
Static Analysis (1/2)
Martin Kellogg

Static Analysis (Part 1/2)

Today’s agenda:

● Finish slides on build systems
● Motivations for static analysis
● Basics of dataflow analysis
● Reading Quiz

How to choose a build system

How to choose a build system

High level idea: same rules apply to choosing a language

How to choose a build system

High level idea: same rules apply to choosing a language

● don’t change what’s already there unless there is a good reason

How to choose a build system

High level idea: same rules apply to choosing a language

● don’t change what’s already there unless there is a good reason
● follow convention and prefer the tooling that’s “idiomatic” to

your language
○ e.g., use Gradle or Maven when working in Java

When to switch build systems

● developers rarely choose to change build systems except when
build performance is a problem

When to switch build systems

● developers rarely choose to change build systems except when
build performance is a problem
○ common causes include:

When to switch build systems

● developers rarely choose to change build systems except when
build performance is a problem
○ common causes include:

■ poor incrementalization (e.g., Maven’s per-module
incremental compilations)

When to switch build systems

● developers rarely choose to change build systems except when
build performance is a problem
○ common causes include:

■ poor incrementalization (e.g., Maven’s per-module
incremental compilations)

■ lack of support for artifact caching (= cloud builds)

When to switch build systems

● developers rarely choose to change build systems except when
build performance is a problem
○ common causes include:

■ poor incrementalization (e.g., Maven’s per-module
incremental compilations)

■ lack of support for artifact caching (= cloud builds)
■ build has become too complex for a declarative task

language

When to switch build systems

● developers rarely choose to change build systems except when
build performance is a problem
○ common causes include:

■ poor incrementalization (e.g., Maven’s per-module
incremental compilations)

■ lack of support for artifact caching (= cloud builds)
■ build has become too complex for a declarative task

language
○ most projects keep the same build system forever

Best practices

● Automate everything

Best practices

● Automate everything
● Always use a build tool

Best practices

● Automate everything
● Always use a build tool
● Have a build server that builds and tests your code on every

commit (continuous integration)

Best practices

● Automate everything
● Always use a build tool
● Have a build server that builds and tests your code on every

commit (continuous integration)

Your CI server is a good place to
test that your build is hermetic.
Standard practice: spin up a new
CI server for each build.

Best practices

● Automate everything
● Always use a build tool
● Have a build server that builds and tests your code on every

commit (continuous integration)
● Don’t depend on anything that’s not in the build file (hermetic)

Best practices

● Automate everything
● Always use a build tool
● Have a build server that builds and tests your code on every

commit (continuous integration)
● Don’t depend on anything that’s not in the build file (hermetic)
● Don’t break the build

Best practices

● Automate everything
● Always use a build tool
● Have a build server that builds and tests your code on every

commit (continuous integration)
● Don’t depend on anything that’s not in the build file (hermetic)
● Don’t break the build

A common mistake to avoid: allowing the CI server to fail for
a long time because “we know what the problem is.” Don’t do
this: leads to complacency, missing real bugs.

Static Analysis (Part 1/2)

Today’s agenda:

● Motivations for static analysis
● Basics of dataflow analysis
● Reading Quiz

Motivations for static analysis

Motivations for static analysis

● Quality assurance is critical to software engineering

Motivations for static analysis

● Quality assurance is critical to software engineering
● We’ve already covered three important QA techniques:

Motivations for static analysis

● Quality assurance is critical to software engineering
● We’ve already covered three important QA techniques:

○ code review, the most common static QA technique

Motivations for static analysis

● Quality assurance is critical to software engineering
● We’ve already covered three important QA techniques:

○ code review, the most common static QA technique
○ linting, the second-most common static QA technique

Motivations for static analysis

● Quality assurance is critical to software engineering
● We’ve already covered three important QA techniques:

○ code review, the most common static QA technique
○ linting, the second-most common static QA technique
○ testing, the most common dynamic QA technique

Motivations for static analysis

● Quality assurance is critical to software engineering
● We’ve already covered three important QA techniques:

○ code review, the most common static QA technique
○ linting, the second-most common static QA technique
○ testing, the most common dynamic QA technique

● We’ve seen that both code review and testing have significant
limitations in practice:

Motivations for static analysis

● Quality assurance is critical to software engineering
● We’ve already covered three important QA techniques:

○ code review, the most common static QA technique
○ linting, the second-most common static QA technique
○ testing, the most common dynamic QA technique

● We’ve seen that both code review and testing have significant
limitations in practice:
○ code review is limited by human error

Motivations for static analysis

● Quality assurance is critical to software engineering
● We’ve already covered three important QA techniques:

○ code review, the most common static QA technique
○ linting, the second-most common static QA technique
○ testing, the most common dynamic QA technique

● We’ve seen that both code review and testing have significant
limitations in practice:
○ code review is limited by human error
○ testing is limited by your choice of tests (Dijkstra again)

Motivations for static analysis

● Quality assurance is critical to software engineering
● We’ve already covered three important QA techniques:

○ code review, the most common static QA technique
○ linting, the second-most common static QA technique
○ testing, the most common dynamic QA technique

● We’ve seen that both code review and testing have significant
limitations in practice:
○ code review is limited by human error
○ testing is limited by your choice of tests (Dijkstra again)

Today’s goal: discuss other
automated static analysis
techniques that complement
testing and code review in a
quality assurance process

Motivation: many defects are hard to test for

Motivation: many defects are hard to test for

● Many interesting defects are on uncommon or
difficult-to-exercise execution paths

Motivation: many defects are hard to test for

● Many interesting defects are on uncommon or
difficult-to-exercise execution paths
○ So it’s hard to find them via testing

Motivation: many defects are hard to test for

● Many interesting defects are on uncommon or
difficult-to-exercise execution paths
○ So it’s hard to find them via testing

● Executing or dynamically analyzing all paths concretely to find
such defects is not feasible (cf. exhaustive testing is infeasible)

Motivation: many defects are hard to test for

● Many interesting defects are on uncommon or
difficult-to-exercise execution paths
○ So it’s hard to find them via testing

● Executing or dynamically analyzing all paths concretely to find
such defects is not feasible (cf. exhaustive testing is infeasible)

● We want to learn about “all possible runs” of the program for
particular properties

Motivation: many defects are hard to test for

● Many interesting defects are on uncommon or
difficult-to-exercise execution paths
○ So it’s hard to find them via testing

● Executing or dynamically analyzing all paths concretely to find
such defects is not feasible (cf. exhaustive testing is infeasible)

● We want to learn about “all possible runs” of the program for
particular properties
○ Without actually running the program!

Motivation: many defects are hard to test for

● Many interesting defects are on uncommon or
difficult-to-exercise execution paths
○ So it’s hard to find them via testing

● Executing or dynamically analyzing all paths concretely to find
such defects is not feasible (cf. exhaustive testing is infeasible)

● We want to learn about “all possible runs” of the program for
particular properties
○ Without actually running the program!
○ Bonus: we don't need test cases!

Motivation: many defects are hard to test for

● Many interesting defects are on uncommon or
difficult-to-exercise execution paths
○ So it’s hard to find them via testing

● Executing or dynamically analyzing all paths concretely to find
such defects is not feasible (cf. exhaustive testing is infeasible)

● We want to learn about “all possible runs” of the program for
particular properties
○ Without actually running the program!
○ Bonus: we don't need test cases!

This is especially true for certain
kinds of hard-to-test-for defects
that might not be apparent even
if you do exercise them, such as
resource leaks

What does static analysis do well?

What does static analysis do well?

● Defects that result from inconsistently following simple,
mechanical design rules

What does static analysis do well?

