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Static Analysis (Part 1/2)

Today’s agenda:

● Finish slides on build systems
● Motivations for static analysis
● Basics of dataflow analysis
● Reading Quiz
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High level idea: same rules apply to choosing a language

● don’t change what’s already there unless there is a good reason
● follow convention and prefer the tooling that’s “idiomatic” to 

your language
○ e.g., use Gradle or Maven when working in Java
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When to switch build systems

● developers rarely choose to change build systems except when 
build performance is a problem
○ common causes include:

■ poor incrementalization (e.g., Maven’s per-module 
incremental compilations)

■ lack of support for artifact caching (= cloud builds)
■ build has become too complex for a declarative task 

language
○ most projects keep the same build system forever
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Your CI server is a good place to 
test that your build is hermetic. 
Standard practice: spin up a new 
CI server for each build.
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Best practices

● Automate everything
● Always use a build tool
● Have a build server that builds and tests your code on every 

commit (continuous integration)
● Don’t depend on anything that’s not in the build file (hermetic)
● Don’t break the build

A common mistake to avoid: allowing the CI server to fail for 
a long time because “we know what the problem is.” Don’t do 
this: leads to complacency, missing real bugs.
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Motivations for static analysis

● Quality assurance is critical to software engineering
● We’ve already covered three important QA techniques:

○ code review, the most common static QA technique
○ linting, the second-most common static QA technique
○ testing, the most common dynamic QA technique

● We’ve seen that both code review and testing have significant 
limitations in practice:
○ code review is limited by human error
○ testing is limited by your choice of tests (Dijkstra again)

Today’s goal: discuss other 
automated static analysis 
techniques that complement 
testing and code review in a 
quality assurance process
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Motivation: many defects are hard to test for

● Many interesting defects are on uncommon or 
difficult-to-exercise execution paths
○ So it’s hard to find them via testing

● Executing or dynamically analyzing all paths concretely to find 
such defects is not feasible (cf. exhaustive testing is infeasible)

● We want to learn about “all possible runs” of the program for 
particular properties
○ Without actually running the program! 
○ Bonus: we don't need test cases!

This is especially true for certain 
kinds of hard-to-test-for defects 
that might not be apparent even 
if you do exercise them, such as 
resource leaks
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● Defects that result from inconsistently following simple, 
mechanical design rules
○ Security: buffer overruns, input validation 
○ Memory safety: null pointers, initialized data 
○ Resource leaks: memory, OS resources 
○ API Protocols: device drivers, GUI frameworks 
○ Exceptions: arithmetic, library, user-defined 
○ Encapsulation: internal data, private functions 
○ Data races: two threads, one variable

There are rules for 
doing each of these 
things correctly, and a 
static analysis can 
automate those rules.
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What is a static analysis?

Definition: static analysis is the systematic examination of an 
abstraction of program state space

● static analysis does not execute the program
○ in contrast to a dynamic analysis, such as testing, which does 

execute the program
● an abstraction, in this context, is a selective representation of the 

program that is simpler to analyze
○ key idea: the abstraction will have fewer states to explore

■ hopefully, many fewer!
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Key ideas in static analysis design

When thinking about static analyses, two key ideas to keep in mind:
● Abstraction 

○ Capture semantically-relevant details 
○ Elide other details 
○ Handle “I don't know”: think about developers

● Programs As Data
○ Programs are just trees, graphs or strings 
○ And we know how to analyze and manipulate those (e.g., visit 

every node in a graph)
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Treating programs as data: three ways

#1: treat the program as a string

● allows us to easily decide syntactic properties
○ for example, checking if a program contains the text “foo”

● key downside: cannot use the program’s semantics
○ semantics is a fancy word for “meaning”
○ semantics are relevant for properties related to context - that 

is, where the question to be decided depends on the rest of the 
program
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Treating programs as data: three ways

#2: treat the program as a tree

Definition: an abstract syntax tree (or AST) is a tree-based 
representation of a program’s syntactic structure

● usually produced by a parser
● nodes in the tree represent syntactic constructs

○ parent-child relationships in the AST represent compound 
expressions in the source code (e.g., a “plus node” might have 
two children: the left and right side expressions)
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Treating programs as data: AST example

grouping parentheses and 
other disambiguation is no 
longer necessary (AST is 
unambiguous, unlike text)
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Treating programs as data: three ways

#3: treat the program as a graph

Definition: a control flow graph (or CFG) is a representation, using 
graph notation, of all paths that might be traversed through a program 
during its execution

● this is the internal representation used by most static analysis 
tools



Treating programs as data: three ways

CFG example on the whiteboard
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Dataflow analysis

