
DevOps (1/2)
Martin Kellogg

DevOps (1/2)

Today’s agenda:

● Operations, Toil, and the DevOps philosophy
● Ops challenge example: deployment
● Achieving reliability

○ the service reliability hierarchy + SLAs/targets
○ monitoring
○ incident/emergency response
○ post-mortems + learning from failure

Operations

Definition: operations refers to anything that happens after the
developers (think that they) are done building the software, including:

Operations

Definition: operations refers to anything that happens after the
developers (think that they) are done building the software, including:
● setting up the servers that will run the software and installing the

software on them

Operations

Definition: operations refers to anything that happens after the
developers (think that they) are done building the software, including:
● setting up the servers that will run the software and installing the

software on them
● conducting system/acceptance tests

Operations

Definition: operations refers to anything that happens after the
developers (think that they) are done building the software, including:
● setting up the servers that will run the software and installing the

software on them
● conducting system/acceptance tests
● running the software and keeping it running

Operations

Definition: operations refers to anything that happens after the
developers (think that they) are done building the software, including:
● setting up the servers that will run the software and installing the

software on them
● conducting system/acceptance tests
● running the software and keeping it running
● measuring the performance of the running software

Operations

Definition: operations refers to anything that happens after the
developers (think that they) are done building the software, including:
● setting up the servers that will run the software and installing the

software on them
● conducting system/acceptance tests
● running the software and keeping it running
● measuring the performance of the running software
● fixing any problems that arise while the software is running

Operations

Definition: operations refers to anything that happens after the
developers (think that they) are done building the software, including:
● setting up the servers that will run the software and installing the

software on them
● conducting system/acceptance tests
● running the software and keeping it running
● measuring the performance of the running software
● fixing any problems that arise while the software is running
● deploying new versions of the software

Operations: the traditional approach

Operations: the traditional approach

● traditionally, operations are mostly conducted by system
administrators (or sysadmins) rather than by developers

Operations: the traditional approach

● traditionally, operations are mostly conducted by system
administrators (or sysadmins) rather than by developers
○ sysadmins are specialists in specific tech stacks

■ e.g., experts at Linux or Windows, etc.

Operations: the traditional approach

● traditionally, operations are mostly conducted by system
administrators (or sysadmins) rather than by developers
○ sysadmins are specialists in specific tech stacks

■ e.g., experts at Linux or Windows, etc.
○ e.g., NJIT’s IT degree program was (probably) originally

intended as preparation for this kind of role

Operations: the traditional approach

● traditionally, operations are mostly conducted by system
administrators (or sysadmins) rather than by developers
○ sysadmins are specialists in specific tech stacks

■ e.g., experts at Linux or Windows, etc.
○ e.g., NJIT’s IT degree program was (probably) originally

intended as preparation for this kind of role
● this approach is best when systems change rarely

Operations: the traditional approach

● traditionally, operations are mostly conducted by system
administrators (or sysadmins) rather than by developers
○ sysadmins are specialists in specific tech stacks

■ e.g., experts at Linux or Windows, etc.
○ e.g., NJIT’s IT degree program was (probably) originally

intended as preparation for this kind of role
● this approach is best when systems change rarely

○ e.g., when software is released on physical media

Operations: the traditional approach

● traditionally, operations are mostly conducted by system
administrators (or sysadmins) rather than by developers
○ sysadmins are specialists in specific tech stacks

■ e.g., experts at Linux or Windows, etc.
○ e.g., NJIT’s IT degree program was (probably) originally

intended as preparation for this kind of role
● this approach is best when systems change rarely

○ e.g., when software is released on physical media
○ other advantages: easy to staff for, off-the-shelf tooling, etc.

Traditional ops in different business models

● two business models:

Traditional ops in different business models

● two business models:
○ services (i.e., the developing organization runs the software and

sells access to customers)

Traditional ops in different business models

● two business models:
○ services (i.e., the developing organization runs the software and

sells access to customers)
■ service ops: need to set up the servers/machines on which

the software will run, install the software + dependencies,
configure firewalls, etc.

Traditional ops in different business models

● two business models:
○ services (i.e., the developing organization runs the software and

sells access to customers)
■ service ops: need to set up the servers/machines on which

the software will run, install the software + dependencies,
configure firewalls, etc.

○ products (i.e., sell/lease the software to others to run)

Traditional ops in different business models

● two business models:
○ services (i.e., the developing organization runs the software and

sells access to customers)
■ service ops: need to set up the servers/machines on which

the software will run, install the software + dependencies,
configure firewalls, etc.