● Defects that result from inconsistently following simple,
mechanical design rules
○ Security: buffer overruns, input validation
○ Memory safety: null pointers, initialized data
○ Resource leaks: memory, OS resources
○ API Protocols: device drivers, GUI frameworks
○ Exceptions: arithmetic, library, user-defined
○ Encapsulation: internal data, private functions
○ Data races: two threads, one variable

What does static analysis do well?

● Defects that result from inconsistently following simple,
mechanical design rules
○ Security: buffer overruns, input validation
○ Memory safety: null pointers, initialized data
○ Resource leaks: memory, OS resources
○ API Protocols: device drivers, GUI frameworks
○ Exceptions: arithmetic, library, user-defined
○ Encapsulation: internal data, private functions
○ Data races: two threads, one variable

There are rules for
doing each of these
things correctly, and a
static analysis can
automate those rules.

What is a static analysis?

What is a static analysis?

Definition: static analysis is the systematic examination of an
abstraction of program state space

What is a static analysis?

Definition: static analysis is the systematic examination of an
abstraction of program state space

● static analysis does not execute the program

What is a static analysis?

Definition: static analysis is the systematic examination of an
abstraction of program state space

● static analysis does not execute the program
○ in contrast to a dynamic analysis, such as testing, which does

execute the program

What is a static analysis?

Definition: static analysis is the systematic examination of an
abstraction of program state space

● static analysis does not execute the program
○ in contrast to a dynamic analysis, such as testing, which does

execute the program
● an abstraction, in this context, is a selective representation of the

program that is simpler to analyze

What is a static analysis?

Definition: static analysis is the systematic examination of an
abstraction of program state space

● static analysis does not execute the program
○ in contrast to a dynamic analysis, such as testing, which does

execute the program
● an abstraction, in this context, is a selective representation of the

program that is simpler to analyze
○ key idea: the abstraction will have fewer states to explore

■ hopefully, many fewer!

Key ideas in static analysis design

When thinking about static analyses, two key ideas to keep in mind:

Key ideas in static analysis design

When thinking about static analyses, two key ideas to keep in mind:
● Abstraction

Key ideas in static analysis design

When thinking about static analyses, two key ideas to keep in mind:
● Abstraction

○ Capture semantically-relevant details

Key ideas in static analysis design

When thinking about static analyses, two key ideas to keep in mind:
● Abstraction

○ Capture semantically-relevant details
○ Elide other details

Key ideas in static analysis design

When thinking about static analyses, two key ideas to keep in mind:
● Abstraction

○ Capture semantically-relevant details
○ Elide other details
○ Handle “I don't know”: think about developers

Key ideas in static analysis design

When thinking about static analyses, two key ideas to keep in mind:
● Abstraction

○ Capture semantically-relevant details
○ Elide other details
○ Handle “I don't know”: think about developers

● Programs As Data

Key ideas in static analysis design

When thinking about static analyses, two key ideas to keep in mind:
● Abstraction

○ Capture semantically-relevant details
○ Elide other details
○ Handle “I don't know”: think about developers

● Programs As Data
○ Programs are just trees, graphs or strings

Key ideas in static analysis design

When thinking about static analyses, two key ideas to keep in mind:
● Abstraction

○ Capture semantically-relevant details
○ Elide other details
○ Handle “I don't know”: think about developers

● Programs As Data
○ Programs are just trees, graphs or strings
○ And we know how to analyze and manipulate those (e.g., visit

every node in a graph)

Treating programs as data: three ways

Treating programs as data: three ways

#1: treat the program as a string

Treating programs as data: three ways

#1: treat the program as a string

● allows us to easily decide syntactic properties

Treating programs as data: three ways

#1: treat the program as a string

● allows us to easily decide syntactic properties
○ for example, checking if a program contains the text “foo”

Treating programs as data: three ways

#1: treat the program as a string

● allows us to easily decide syntactic properties
○ for example, checking if a program contains the text “foo”

● key downside: cannot use the program’s semantics

Treating programs as data: three ways

#1: treat the program as a string

● allows us to easily decide syntactic properties
○ for example, checking if a program contains the text “foo”

● key downside: cannot use the program’s semantics
○ semantics is a fancy word for “meaning”

Treating programs as data: three ways

#1: treat the program as a string

● allows us to easily decide syntactic properties
○ for example, checking if a program contains the text “foo”

● key downside: cannot use the program’s semantics
○ semantics is a fancy word for “meaning”
○ semantics are relevant for properties related to context - that

is, where the question to be decided depends on the rest of the
program

Treating programs as data: three ways

#2: treat the program as a tree

Treating programs as data: three ways

#2: treat the program as a tree

Definition: an abstract syntax tree (or AST) is a tree-based
representation of a program’s syntactic structure

Treating programs as data: three ways

#2: treat the program as a tree

Definition: an abstract syntax tree (or AST) is a tree-based
representation of a program’s syntactic structure

● usually produced by a parser

Treating programs as data: three ways

#2: treat the program as a tree

Definition: an abstract syntax tree (or AST) is a tree-based
representation of a program’s syntactic structure

● usually produced by a parser
● nodes in the tree represent syntactic constructs

Treating programs as data: three ways

#2: treat the program as a tree

Definition: an abstract syntax tree (or AST) is a tree-based
representation of a program’s syntactic structure

● usually produced by a parser
● nodes in the tree represent syntactic constructs

○ parent-child relationships in the AST represent compound
expressions in the source code (e.g., a “plus node” might have
two children: the left and right side expressions)

Treating programs as data: AST example

Treating programs as data: AST example

plus nodes have children

Treating programs as data: AST example

grouping parentheses and
other disambiguation is no
longer necessary (AST is
unambiguous, unlike text)

Treating programs as data: three ways

#3: treat the program as a graph

Definition: a control flow graph (or CFG) is a representation, using
graph notation, of all paths that might be traversed through a program
during its execution

Treating programs as data: three ways

#3: treat the program as a graph

Definition: a control flow graph (or CFG) is a representation, using
graph notation, of all paths that might be traversed through a program
during its execution

● this is the internal representation used by most static analysis
tools

Treating programs as data: three ways

CFG example on the whiteboard

Dataflow analysis

● Dataflow analysis is a technique for gathering information about
the possible set of values calculated at various points in a program

Dataflow analysis

● Dataflow analysis is a technique for gathering information about
the possible set of values calculated at various points in a program
○ Dataflow analysis is the core idea behind most static analyses

Dataflow analysis

● Dataflow analysis is a technique for gathering information about
the possible set of values calculated at various points in a program
○ Dataflow analysis is the core idea behind most static analyses

● We first abstract the program to an AST or CFG

Dataflow analysis

● Dataflow analysis is a technique for gathering information about
the possible set of values calculated at various points in a program
○ Dataflow analysis is the core idea behind most static analyses

● We first abstract the program to an AST or CFG
● We then abstract what we want to learn (e.g., to help developers)

down to a small set of abstract values

Dataflow analysis

● Dataflow analysis is a technique for gathering information about
the possible set of values calculated at various points in a program
○ Dataflow analysis is the core idea behind most static analyses

● We first abstract the program to an AST or CFG
● We then abstract what we want to learn (e.g., to help developers)

down to a small set of abstract values
● We finally give rules for computing those abstract values

Dataflow analysis

● Dataflow analysis is a technique for gathering information about
the possible set of values calculated at various points in a program
○ Dataflow analysis is the core idea behind most static analyses

● We first abstract the program to an AST or CFG
● We then abstract what we want to learn (e.g., to help developers)

down to a small set of abstract values
● We finally give rules for computing those abstract values

○ Dataflow analyses take programs as input

Example dataflow analyses

Throughout this lecture, we’ll use two examples of dataflow analyses:

Example dataflow analyses

Throughout this lecture, we’ll use two examples of dataflow analyses:

1. an analysis for finding definite null-pointer dereferences

“Whenever execution reaches *ptr at program location L, ptr will
be NULL”

Example dataflow analyses

Throughout this lecture, we’ll use two examples of dataflow analyses:

1. an analysis for finding definite null-pointer dereferences

“Whenever execution reaches *ptr at program location L, ptr will
be NULL”

2. an analysis for finding potential secure information leaks

“We read in a secret string at location L, but there is a possible
future public use of it”

Definite vs potential

A “definite” null-pointer dereference exists if and only the pointer is
NULL on every program execution

A “potential” secure information leak exists if and only if the secure
information leaks on any program execution

Definite vs potential

A “definite” null-pointer dereference exists if and only the pointer is
NULL on every program execution

A “potential” secure information leak exists if and only if the secure
information leaks on any program execution

The use of “every” and “any”
here guarantee that we must
reason about all paths through
the program!