● Dataflow analysis is a technique for gathering information about 
the possible set of values calculated at various points in a program
○ Dataflow analysis is the core idea behind most static analyses

● We first abstract the program to an AST or CFG 
● We then abstract what we want to learn (e.g., to help developers) 

down to a small set of abstract values 
● We finally give rules for computing those abstract values

○  Dataflow analyses take programs as input
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Example dataflow analyses

Throughout this lecture, we’ll use two examples of dataflow analyses:

1. an analysis for finding definite null-pointer dereferences

“Whenever execution reaches *ptr at program location L, ptr will 
be NULL”

2. an analysis for finding potential secure information leaks

“We read in a secret string at location L, but there is a possible 
future public use of it”
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Definite vs potential

A “definite” null-pointer dereference exists if and only the pointer is 
NULL on every program execution

A “potential” secure information leak exists if and only if the secure 
information leaks on any program execution

The use of “every” and “any” 
here guarantee that we must 
reason about all paths through 
the program!
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checking for 
“definite” 
properties usually 
comes with false 
negatives

checking for 
“potential” 
properties usually 
comes with false 
positives

Useful analyses 
in practice 
often have both 
false positives 
and false 
negatives.
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Q: what does “ptr always null” actually 
require about assignments to ptr?
A: on all paths, the last assignment to ptr 
must have been null (= 0 in C)
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Common traits of dataflow analysis

● The analysis depends on knowing a property P at a particular point 
in program execution
○ for “definite” analyses: for all executions, is P true at this point?
○ for “potential” analyses: does there exist an execution for 

which P is true at this point?
● Knowing P at any specific program point usually requires 

knowledge of the entire method body
● Property P is typically undecidable
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● Rice’s Theorem: All interesting dynamic properties of a program are 
undecidable:

“interesting” in this context means 
“not trivial”, i.e., not uniformly true 
or false for all programs
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Undecidability of program properties

● Rice’s Theorem: All interesting dynamic properties of a program are 
undecidable:
○ Does the program halt on all (some) inputs?

■ This is called the halting problem
○ Is the result of a function F always positive?

■ Assume we can answer this question precisely 
■ Oops: We can now solve the halting problem. 
■ Take function H and find out if it halts by testing function 

F(x) = { H(x); return 1; } to see if it has a positive result
■ Contradiction!

Rice’s theorem caveats:
● only applies to semantic 

properties (syntactic 
properties are decidable)

● “programs” only includes 
programs with loops
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Loops

● Almost every important program has a loop
○ Often based on user input

● An algorithm always terminates (remember your theory class!)
○ So a dataflow analysis algorithm must terminate even if the 

input program loops
● This is one source of imprecision

○ “imprecision” = “not always getting the right answer”
○ Suppose you dereference the null pointer on the 500th 

iteration but we only analyze 499 iterations
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Conservative program analysis

● Because our analysis must run on a computer, we need the 
analysis itself to be decidable

● But, because of Rice’s Theorem, we know that finding the right 
answer all the time is undecidable :(

● Solution: when in doubt, allow the analysis to answer “I don’t 
know”
○ this is called conservative analysis
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Conservative program analysis

● It’s always correct to say “I don’t know”
○ key challenge in program analysis: say “I don’t know” as 

rarely as possible

Definition: a sound program analysis has no false negatives
● always answers “I don’t know” if there is a potential bug

Definition: a complete program analysis has no false positives
● always answers “I don’t know” if there isn’t a definite bug
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Soundness vs completeness

● Building a sound or complete analysis is easy
○ trivially sound analysis: report a bug on every line
○ trivially complete analysis: never report a bug

● Building a sound and precise (= “few false positives”) analysis or a 
complete analysis with high recall (= “few false negatives”) is 
very hard
○ “sound and precise” analyses are my research area :)
○ also relevant in practice: “fast”, “easy to use”, etc.
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Soundness vs completeness

● Which is more important: soundness or completeness?
● Answer: it depends!

○ Are you writing a bug-finding analysis for websites that show 
pictures of cats? False positives waste time, so choose 
completeness.
■ “I don’t know” = don’t issue a warning

○ Are you writing a bug-finding analysis for aircraft autopilots? 
False negatives cause crashes, so choose soundness.
■ “I don’t know” = do issue a warning
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Soundness vs completeness

● In practice, most static analyses are neither sound nor complete
○ e.g., FindBugs from today’s reading has both false positives and 

false negatives
○ most common exception: most type systems are sound

■ remember: type systems are just another static analysis
○ few complete analyses exist in practice

■ theory is underdeveloped, but another area of active 
research!
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Null-pointer analysis example

Question: is ptr always null when it is dereferenced?