○ products (i.e., sell/lease the software to others to run)
■ product ops: still need to system test in the anticipated

operating environment(s), set up servers providing those
environments, install the software + dependencies, etc.

Traditional ops in different business models

● two business models:
○ services (i.e., the developing organization runs the software and

sells access to customers)
■ service ops: need to set up the servers/machines on which

the software will run, install the software + dependencies,
configure firewalls, etc.

○ products (i.e., sell/lease the software to others to run)
■ product ops: still need to system test in the anticipated

operating environment(s), set up servers providing those
environments, install the software + dependencies, etc.

Traditional approach to operations
can work in either of these models!

Operations: the traditional approach

● However, the traditional sysadmin approach to operations has
downsides, too:

Operations: the traditional approach

● However, the traditional sysadmin approach to operations has
downsides, too:
○ for services, ops costs scale with system load: more users =

must hire more sysadmins to administer more servers, etc.

Operations: the traditional approach

● However, the traditional sysadmin approach to operations has
downsides, too:
○ for services, ops costs scale with system load: more users =

must hire more sysadmins to administer more servers, etc.
○ separation of operations and development means developers

are not directly exposed to the costs of poor design decisions
■ this is a misalignment of incentives

Operations: the traditional approach

● However, the traditional sysadmin approach to operations has
downsides, too:
○ for services, ops costs scale with system load: more users =

must hire more sysadmins to administer more servers, etc.
○ separation of operations and development means developers

are not directly exposed to the costs of poor design decisions
■ this is a misalignment of incentives

○ developers and sysadmins have different backgrounds,
terminology, etc., leading to communication breakdowns

Operations: the traditional approach

● However, the traditional sysadmin approach to operations has
downsides, too:
○ for services, ops costs scale with system load: more users =

must hire more sysadmins to administer more servers, etc.
○ separation of operations and development means developers

are not directly exposed to the costs of poor design decisions
■ this is a misalignment of incentives

○ developers and sysadmins have different backgrounds,
terminology, etc., leading to communication breakdowns

These problems do not mean that the
traditional approach to operations is
bad in all circumstances!
● But, they are serious concerns for

modern systems with high release
cadences, especially those that are:
○ microservices
○ delivered via the web
○ use “continuous delivery”

Operations: the traditional approach

● However, the traditional sysadmin approach to operations has
downsides, too:
○ for services, ops costs scale with system load: more users =

must hire more sysadmins to administer more servers, etc.
○ separation of operations and development means developers

are not directly exposed to the costs of poor design decisions
■ this is a misalignment of incentives

○ developers and sysadmins have different backgrounds,
terminology, etc., leading to communication breakdowns

These problems do not mean that the
traditional approach to operations is
bad in all circumstances!
● But, they are serious concerns for

modern systems with high release
cadences, especially those that are:
○ microservices
○ delivered via the web
○ use “continuous delivery”

Operations: the DevOps approach

Operations: the DevOps approach

Key idea: combine the development and operations teams

Operations: the DevOps approach

Key idea: combine the development and operations teams
● “DevOps” is a portmanteau of “developers” + “operators”

Operations: the DevOps approach

Key idea: combine the development and operations teams
● “DevOps” is a portmanteau of “developers” + “operators”
● DevOps teams are organized around services/projects

○ what does this sound similar to?

Operations: the DevOps approach

Key idea: combine the development and operations teams
● “DevOps” is a portmanteau of “developers” + “operators”
● DevOps teams are organized around services/projects

○ what does this sound similar to?
● operational burden is shared by the developers who are building

the system

Operations: the DevOps approach

Key idea: combine the development and operations teams
● “DevOps” is a portmanteau of “developers” + “operators”
● DevOps teams are organized around services/projects

○ what does this sound similar to?
● operational burden is shared by the developers who are building

the system
○ better alignment of incentives between developers and

operators, since same people perform both roles

Operations: the DevOps approach

Key idea: combine the development and operations teams
● “DevOps” is a portmanteau of “developers” + “operators”
● DevOps teams are organized around services/projects

○ what does this sound similar to?
● operational burden is shared by the developers who are building

the system
○ better alignment of incentives between developers and

operators, since same people perform both roles
● encourage operators to automate toil

Operations: the DevOps approach

Key idea: combine the development and operations teams
● “DevOps” is a portmanteau of “developers” + “operators”
● DevOps teams are organized around services/projects