Definite vs potential = false positives vs negatives

Can X actually happen?

D
id

 a
 t

o
o

l w
ar

n
 u

s
ab

o
u

t
X

?

Y
E

S
N

O

YES NO

True
positive

False
positive

True
negative

False
negative

Definite vs potential = false positives vs negatives

Can X actually happen?

D
id

 a
 t

o
o

l w
ar

n
 u

s
ab

o
u

t
X

?

Y
E

S
N

O

YES NO

True
positive

False
positive

True
negative

False
negative

checking for
“potential”
properties usually
comes with false
positives

Definite vs potential = false positives vs negatives

Can X actually happen?

D
id

 a
 t

o
o

l w
ar

n
 u

s
ab

o
u

t
X

?

Y
E

S
N

O

YES NO

True
positive

False
positive

True
negative

False
negative

checking for
“definite”
properties usually
comes with false
negatives

checking for
“potential”
properties usually
comes with false
positives

Definite vs potential = false positives vs negatives

Can X actually happen?

D
id

 a
 t

o
o

l w
ar

n
 u

s
ab

o
u

t
X

?

Y
E

S
N

O

YES NO

True
positive

False
positive

True
negative

False
negative

checking for
“definite”
properties usually
comes with false
negatives

checking for
“potential”
properties usually
comes with false
positives

Useful analyses
in practice
often have both
false positives
and false
negatives.

Null-pointer analysis example

Null-pointer analysis example

Question: is ptr always null when it is dereferenced?

Null-pointer analysis example

Question: is ptr always null when it is dereferenced?

Q: what does “ptr always null” actually
require about assignments to ptr?
A: on all paths, the last assignment to ptr
must have been null (= 0 in C)

Null-pointer analysis example

Question: is ptr always null when it is dereferenced?

Q: what does “ptr always null” actually
require about assignments to ptr?
A: on all paths, the last assignment to ptr
must have been null (= 0 in C)

Null-pointer analysis example

Question: is ptr always null when it is dereferenced?

Q: what does “ptr always null” actually
require about assignments to ptr?
A: on all paths, the last assignment to ptr
must have been null (= 0 in C)

Null-pointer analysis example

Question: is ptr always null when it is dereferenced?

Q: what does “ptr always null” actually
require about assignments to ptr?
A: on all paths, the last assignment to ptr
must have been null (= 0 in C)

dereference

Null-pointer analysis example

Question: is ptr always null when it is dereferenced?

Q: what does “ptr always null” actually
require about assignments to ptr?
A: on all paths, the last assignment to ptr
must have been null (= 0 in C)

dereference

Common traits of dataflow analysis

Common traits of dataflow analysis

● The analysis depends on knowing a property P at a particular point
in program execution

Common traits of dataflow analysis

● The analysis depends on knowing a property P at a particular point
in program execution
○ for “definite” analyses: for all executions, is P true at this point?

Common traits of dataflow analysis

● The analysis depends on knowing a property P at a particular point
in program execution
○ for “definite” analyses: for all executions, is P true at this point?
○ for “potential” analyses: does there exist an execution for

which P is true at this point?

Common traits of dataflow analysis

● The analysis depends on knowing a property P at a particular point
in program execution
○ for “definite” analyses: for all executions, is P true at this point?
○ for “potential” analyses: does there exist an execution for

which P is true at this point?

∀

Common traits of dataflow analysis

● The analysis depends on knowing a property P at a particular point
in program execution
○ for “definite” analyses: for all executions, is P true at this point?
○ for “potential” analyses: does there exist an execution for

which P is true at this point? ∃

Common traits of dataflow analysis

● The analysis depends on knowing a property P at a particular point
in program execution
○ for “definite” analyses: for all executions, is P true at this point?
○ for “potential” analyses: does there exist an execution for

which P is true at this point?
● Knowing P at any specific program point usually requires

knowledge of the entire method body

Common traits of dataflow analysis

● The analysis depends on knowing a property P at a particular point
in program execution
○ for “definite” analyses: for all executions, is P true at this point?
○ for “potential” analyses: does there exist an execution for

which P is true at this point?
● Knowing P at any specific program point usually requires

knowledge of the entire method body
● Property P is typically undecidable

Undecidability of program properties

Undecidability of program properties

● Rice’s Theorem: All interesting dynamic properties of a program are
undecidable:

Undecidability of program properties

● Rice’s Theorem: All interesting dynamic properties of a program are
undecidable:

“interesting” in this context means
“not trivial”, i.e., not uniformly true
or false for all programs

Undecidability of program properties

● Rice’s Theorem: All interesting dynamic properties of a program are
undecidable:
○ Does the program halt on all (some) inputs?

■ This is called the halting problem

Undecidability of program properties

● Rice’s Theorem: All interesting dynamic properties of a program are
undecidable:
○ Does the program halt on all (some) inputs?

■ This is called the halting problem
○ Is the result of a function F always positive?

Undecidability of program properties

● Rice’s Theorem: All interesting dynamic properties of a program are
undecidable:
○ Does the program halt on all (some) inputs?

■ This is called the halting problem
○ Is the result of a function F always positive?

■ Assume we can answer this question precisely

Undecidability of program properties

● Rice’s Theorem: All interesting dynamic properties of a program are
undecidable:
○ Does the program halt on all (some) inputs?

■ This is called the halting problem
○ Is the result of a function F always positive?

■ Assume we can answer this question precisely
■ Oops: We can now solve the halting problem.

Undecidability of program properties

● Rice’s Theorem: All interesting dynamic properties of a program are
undecidable:
○ Does the program halt on all (some) inputs?

■ This is called the halting problem
○ Is the result of a function F always positive?

■ Assume we can answer this question precisely
■ Oops: We can now solve the halting problem.
■ Take function H and find out if it halts by testing function

F(x) = { H(x); return 1; } to see if it has a positive result

Undecidability of program properties

● Rice’s Theorem: All interesting dynamic properties of a program are
undecidable:
○ Does the program halt on all (some) inputs?

■ This is called the halting problem
○ Is the result of a function F always positive?

■ Assume we can answer this question precisely
■ Oops: We can now solve the halting problem.
■ Take function H and find out if it halts by testing function

F(x) = { H(x); return 1; } to see if it has a positive result
■ Contradiction!

Undecidability of program properties

● Rice’s Theorem: All interesting dynamic properties of a program are
undecidable:
○ Does the program halt on all (some) inputs?

■ This is called the halting problem
○ Is the result of a function F always positive?

