hermetic)
● Don’t break the build

A common mistake to avoid: allowing the CI server to fail for
a long time because “we know what the problem is.” Don’t do
this: leads to complacency, missing real bugs.

Reading quiz: build systems

Reading quiz: build systems
Q1: The author argues that an important health metric for a
software project is “How long does it take for you to get a new team
member working productively on your project?” What is the
maximum amount of time the author says this should take?
A. an hour
B. a day
C. a week

Q2: TRUE or FALSE: According to the author, a “sane” software
development project must be able to build the project on every
developer’s machine

Reading quiz: build systems
Q1: The author argues that an important health metric for a
software project is “How long does it take for you to get a new team
member working productively on your project?” What is the
maximum amount of time the author says this should take?
A. an hour
B. a day
C. a week

Q2: TRUE or FALSE: According to the author, a “sane” software
development project must be able to build the project on every
developer’s machine

Reading quiz: build systems
Q1: The author argues that an important health metric for a
software project is “How long does it take for you to get a new team
member working productively on your project?” What is the
maximum amount of time the author says this should take?
A. an hour
B. a day
C. a week

Q2: TRUE or FALSE: According to the author, a “sane” software
development project must be able to build the project on every
developer’s machine

Reading quiz: build systems
Q1: The author argues that an important health metric for a
software project is “How long does it take for you to get a new team
member working productively on your project?” What is the
maximum amount of time the author says this should take?
A. an hour
B. a day
C. a week

Q2: TRUE or FALSE: According to the author, a “sane” software
development project must be able to build the project on every
developer’s machine

“A sane software development
project has automatic daily
builds, performed on a neutral
build server.”