NO: only sometimes null YES: always null
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Null-pointer analysis example: abstraction

Formalizing our reasoning:

● We associate one of the following abstract values with ptr at 
every program point:
○ T (“top”)                 =   “don’t know if X is a constant”
○ constant c            =   “the last assignment to X was X = c”
○ 丄 (“bottom”)     =   “X has no value here”
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c = constant
丄 = unreachable
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Recall:
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c = constant
丄 = unreachable
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Issuing warnings

● Given analysis information (and a policy about false 
positives/negatives), it is easy to decide whether or not to issue a 
warning
○ Simply inspect the x = ? associated with a statement using x
○ If x is the constant 0 at that point, issue a warning!

● But how can an algorithm compute x = ?



Static analysis (2/2?)

● nullness analysis: how it works
● secure information flow analysis
● limitations of static analysis
● static analysis in practice
● reading quiz



Key idea behind dataflow analysis

The analysis of a complicated program can be expressed as a 
combination of simple rules relating the change in information 

between adjacent statements



Key idea behind dataflow analysis

Explanation:



Key idea behind dataflow analysis

Explanation:

● The idea is to “push” or “transfer” information from one statement 
to the next



Key idea behind dataflow analysis

Explanation:

● The idea is to “push” or “transfer” information from one statement 
to the next

● For each statement s, we compute information about the value of x 
immediately before and after s:



Key idea behind dataflow analysis

Explanation:

● The idea is to “push” or “transfer” information from one statement 
to the next

● For each statement s, we compute information about the value of x 
immediately before and after s:
○ C

in
(x,s) = value of x before s 

○ C
out

(x,s) = value of x after s



Key idea behind dataflow analysis

Explanation:

● The idea is to “push” or “transfer” information from one statement 
to the next

● For each statement s, we compute information about the value of x 
immediately before and after s:
○ C

in
(x,s) = value of x before s 

○ C
out

(x,s) = value of x after s
Definition: a transfer function 
expresses the relationship 
between C

in
(x, s) and C

out
(x, s)



Transfer functions: rule 1

C
out

(x, x := c) = c if c is a constant



Transfer functions: rule 2

C
out

(x, s) = ꓕ if C
in

(x, s) = ꓕ

Recall ꓕ = 
“unreachable code”



Transfer functions: rule 3

C
out

(x, x := f(…)) = T



Transfer functions: rule 3

C
out

(x, x := f(…)) = T

This is a conservative 
approximation! f(...) 
might always return 0, 
but we don’t even try!
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C
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Transfer functions: rule 4

C
out

(x, y := …) = C
in

(x, y := …) if x ≠ y

How hard is it to 
check if x ≠ y on all 
executions? (oh no)



Propagation between statements

● Rules 1-4 relate the in of a statement to the out of the same 
statement 



Propagation between statements

● Rules 1-4 relate the in of a statement to the out of the same 
statement 
○ they propagate information across statements



Propagation between statements

● Rules 1-4 relate the in of a statement to the out of the same 
statement 
○ they propagate information across statements

● We also need rules relating the out of one statement to the in of 
the successor statement



Propagation between statements

● Rules 1-4 relate the in of a statement to the out of the same 
statement 
○ they propagate information across statements

● We also need rules relating the out of one statement to the in of 
the successor statement
○ to propagate information forward along paths



Propagation between statements

● Rules 1-4 relate the in of a statement to the out of the same 
statement 
○ they propagate information across statements

● We also need rules relating the out of one statement to the in of 
the successor statement
○ to propagate information forward along paths

● In the following rules, let statement s have immediate predecessor 
statements p1 , …, pn
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(x, pi ) = T for some i, then C
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(x, s) = T



Transfer functions: rule 5

if C
out

(x, pi ) = T for some i, then C
in

(x, s) = T

If there’s any path 
on which we don’t 
know, then we 
don’t know at all
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Transfer functions: rule 6

if C
out

(x, pi ) = c and C
out

(x, pj ) = d and d ≠ c then C
in

 (x, s) = T

We don’t know 
which of the paths a 
given execution will 
take (so assume T)
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Transfer functions: rule 7

if C
out

(x, pi ) = c or ꓕ for all i, then C
in

(x, s) = c

If x has the same 
value (or ꓕ) on all 
input edges, it has 
that value in s



Transfer functions: rule 8

if C
out

(x, pi ) = ꓕ for all i, then C
in

(x, s) = ꓕ
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A static analysis algorithm