■ Assume we can answer this question precisely
■ Oops: We can now solve the halting problem.
■ Take function H and find out if it halts by testing function

F(x) = { H(x); return 1; } to see if it has a positive result
■ Contradiction!

Rice’s theorem caveats:
● only applies to semantic

properties (syntactic
properties are decidable)

● “programs” only includes
programs with loops

Loops

● Almost every important program has a loop
○ Often based on user input

Loops

● Almost every important program has a loop
○ Often based on user input

● An algorithm always terminates (remember your theory class!)
○ So a dataflow analysis algorithm must terminate even if the

input program loops

Loops

● Almost every important program has a loop
○ Often based on user input

● An algorithm always terminates (remember your theory class!)
○ So a dataflow analysis algorithm must terminate even if the

input program loops
● This is one source of imprecision

○ “imprecision” = “not always getting the right answer”
○ Suppose you dereference the null pointer on the 500th

iteration but we only analyze 499 iterations

Conservative program analysis

● Because our analysis must run on a computer, we need the
analysis itself to be decidable

Conservative program analysis

● Because our analysis must run on a computer, we need the
analysis itself to be decidable

● But, because of Rice’s Theorem, we know that finding the right
answer all the time is undecidable :(

Conservative program analysis

● Because our analysis must run on a computer, we need the
analysis itself to be decidable

● But, because of Rice’s Theorem, we know that finding the right
answer all the time is undecidable :(

● Solution: when in doubt, allow the analysis to answer “I don’t
know”

Conservative program analysis

● Because our analysis must run on a computer, we need the
analysis itself to be decidable

● But, because of Rice’s Theorem, we know that finding the right
answer all the time is undecidable :(

● Solution: when in doubt, allow the analysis to answer “I don’t
know”
○ this is called conservative analysis

Conservative program analysis

● It’s always correct to say “I don’t know”

Conservative program analysis

● It’s always correct to say “I don’t know”
○ key challenge in program analysis: say “I don’t know” as

rarely as possible

Conservative program analysis

● It’s always correct to say “I don’t know”
○ key challenge in program analysis: say “I don’t know” as

rarely as possible

Definition: a sound program analysis has no false negatives

Conservative program analysis

● It’s always correct to say “I don’t know”
○ key challenge in program analysis: say “I don’t know” as

rarely as possible

Definition: a sound program analysis has no false negatives
● always answers “I don’t know” if there is a potential bug

Conservative program analysis

● It’s always correct to say “I don’t know”
○ key challenge in program analysis: say “I don’t know” as

rarely as possible

Definition: a sound program analysis has no false negatives
● always answers “I don’t know” if there is a potential bug

Definition: a complete program analysis has no false positives

Conservative program analysis

● It’s always correct to say “I don’t know”
○ key challenge in program analysis: say “I don’t know” as

rarely as possible

Definition: a sound program analysis has no false negatives
● always answers “I don’t know” if there is a potential bug

Definition: a complete program analysis has no false positives
● always answers “I don’t know” if there isn’t a definite bug

Soundness vs completeness

● Building a sound or complete analysis is easy

Soundness vs completeness

● Building a sound or complete analysis is easy
○ trivially sound analysis: report a bug on every line

Soundness vs completeness

● Building a sound or complete analysis is easy
○ trivially sound analysis: report a bug on every line
○ trivially complete analysis: never report a bug

Soundness vs completeness

● Building a sound or complete analysis is easy
○ trivially sound analysis: report a bug on every line
○ trivially complete analysis: never report a bug

● Building a sound and precise (= “few false positives”) analysis or a
complete analysis with high recall (= “few false negatives”) is
very hard

Soundness vs completeness

● Building a sound or complete analysis is easy
○ trivially sound analysis: report a bug on every line
○ trivially complete analysis: never report a bug

● Building a sound and precise (= “few false positives”) analysis or a
complete analysis with high recall (= “few false negatives”) is
very hard
○ “sound and precise” analyses are my research area :)

Soundness vs completeness

● Building a sound or complete analysis is easy
○ trivially sound analysis: report a bug on every line
○ trivially complete analysis: never report a bug

● Building a sound and precise (= “few false positives”) analysis or a
complete analysis with high recall (= “few false negatives”) is
very hard
○ “sound and precise” analyses are my research area :)
○ also relevant in practice: “fast”, “easy to use”, etc.

Soundness vs completeness

● Which is more important: soundness or completeness?

Soundness vs completeness

● Which is more important: soundness or completeness?
● Answer: it depends!

Soundness vs completeness

● Which is more important: soundness or completeness?
● Answer: it depends!

○ Are you writing a bug-finding analysis for websites that show
pictures of cats? False positives waste time, so choose
completeness.

Soundness vs completeness

● Which is more important: soundness or completeness?
● Answer: it depends!

○ Are you writing a bug-finding analysis for websites that show
pictures of cats? False positives waste time, so choose
completeness.
■ “I don’t know” = don’t issue a warning

Soundness vs completeness

● Which is more important: soundness or completeness?
● Answer: it depends!

○ Are you writing a bug-finding analysis for websites that show
pictures of cats? False positives waste time, so choose
completeness.
■ “I don’t know” = don’t issue a warning

○ Are you writing a bug-finding analysis for aircraft autopilots?
False negatives cause crashes, so choose soundness.

Soundness vs completeness

● Which is more important: soundness or completeness?
● Answer: it depends!

○ Are you writing a bug-finding analysis for websites that show
pictures of cats? False positives waste time, so choose
completeness.
■ “I don’t know” = don’t issue a warning

○ Are you writing a bug-finding analysis for aircraft autopilots?
False negatives cause crashes, so choose soundness.
■ “I don’t know” = do issue a warning

Soundness vs completeness

● In practice, most static analyses are neither sound nor complete

Soundness vs completeness

● In practice, most static analyses are neither sound nor complete
○ e.g., FindBugs from today’s reading has both false positives and

false negatives

Soundness vs completeness

● In practice, most static analyses are neither sound nor complete
○ e.g., FindBugs from today’s reading has both false positives and

false negatives
○ most common exception: most type systems are sound

Soundness vs completeness

● In practice, most static analyses are neither sound nor complete
○ e.g., FindBugs from today’s reading has both false positives and

false negatives
○ most common exception: most type systems are sound

■ remember: type systems are just another static analysis

Soundness vs completeness

● In practice, most static analyses are neither sound nor complete
○ e.g., FindBugs from today’s reading has both false positives and

false negatives
○ most common exception: most type systems are sound

■ remember: type systems are just another static analysis
○ few complete analyses exist in practice

Soundness vs completeness

● In practice, most static analyses are neither sound nor complete
○ e.g., FindBugs from today’s reading has both false positives and

false negatives
○ most common exception: most type systems are sound

■ remember: type systems are just another static analysis
○ few complete analyses exist in practice

■ theory is underdeveloped, but another area of active
research!

Null-pointer analysis example

Question: is ptr always null when it is dereferenced?

Null-pointer analysis example

Question: is ptr always null when it is dereferenced?

Null-pointer analysis example

Question: is ptr always null when it is dereferenced?

NO: only sometimes null YES: always null

Null-pointer analysis example: abstraction

Formalizing our reasoning:

Null-pointer analysis example: abstraction

Formalizing our reasoning:

● We associate one of the following abstract values with ptr at
every program point:

Null-pointer analysis example: abstraction

Formalizing our reasoning:

● We associate one of the following abstract values with ptr at
every program point:
○ T (“top”) = “don’t know if X is a constant”

Null-pointer analysis example: abstraction

Formalizing our reasoning:

● We associate one of the following abstract values with ptr at
every program point:
○ T (“top”) = “don’t know if X is a constant”
○ constant c = “the last assignment to X was X = c”

Null-pointer analysis example: abstraction

Formalizing our reasoning:

● We associate one of the following abstract values with ptr at
every program point:
○ T (“top”) = “don’t know if X is a constant”
○ constant c = “the last assignment to X was X = c”
○ 丄 (“bottom”) = “X has no value here”

Null-pointer analysis example: formalized

Get out a piece of paper. Fill in these blanks:

Recall:
T = “don’t know”
c = constant
丄 = unreachable

Null-pointer analysis example: formalized

Get out a piece of paper. Fill in these blanks:

Recall:
T = “don’t know”
c = constant
丄 = unreachable

Issuing warnings

Issuing warnings

● Given analysis information (and a policy about false
positives/negatives), it is easy to decide whether or not to issue a
warning

Issuing warnings

● Given analysis information (and a policy about false
positives/negatives), it is easy to decide whether or not to issue a
warning
○ Simply inspect the x = ? associated with a statement using x

Issuing warnings

● Given analysis information (and a policy about false
positives/negatives), it is easy to decide whether or not to issue a
warning
○ Simply inspect the x = ? associated with a statement using x
○ If x is the constant 0 at that point, issue a warning!

Issuing warnings

● Given analysis information (and a policy about false
positives/negatives), it is easy to decide whether or not to issue a
warning
○ Simply inspect the x = ? associated with a statement using x
○ If x is the constant 0 at that point, issue a warning!

● But how can an algorithm compute x = ?

Static analysis (2/2?)

● nullness analysis: how it works
● secure information flow analysis
● limitations of static analysis
● static analysis in practice
● reading quiz

Key idea behind dataflow analysis

The analysis of a complicated program can be expressed as a
combination of simple rules relating the change in information

between adjacent statements

Key idea behind dataflow analysis

Explanation:

Key idea behind dataflow analysis

Explanation:

● The idea is to “push” or “transfer” information from one statement
to the next

Key idea behind dataflow analysis

Explanation:

● The idea is to “push” or “transfer” information from one statement
to the next

● For each statement s, we compute information about the value of x
immediately before and after s:

Key idea behind dataflow analysis

Explanation:

● The idea is to “push” or “transfer” information from one statement
to the next

● For each statement s, we compute information about the value of x
immediately before and after s:
○ C

in
(x,s) = value of x before s

○ C
out

(x,s) = value of x after s

Key idea behind dataflow analysis

Explanation:

● The idea is to “push” or “transfer” information from one statement
to the next

● For each statement s, we compute information about the value of x
immediately before and after s:
○ C

in
(x,s) = value of x before s

○ C
out

(x,s) = value of x after s
Definition: a transfer function
expresses the relationship
between C

in
(x, s) and C

out
(x, s)

Transfer functions: rule 1

C
out

(x, x := c) = c if c is a constant

Transfer functions: rule 2

C
out

(x, s) = ꓕ if C
in

(x, s) = ꓕ

Recall ꓕ =
“unreachable code”

Transfer functions: rule 3

C
out

(x, x := f(…)) = T

Transfer functions: rule 3

C
out

(x, x := f(…)) = T

This is a conservative
approximation! f(...)
might always return 0,
but we don’t even try!

Transfer functions: rule 4

C
out

(x, y := …) = C
in

(x, y := …) if x ≠ y

Transfer functions: rule 4

C
out

(x, y := …) = C
in

(x, y := …) if x ≠ y

How hard is it to
check if x ≠ y on all
executions?

Transfer functions: rule 4

C
out

(x, y := …) = C
in

(x, y := …) if x ≠ y

How hard is it to
check if x ≠ y on all
executions? (oh no)

Propagation between statements

● Rules 1-4 relate the in of a statement to the out of the same
statement

Propagation between statements

● Rules 1-4 relate the in of a statement to the out of the same
statement
○ they propagate information across statements

Propagation between statements

● Rules 1-4 relate the in of a statement to the out of the same
statement
○ they propagate information across statements

● We also need rules relating the out of one statement to the in of
the successor statement

Propagation between statements

● Rules 1-4 relate the in of a statement to the out of the same
statement
○ they propagate information across statements

● We also need rules relating the out of one statement to the in of
the successor statement
○ to propagate information forward along paths

Propagation between statements

● Rules 1-4 relate the in of a statement to the out of the same
statement
○ they propagate information across statements

● We also need rules relating the out of one statement to the in of
the successor statement
○ to propagate information forward along paths

● In the following rules, let statement s have immediate predecessor
statements p1 , …, pn

Transfer functions: rule 5

if C
out

(x, pi) = T for some i, then C
in

(x, s) = T

Transfer functions: rule 5

if C
out

(x, pi) = T for some i, then C
in

(x, s) = T

If there’s any path
on which we don’t
know, then we
don’t know at all

Transfer functions: rule 6

if C
out

(x, pi) = c and C
out

(x, pj) = d and d ≠ c then C
in

 (x, s) = T

Transfer functions: rule 6

if C
out

(x, pi) = c and C
out

(x, pj) = d and d ≠ c then C
in

 (x, s) = T

We don’t know
which of the paths a
given execution will
take (so assume T)

Transfer functions: rule 7

if C
out

(x, pi) = c or ꓕ for all i, then C
in

(x, s) = c

Transfer functions: rule 7

if C
out

(x, pi) = c or ꓕ for all i, then C
in

(x, s) = c

If x has the same
value (or ꓕ) on all
input edges, it has
that value in s

Transfer functions: rule 8

if C
out

(x, pi) = ꓕ for all i, then C
in

(x, s) = ꓕ

A static analysis algorithm

A static analysis algorithm

● For every entry point e to the program, set C
in

(x, e) = T

A static analysis algorithm

● For every entry point e to the program, set C
in

(x, e) = T

Definition: an entry point of a
program is any program location
L for which there exists an
execution trace beginning with L

A static analysis algorithm

● For every entry point e to the program, set C
in

(x, e) = T
○ why top? Top models “we don’t know”, and we don’t know the

inputs to the program.

A static analysis algorithm

● For every entry point e to the program, set C
in

(x, e) = T
○ why top? Top models “we don’t know”, and we don’t know the

inputs to the program.
● Set C

in
(x, s) = C

out
(x, s) = ꓕ everywhere else

A static analysis algorithm

● For every entry point e to the program, set C
in

(x, e) = T
○ why top? Top models “we don’t know”, and we don’t know the

inputs to the program.
● Set C

in
(x, s) = C

out
(x, s) = ꓕ everywhere else

● Repeat until all points satisfy rules 1-8:
○ Pick s not satisfying rules 1-8 and update using the appropriate

rule

A static analysis algorithm

● For every entry point e to the program, set C
in

(x, e) = T
○ why top? Top models “we don’t know”, and we don’t know the

inputs to the program.
● Set C

in
(x, s) = C

out
(x, s) = ꓕ everywhere else

● Repeat until all points satisfy rules 1-8:
○ Pick s not satisfying rules 1-8 and update using the appropriate

rule

This is a fixpoint (or fixed point)
iteration algorithm. Such algorithms
are characterized by a finite set of
rules, which are applied until they
“reach fixpoint”, which means that
applying any rule produces no
change.

Why do we need ꓕ?

Why do we need ꓕ?

● To understand why we need to set non-entry points to ꓕ initially,
consider a program with a loop:

Why do we need ꓕ?

● To understand why we need to set non-entry points to ꓕ initially,
consider a program with a loop:

This way
is easy!

Why do we need ꓕ?

● To understand why we need to set non-entry points to ꓕ initially,
consider a program with a loop:

This way
is easy!

????

Why do we need ꓕ?