● For every entry point e to the program, set C
in

(x, e) = T

Definition: an entry point of a 
program is any program location 
L for which there exists an 
execution trace beginning with L
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A static analysis algorithm

● For every entry point e to the program, set C
in

(x, e) = T
○ why top? Top models “we don’t know”, and we don’t know the 

inputs to the program.
● Set C

in
(x, s) = C

out
(x, s) = ꓕ everywhere else

● Repeat until all points satisfy rules 1-8: 
○ Pick s not satisfying rules 1-8 and update using the appropriate 

rule

This is a fixpoint (or fixed point) 
iteration algorithm. Such algorithms 
are characterized by a finite set of 
rules, which are applied until they 
“reach fixpoint”, which means that 
applying any rule produces no 
change.
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This way 
is easy!

????
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Why do we need ꓕ?

● To understand why we need to set non-entry points to ꓕ initially, 
consider a program with a loop.

● Because of cycles, all points must have values at all times during 
the analysis

● Intuitively, assigning some initial value allows the analysis to break 
cycles

● The initial value ꓕ means “we have not yet analyzed control 
reaching this point”



Another example: dealing with loops

Let’s do it on paper! 
Analyze the value of X.



Another example: dealing with loops

(We went through 
this answer on the 
whiteboard.)
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Lattices & Orderings

● You may have observed that there is a natural order to the different 
abstract values in our nullness analysis
○ (Most) locations start as ꓕ
○ Locations whose current value is ꓕ might become c or T
○ Locations whose current value is c might become T

■ but never go back to ꓕ!
○ Locations whose current value is T never change
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Lattices & Orderings

This structure between values is called a lattice:

T

0 1-1

ꓕ

……

How to read a lattice:
● abstract values higher in the 

lattice are more general (e.g., T 
is true of more things than 0)

● easy to compute least upper 
bound: it’s the lowest common 
ancestor of two abstract values
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Lattices (continued)

● least upper bound (“lub”) has useful properties:
○ monotonicity: implicitly captures that values only flow in one 

direction as the analysis progresses
○ we can rewrite rules 5-8 in our nullness analysis using lub:

C
in

(x, s) = lub { C
out

(x, p) | p is a predecessor of s }
lub is the reason dataflow 
analysis is an algorithm: 
because lub is monotonic, we 
only need to analyze each 
loop as many times as the 
lattice is tall
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Termination

● let’s formalize the argument that our nullness analysis terminates
○ saying “repeat until nothing changes” doesn’t guarantee that 

eventually nothing changes, after all
● the use of lub explains why the algorithm terminates:

○ values start as ꓕ and only increase 
○ ꓕ can change to a constant, and a constant to T 
○ thus, C_(x, s) can change at most twice (= lattice height minus 

one)
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(e.g., a password) potentially connects to a public sink, like a display 
function
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Another example: secure information flow

Analysis goal: report a warning if any source of secure information 
(e.g., a password) potentially connects to a public sink, like a display 
function

source

sink

sanitizer (stops flow)
potential 
insecure flow
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Taint analysis

Definition: A taint analysis (or reachability analysis) tracks whether 
(any/all) value(s) from a set of sources reach a set of sinks

● applications in security: e.g., secure information flow
● stand-in here for a broad class of dataflow analyses
● how would we build it?

○ we’ll write a set of rules, just as we did for our nullness analysis
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Secure information flow analysis

● first step: decide what abstract values to track
○ only need a single boolean: can it be sensitive
○ define H

in/out
(x, s) = true if variable x can be sensitive 

before/after statement s, = false otherwise
■ note that we are abstracting away almost everything!

● second step: statement-by-statement rules to express how this 
works

Note that the rules for this 
analysis are intended to be 
applied “backwards”



Secure information flow analysis: rule 1

H
in

(x, s) = true if s displays x publicly

Recall, true means “if this ends up 
being a secret variable then we 
have a bug!”



Secure information flow analysis: rule 1

H
in

(x, s) = true if s displays x publicly

Recall, true means “if this ends up 
being a secret variable then we 
have a bug!”



Secure information flow analysis: rule 2

H
in

(x, x := e) = false 

This means any subsequent use of x 
is safe after we assign to it.
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Secure information flow analysis: rule 2

H
in

(x, x := e) = false 

This means any value that is 
sanitized is not sensitive

Does this rule say 
anything about the 
sanitize() method?



Secure information flow analysis: rule 3

H
in

(x, s) = H
out

(x, s)
(if s does not refer to x)



Secure information flow analysis: rule 4

H
out

(x, p) =  v { H
in

(x, s) | s is a successor of p }



Secure information flow analysis: rule 4

H
out

(x, p) =  v { H
in

(x, s) | s is a successor of p }

if there is even one 
way to have a leak, 
we might have a 
leak!