● To understand why we need to set non-entry points to ꓕ initially,
consider a program with a loop.

● Because of cycles, all points must have values at all times during
the analysis

Why do we need ꓕ?

● To understand why we need to set non-entry points to ꓕ initially,
consider a program with a loop.

● Because of cycles, all points must have values at all times during
the analysis

● Intuitively, assigning some initial value allows the analysis to break
cycles

Why do we need ꓕ?

● To understand why we need to set non-entry points to ꓕ initially,
consider a program with a loop.

● Because of cycles, all points must have values at all times during
the analysis

● Intuitively, assigning some initial value allows the analysis to break
cycles

● The initial value ꓕ means “we have not yet analyzed control
reaching this point”

Another example: dealing with loops

Let’s do it on paper!
Analyze the value of X.

Another example: dealing with loops

(We went through
this answer on the
whiteboard.)

Lattices & Orderings

● You may have observed that there is a natural order to the different
abstract values in our nullness analysis

Lattices & Orderings

● You may have observed that there is a natural order to the different
abstract values in our nullness analysis
○ (Most) locations start as ꓕ

Lattices & Orderings

● You may have observed that there is a natural order to the different
abstract values in our nullness analysis
○ (Most) locations start as ꓕ
○ Locations whose current value is ꓕ might become c or T

Lattices & Orderings

● You may have observed that there is a natural order to the different
abstract values in our nullness analysis
○ (Most) locations start as ꓕ
○ Locations whose current value is ꓕ might become c or T
○ Locations whose current value is c might become T

■ but never go back to ꓕ!

Lattices & Orderings

● You may have observed that there is a natural order to the different
abstract values in our nullness analysis
○ (Most) locations start as ꓕ
○ Locations whose current value is ꓕ might become c or T
○ Locations whose current value is c might become T

■ but never go back to ꓕ!
○ Locations whose current value is T never change

Lattices & Orderings

This structure between values is called a lattice:

T

0 1-1

ꓕ

……

Lattices & Orderings

This structure between values is called a lattice:

T

0 1-1

ꓕ

……

How to read a lattice:
● abstract values higher in the

lattice are more general (e.g., T
is true of more things than 0)

● easy to compute least upper
bound: it’s the lowest common
ancestor of two abstract values

Lattices (continued)

● least upper bound (“lub”) has useful properties:

Lattices (continued)

● least upper bound (“lub”) has useful properties:
○ monotonicity: implicitly captures that values only flow in one

direction as the analysis progresses

Lattices (continued)

● least upper bound (“lub”) has useful properties:
○ monotonicity: implicitly captures that values only flow in one

direction as the analysis progresses
○ we can rewrite rules 5-8 in our nullness analysis using lub:

C
in

(x, s) = lub { C
out

(x, p) | p is a predecessor of s }

Lattices (continued)

● least upper bound (“lub”) has useful properties:
○ monotonicity: implicitly captures that values only flow in one

direction as the analysis progresses
○ we can rewrite rules 5-8 in our nullness analysis using lub:

C
in

(x, s) = lub { C
out

(x, p) | p is a predecessor of s }
lub is the reason dataflow
analysis is an algorithm:
because lub is monotonic, we
only need to analyze each
loop as many times as the
lattice is tall

Termination

● let’s formalize the argument that our nullness analysis terminates
○ saying “repeat until nothing changes” doesn’t guarantee that

eventually nothing changes, after all

Termination

● let’s formalize the argument that our nullness analysis terminates
○ saying “repeat until nothing changes” doesn’t guarantee that

eventually nothing changes, after all
● the use of lub explains why the algorithm terminates:

Termination

● let’s formalize the argument that our nullness analysis terminates
○ saying “repeat until nothing changes” doesn’t guarantee that

eventually nothing changes, after all
● the use of lub explains why the algorithm terminates:

○ values start as ꓕ and only increase

Termination

● let’s formalize the argument that our nullness analysis terminates
○ saying “repeat until nothing changes” doesn’t guarantee that

eventually nothing changes, after all
● the use of lub explains why the algorithm terminates:

○ values start as ꓕ and only increase
○ ꓕ can change to a constant, and a constant to T

Termination

● let’s formalize the argument that our nullness analysis terminates
○ saying “repeat until nothing changes” doesn’t guarantee that

eventually nothing changes, after all
● the use of lub explains why the algorithm terminates:

○ values start as ꓕ and only increase
○ ꓕ can change to a constant, and a constant to T
○ thus, C_(x, s) can change at most twice (= lattice height minus

one)

Another example: secure information flow

Analysis goal: report a warning if any source of secure information
(e.g., a password) potentially connects to a public sink, like a display
function

Another example: secure information flow

Analysis goal: report a warning if any source of secure information
(e.g., a password) potentially connects to a public sink, like a display
function

Another example: secure information flow

Analysis goal: report a warning if any source of secure information
(e.g., a password) potentially connects to a public sink, like a display
function

source

Another example: secure information flow

Analysis goal: report a warning if any source of secure information
(e.g., a password) potentially connects to a public sink, like a display
function

source

sink

Another example: secure information flow

Analysis goal: report a warning if any source of secure information
(e.g., a password) potentially connects to a public sink, like a display
function

source

sink

sanitizer (stops flow)

Another example: secure information flow

Analysis goal: report a warning if any source of secure information
(e.g., a password) potentially connects to a public sink, like a display
function

source

sink

sanitizer (stops flow)
potential
insecure flow

Taint analysis

Definition: A taint analysis (or reachability analysis) tracks whether
(any/all) value(s) from a set of sources reach a set of sinks

● applications in security: e.g., secure information flow

Taint analysis

Definition: A taint analysis (or reachability analysis) tracks whether
(any/all) value(s) from a set of sources reach a set of sinks

● applications in security: e.g., secure information flow
● stand-in here for a broad class of dataflow analyses

Taint analysis

Definition: A taint analysis (or reachability analysis) tracks whether
(any/all) value(s) from a set of sources reach a set of sinks

● applications in security: e.g., secure information flow
● stand-in here for a broad class of dataflow analyses
● how would we build it?

○ we’ll write a set of rules, just as we did for our nullness analysis

Secure information flow analysis

● first step: decide what abstract values to track

Secure information flow analysis

● first step: decide what abstract values to track
○ only need a single boolean: can it be sensitive

Secure information flow analysis

● first step: decide what abstract values to track
○ only need a single boolean: can it be sensitive
○ define H

in/out
(x, s) = true if variable x can be sensitive

before/after statement s, = false otherwise

Secure information flow analysis

● first step: decide what abstract values to track
○ only need a single boolean: can it be sensitive
○ define H

in/out
(x, s) = true if variable x can be sensitive

before/after statement s, = false otherwise
■ note that we are abstracting away almost everything!

Secure information flow analysis

● first step: decide what abstract values to track
○ only need a single boolean: can it be sensitive
○ define H

in/out
(x, s) = true if variable x can be sensitive

before/after statement s, = false otherwise
■ note that we are abstracting away almost everything!

● second step: statement-by-statement rules to express how this
works

Secure information flow analysis

● first step: decide what abstract values to track
○ only need a single boolean: can it be sensitive
○ define H

in/out
(x, s) = true if variable x can be sensitive

before/after statement s, = false otherwise
■ note that we are abstracting away almost everything!

● second step: statement-by-statement rules to express how this
works

Note that the rules for this
analysis are intended to be
applied “backwards”

Secure information flow analysis: rule 1

H
in

(x, s) = true if s displays x publicly

Recall, true means “if this ends up
being a secret variable then we
have a bug!”

Secure information flow analysis: rule 1

H
in

(x, s) = true if s displays x publicly

Recall, true means “if this ends up
being a secret variable then we
have a bug!”

Secure information flow analysis: rule 2

H
in

(x, x := e) = false

This means any subsequent use of x
is safe after we assign to it.

Secure information flow analysis: rule 2

H
in

(x, x := e) = false

This means any value that is
sanitized is not sensitive

Secure information flow analysis: rule 2

H
in

(x, x := e) = false

This means any value that is
sanitized is not sensitive

Does this rule say
anything about the
sanitize() method?

Secure information flow analysis: rule 3

H
in

(x, s) = H
out

(x, s)
(if s does not refer to x)

Secure information flow analysis: rule 4

H
out

(x, p) = v { H
in

(x, s) | s is a successor of p }

Secure information flow analysis: rule 4

H
out

(x, p) = v { H
in

(x, s) | s is a successor of p }

if there is even one
way to have a leak,
we might have a
leak!

Secure information flow analysis: rule 5

H
in

(y, x := y) = H
out

(x, x := y)

(To see why, imagine the next
statement is display(x). Do
we care about y?)

Secure information flow analysis: rule 5

H
in

(y, x := y) = H
out

(x, x := y)

(To see why, imagine the next
statement is display(x). Do
we care about y?)

Secure information flow analysis: algorithm

Secure information flow analysis: algorithm

1. let all H_(…) = false initially

Secure information flow analysis: algorithm

1. let all H_(…) = false initially false is like ꓕ in our
nullness analysis!

Secure information flow analysis: algorithm

1. let all H_(…) = false initially
2. repeat until all statements s satisfy rules 1-5:

● pick a statement where one of the rules does not hold and
update using the appropriate rule

Secure information flow analysis: algorithm

1. let all H_(…) = false initially
2. repeat until all statements s satisfy rules 1-5:

● pick a statement where one of the rules does not hold and
update using the appropriate rule

3. once the analysis reaches a fixed point, issue a warning at any
source (x, s) where H

out
(x, s) is true (= leaks sensitive information)

Secure information flow analysis: example

to the whiteboard!

Secure information flow analysis: example

(for those reading
online later, solved
on the whiteboard.
This is the solution.)

Limitations of static analysis

Limitations of static analysis

● static analysis abstracts away information to remain decidable

Limitations of static analysis

● static analysis abstracts away information to remain decidable
○ potential problem: what if the information that was abstracted

away is important?

Limitations of static analysis

● static analysis abstracts away information to remain decidable
○ potential problem: what if the information that was abstracted

away is important?
■ can we come up with a program for which one of our

example static analyses “gets the wrong answer”?

Limitations of static analysis

● static analysis abstracts away information to remain decidable
○ potential problem: what if the information that was abstracted

away is important?
■ can we come up with a program for which one of our

example static analyses “gets the wrong answer”?
○ can we ever have a “perfect” abstraction?

Limitations of static analysis

● static analysis abstracts away information to remain decidable
○ potential problem: what if the information that was abstracted

away is important?
■ can we come up with a program for which one of our

example static analyses “gets the wrong answer”?
○ can we ever have a “perfect” abstraction?

■ of course not (Rice’s theorem again)

Limitations of static analysis

● static analysis abstracts away information to remain decidable
○ potential problem: what if the information that was abstracted

away is important?
■ can we come up with a program for which one of our

example static analyses “gets the wrong answer”?
○ can we ever have a “perfect” abstraction?

■ of course not (Rice’s theorem again)
■ but, in practice, we can get very close

Limitations of static analysis

● static analysis is best when the rules it enforces are:

Limitations of static analysis

● static analysis is best when the rules it enforces are:
○ simple to express to the computer
○ hard for a human to apply

Limitations of static analysis

● static analysis is best when the rules it enforces are:
○ simple to express to the computer
○ hard for a human to apply

● implication: if you find yourself struggling to follow a well-defined
(but complicated for a human) rule set while writing code, it might
be time to reach for a static analysis

Limitations of static analysis

● static analysis is best when the rules it enforces are:
○ simple to express to the computer
○ hard for a human to apply

● implication: if you find yourself struggling to follow a well-defined
(but complicated for a human) rule set while writing code, it might
be time to reach for a static analysis
○ this sort of situation comes up often:

Limitations of static analysis

● static analysis is best when the rules it enforces are:
○ simple to express to the computer
○ hard for a human to apply

● implication: if you find yourself struggling to follow a well-defined
(but complicated for a human) rule set while writing code, it might
be time to reach for a static analysis
○ this sort of situation comes up often:

■ x86/64 calling convention

Limitations of static analysis

● static analysis is best when the rules it enforces are:
○ simple to express to the computer
○ hard for a human to apply

● implication: if you find yourself struggling to follow a well-defined
(but complicated for a human) rule set while writing code, it might
be time to reach for a static analysis
○ this sort of situation comes up often:

■ x86/64 calling convention
■ complex API protocols (“call A then B then C then …”)

Limitations of static analysis

● static analysis is best when the rules it enforces are:
○ simple to express to the computer
○ hard for a human to apply

● implication: if you find yourself struggling to follow a well-defined
(but complicated for a human) rule set while writing code, it might
be time to reach for a static analysis
○ this sort of situation comes up often:

■ x86/64 calling convention
■ complex API protocols (“call A then B then C then …”)
■ security rules, etc.

Static analysis in practice

You’re likely to encounter:

Static analysis in practice

You’re likely to encounter:
● static type systems (sound)

Static analysis in practice

You’re likely to encounter:
● static type systems (sound)
● linters or other style checkers (syntactic = not dataflow)

Static analysis in practice

You’re likely to encounter:
● static type systems (sound)
● linters or other style checkers (syntactic = not dataflow)
● “heuristic” bug-finding tools backed by dataflow analyses

Static analysis in practice

You’re likely to encounter:
● static type systems (sound)
● linters or other style checkers (syntactic = not dataflow)
● “heuristic” bug-finding tools backed by dataflow analyses

heuristic is a fancy
word for “best effort”

Static analysis in practice

You’re likely to encounter:
● static type systems (sound)
● linters or other style checkers (syntactic = not dataflow)
● “heuristic” bug-finding tools backed by dataflow analyses

○ built into modern IDEs

Static analysis in practice

You’re likely to encounter:
● static type systems (sound)
● linters or other style checkers (syntactic = not dataflow)
● “heuristic” bug-finding tools backed by dataflow analyses

○ built into modern IDEs
○ aim for low false positive rates

Static analysis in practice

You’re likely to encounter:
● static type systems (sound)
● linters or other style checkers (syntactic = not dataflow)
● “heuristic” bug-finding tools backed by dataflow analyses

○ built into modern IDEs
○ aim for low false positive rates
○ widely used in industry:

■ ErrorProne at Google, Infer at Meta, SpotBugs at many
places (including Amazon), Coverity, Fortify, etc.

https://github.com/google/error-prone
https://fbinfer.com/
https://spotbugs.github.io/
https://scan.coverity.com/
https://www.microfocus.com/en-us/cyberres/application-security/static-code-analyzer

Static analysis in practice

Less common, but useful to know about:

Static analysis in practice

Less common, but useful to know about:
● pluggable type systems

Static analysis in practice

Less common, but useful to know about:
● pluggable type systems

○ these are extensions to a type system that lets it prove more
properties, e.g., adding nullness-checking to Java

Static analysis in practice

Less common, but useful to know about:
● pluggable type systems

○ these are extensions to a type system that lets it prove more
properties, e.g., adding nullness-checking to Java

○ most common sound analysis (used by Google, Uber, others)

What is a pluggable type?