Secure information flow analysis: rule 5

H
in

(y, x := y) = H
out

(x, x := y)

(To see why, imagine the next 
statement is display(x). Do 
we care about y?)
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H
in

(y, x := y) = H
out

(x, x := y)

(To see why, imagine the next 
statement is display(x). Do 
we care about y?)
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nullness analysis!
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Secure information flow analysis: algorithm

1. let all H_(…) = false initially
2. repeat until all statements s satisfy rules 1-5:

● pick a statement where one of the rules does not hold and 
update using the appropriate rule

3. once the analysis reaches a fixed point, issue a warning at any 
source (x, s) where H

out
(x, s) is true (= leaks sensitive information)



Secure information flow analysis: example

to the whiteboard!



Secure information flow analysis: example

(for those reading 
online later, solved 
on the whiteboard. 
This is the solution.)
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Limitations of static analysis

● static analysis abstracts away information to remain decidable
○ potential problem: what if the information that was abstracted 

away is important?
■ can we come up with a program for which one of our 

example static analyses “gets the wrong answer”?
○ can we ever have a “perfect” abstraction?

■ of course not (Rice’s theorem again)
■ but, in practice, we can get very close
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● static analysis is best when the rules it enforces are:
○ simple to express to the computer
○ hard for a human to apply

● implication: if you find yourself struggling to follow a well-defined 
(but complicated for a human) rule set while writing code, it might 
be time to reach for a static analysis
○ this sort of situation comes up often:

■ x86/64 calling convention
■ complex API protocols (“call A then B then C then …”)
■ security rules, etc.
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Static analysis in practice

You’re likely to encounter:
● static type systems (sound)
● linters or other style checkers (syntactic = not dataflow)
● “heuristic” bug-finding tools backed by dataflow analyses

○ built into modern IDEs
○ aim for low false positive rates
○ widely used in industry:

■ ErrorProne at Google, Infer at Meta, SpotBugs at many 
places (including Amazon), Coverity, Fortify, etc.

https://github.com/google/error-prone
https://fbinfer.com/
https://spotbugs.github.io/
https://scan.coverity.com/
https://www.microfocus.com/en-us/cyberres/application-security/static-code-analyzer
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Less common, but useful to know about:
● pluggable type systems

○ these are extensions to a type system that lets it prove more 
properties, e.g., adding nullness-checking to Java

○ most common sound analysis (used by Google, Uber, others)
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BasetypeType qualifier

Qualified type
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● developers already use static type systems, so they’re familiar with 
the general idea of types => relatively easy to use (compared to 
other sound static analyses)

● type qualifiers encode property of interest
○ effectively a “second” type system

● qualified types are a Cartesian product of a type from the 
pluggable type system and a type from the base type system

● typechecking is naturally modular = fast
○ but this comes at a cost: programmers need to write types

designing better (more 
expressive, more usable, 
etc.) pluggable type 
systems is an area of 
active research (mine!)
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Static analysis in practice

Less common, but useful to know about:
● pluggable type systems

○ these are extensions to a type system that lets it prove more 
properties, e.g., adding nullness-checking to Java

○ most common sound analysis (used by Google, Uber, others)
● formal verification (subject of 10/25 reading)

○ you write a specification
○ tool verifies that code matches that specification
○ very high effort, but enables sound reasoning about complex 

properties (= worth it for very high value systems)
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● all “sound” static analyses have a trusted computing base (TCB)
○ the TCB is the code whose correctness must be assumed for 

the analysis to actually be sound
● TCB size is an important differentiator between “sound” analyses

○ e.g., TCB for many of my pluggable type systems includes the 
entire Java compiler (limits soundness a lot!)

○ TCB for some formal verifiers is very small (< 1000 LoC)
■ but these tools (e.g., Coq) are much harder to use

● soundness theorems also usually make some assumptions about 
the code being analyzed (e.g., no calls to native code, no reflection)
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Q1: the author advocates which of the following progamming 
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Static analysis: summary

● static analysis is very good at enforcing simple rules
○ much better than humans at this

● all interesting semantic properties of programs are undecidable, so 
all static analyses must approximate
○ goal in analysis design is to abstract away unimportant details, 

but keep important details
○ dataflow analysis is one technique for static analysis
○ trade-offs between false positives, false negatives, analysis time

● soundness & completeness are possible, but rare
○ all soundness guarantees come with caveats about the TCB