 @Positive int x

277

What is a pluggable type?

 @Positive int x

278

Basetype

What is a pluggable type?

 @Positive int x

279

BasetypeType qualifier

What is a pluggable type?

 @Negative int x

280

BasetypeType qualifier

What is a pluggable type?

 @NonConstant int x

281

BasetypeType qualifier

What is a pluggable type?

 @Positive int x

282

BasetypeType qualifier

What is a pluggable type?

 @Positive int x

283

BasetypeType qualifier

Qualified type

Pluggable type systems: key ideas

Pluggable type systems: key ideas

● developers already use static type systems, so they’re familiar with
the general idea of types => relatively easy to use (compared to
other sound static analyses)

Pluggable type systems: key ideas

● developers already use static type systems, so they’re familiar with
the general idea of types => relatively easy to use (compared to
other sound static analyses)

● type qualifiers encode property of interest
○ effectively a “second” type system

Pluggable type systems: key ideas

● developers already use static type systems, so they’re familiar with
the general idea of types => relatively easy to use (compared to
other sound static analyses)

● type qualifiers encode property of interest
○ effectively a “second” type system

● qualified types are a Cartesian product of a type from the
pluggable type system and a type from the base type system

Pluggable type systems: key ideas

● developers already use static type systems, so they’re familiar with
the general idea of types => relatively easy to use (compared to
other sound static analyses)

● type qualifiers encode property of interest
○ effectively a “second” type system

● qualified types are a Cartesian product of a type from the
pluggable type system and a type from the base type system

● typechecking is naturally modular = fast
○ but this comes at a cost: programmers need to write types

Pluggable type systems: key ideas

● developers already use static type systems, so they’re familiar with
the general idea of types => relatively easy to use (compared to
other sound static analyses)

● type qualifiers encode property of interest
○ effectively a “second” type system

● qualified types are a Cartesian product of a type from the
pluggable type system and a type from the base type system

● typechecking is naturally modular = fast
○ but this comes at a cost: programmers need to write types

designing better (more
expressive, more usable,
etc.) pluggable type
systems is an area of
active research (mine!)

Static analysis in practice

Less common, but useful to know about:
● pluggable type systems

○ these are extensions to a type system that lets it prove more
properties, e.g., adding nullness-checking to Java

○ most common sound analysis (used by Google, Uber, others)
● formal verification (subject of 10/25 reading)

Static analysis in practice

Less common, but useful to know about:
● pluggable type systems

○ these are extensions to a type system that lets it prove more
properties, e.g., adding nullness-checking to Java

○ most common sound analysis (used by Google, Uber, others)
● formal verification (subject of 10/25 reading)

○ you write a specification

Static analysis in practice

Less common, but useful to know about:
● pluggable type systems

○ these are extensions to a type system that lets it prove more
properties, e.g., adding nullness-checking to Java

○ most common sound analysis (used by Google, Uber, others)
● formal verification (subject of 10/25 reading)

○ you write a specification
○ tool verifies that code matches that specification

Static analysis in practice

Less common, but useful to know about:
● pluggable type systems

○ these are extensions to a type system that lets it prove more
properties, e.g., adding nullness-checking to Java

○ most common sound analysis (used by Google, Uber, others)
● formal verification (subject of 10/25 reading)

○ you write a specification
○ tool verifies that code matches that specification
○ very high effort, but enables sound reasoning about complex

properties (= worth it for very high value systems)

Static analysis in practice: soundiness

● all “sound” static analyses have a trusted computing base (TCB)

Static analysis in practice: soundiness

● all “sound” static analyses have a trusted computing base (TCB)
○ the TCB is the code whose correctness must be assumed for

the analysis to actually be sound

Static analysis in practice: soundiness

● all “sound” static analyses have a trusted computing base (TCB)
○ the TCB is the code whose correctness must be assumed for

the analysis to actually be sound
● TCB size is an important differentiator between “sound” analyses

Static analysis in practice: soundiness

● all “sound” static analyses have a trusted computing base (TCB)
○ the TCB is the code whose correctness must be assumed for

the analysis to actually be sound
● TCB size is an important differentiator between “sound” analyses

○ e.g., TCB for many of my pluggable type systems includes the
entire Java compiler (limits soundness a lot!)

Static analysis in practice: soundiness

● all “sound” static analyses have a trusted computing base (TCB)
○ the TCB is the code whose correctness must be assumed for

the analysis to actually be sound
● TCB size is an important differentiator between “sound” analyses

○ e.g., TCB for many of my pluggable type systems includes the
entire Java compiler (limits soundness a lot!)

○ TCB for some formal verifiers is very small (< 1000 LoC)
■ but these tools (e.g., Coq) are much harder to use

Static analysis in practice: soundiness

● all “sound” static analyses have a trusted computing base (TCB)
○ the TCB is the code whose correctness must be assumed for

the analysis to actually be sound
● TCB size is an important differentiator between “sound” analyses

○ e.g., TCB for many of my pluggable type systems includes the
entire Java compiler (limits soundness a lot!)

○ TCB for some formal verifiers is very small (< 1000 LoC)
■ but these tools (e.g., Coq) are much harder to use

● soundness theorems also usually make some assumptions about
the code being analyzed (e.g., no calls to native code, no reflection)

Reading quiz: static analysis (1)

Reading quiz: static analysis (1)

Q1: TRUE or FALSE: very few users of FindBugs (at the time the
article was written) use an automatic build system where new issues
are automatically identified and flagged

Q2: How many “infinite recursive loop” bugs did FindBugs find in
Google’s codebase?

A. 0
B. 1
C. more than 70

Reading quiz: static analysis (1)

Q1: TRUE or FALSE: very few users of FindBugs (at the time the
article was written) use an automatic build system where new issues
are automatically identified and flagged

Q2: How many “infinite recursive loop” bugs did FindBugs find in
Google’s codebase?

A. 0
B. 1
C. more than 70

Reading quiz: static analysis (1)

Q1: TRUE or FALSE: very few users of FindBugs (at the time the
article was written) use an automatic build system where new issues
are automatically identified and flagged

Q2: How many “infinite recursive loop” bugs did FindBugs find in
Google’s codebase?

A. 0
B. 1
C. more than 70

Reading Quiz: static analysis (2)

Reading Quiz: static analysis (2)

Q1: the author advocates which of the following progamming
language paradigms for writing executable specifications?
A. functional
B. imperative
C. declarative
D. object-oriented

Q2: TRUE or FALSE: the author claims that a disadvantage of formal
verification is that it only identifies bugs, but doesn’t indicate how to
fix them

Reading Quiz: static analysis (2)

Q1: the author advocates which of the following progamming
language paradigms for writing executable specifications?
A. functional
B. imperative
C. declarative
D. object-oriented

Q2: TRUE or FALSE: the author claims that a disadvantage of formal
verification is that it only identifies bugs, but doesn’t indicate how to
fix them

Reading Quiz: static analysis (2)

Q1: the author advocates which of the following progamming
language paradigms for writing executable specifications?
A. functional
B. imperative
C. declarative
D. object-oriented

Q2: TRUE or FALSE: the author claims that a disadvantage of formal
verification is that it only identifies bugs, but doesn’t indicate how to
fix them

Static analysis: summary

● static analysis is very good at enforcing simple rules
○ much better than humans at this

● all interesting semantic properties of programs are undecidable, so
all static analyses must approximate
○ goal in analysis design is to abstract away unimportant details,

but keep important details
○ dataflow analysis is one technique for static analysis
○ trade-offs between false positives, false negatives, analysis time

● soundness & completeness are possible, but rare
○ all soundness guarantees come with caveats about the TCB