○ what does this sound similar to?
● operational burden is shared by the developers who are building

the system
○ better alignment of incentives between developers and

operators, since same people perform both roles
● encourage operators to automate toil
● may still have some dedicated ops roles (e.g., SREs at Google)

Operations: the DevOps approach

figure credit: Atlassian

Operations: toil

Operations: toil

Definition: toil is the kind of work tied to running a production service
that tends to be manual, repetitive, automatable, tactical, devoid of
enduring value, and that scales linearly as a service grows

Operations: toil

Definition: toil is the kind of work tied to running a production service
that tends to be manual, repetitive, automatable, tactical, devoid of
enduring value, and that scales linearly as a service grows

A key advantage of DevOps is that it
encourages removing toil
● if operators are separate from devs,

devs have no incentive to avoid toil

Operations: toil

Definition: toil is the kind of work tied to running a production service
that tends to be manual, repetitive, automatable, tactical, devoid of
enduring value, and that scales linearly as a service grows

● manual: includes work such as manually running a script that
automates some task (typing the command itself is toil!)

Operations: toil

Definition: toil is the kind of work tied to running a production service
that tends to be manual, repetitive, automatable, tactical, devoid of
enduring value, and that scales linearly as a service grows

● manual: includes work such as manually running a script that
automates some task (typing the command itself is toil!)

● repetitive: if you’re performing a task for the first time ever, or even
the second time, this work is not toil

Operations: toil

Definition: toil is the kind of work tied to running a production service
that tends to be manual, repetitive, automatable, tactical, devoid of
enduring value, and that scales linearly as a service grows

● manual: includes work such as manually running a script that
automates some task (typing the command itself is toil!)

● repetitive: if you’re performing a task for the first time ever, or even
the second time, this work is not toil

● automatable: if human judgment is essential for the task, there’s a
good chance it’s not toil

Operations: toil

Definition: toil is the kind of work tied to running a production service
that tends to be manual, repetitive, automatable, tactical, devoid of
enduring value, and that scales linearly as a service grows

● tactical: toil is usually interrupt-driven and reactive

Operations: toil

Definition: toil is the kind of work tied to running a production service
that tends to be manual, repetitive, automatable, tactical, devoid of
enduring value, and that scales linearly as a service grows

● tactical: toil is usually interrupt-driven and reactive
● no enduring value: if your service remains in the same state after

you have finished a task, the task was probably toil

Operations: toil

Definition: toil is the kind of work tied to running a production service
that tends to be manual, repetitive, automatable, tactical, devoid of
enduring value, and that scales linearly as a service grows

● tactical: toil is usually interrupt-driven and reactive
● no enduring value: if your service remains in the same state after

you have finished a task, the task was probably toil
● O(n) with service growth: if the work involved in a task scales up

linearly with service size, traffic volume, or user count, that task is
probably toil

Operations: toil

Definition: toil is the kind of work tied to running a production service
that tends to be manual, repetitive, automatable, tactical, devoid of
enduring value, and that scales linearly as a service grows

● tactical: toil is usually interrupt-driven and reactive
● no enduring value: if your service remains in the same state after

you have finished a task, the task was probably toil
● O(n) with service growth: if the work involved in a task scales up

linearly with service size, traffic volume, or user count, that task is
probably toil

A task doesn’t need to have all of these
attributes to be toil. But, the more closely
work matches one or more of these
descriptors, the more likely it is to be toil.

Operations: toil

Things that aren’t toil:

Operations: toil

Things that aren’t toil:

● work you don’t like to do is not always toil

Operations: toil

Things that aren’t toil:

● work you don’t like to do is not always toil
○ useful, productive work can be unpleasant

■ e.g., cleaning up the entire alerting configuration for your
service and removing clutter may not be fun, but it’s not toil

Operations: toil

Things that aren’t toil:

● work you don’t like to do is not always toil
○ useful, productive work can be unpleasant

■ e.g., cleaning up the entire alerting configuration for your
service and removing clutter may not be fun, but it’s not toil

○ but most toil is unpleasant

Operations: toil

Things that aren’t toil:

● work you don’t like to do is not always toil
○ useful, productive work can be unpleasant

■ e.g., cleaning up the entire alerting configuration for your
service and removing clutter may not be fun, but it’s not toil

○ but most toil is unpleasant
● overhead is also different than toil

Operations: toil

Things that aren’t toil:

● work you don’t like to do is not always toil
○ useful, productive work can be unpleasant

■ e.g., cleaning up the entire alerting configuration for your
service and removing clutter may not be fun, but it’s not toil

○ but most toil is unpleasant
● overhead is also different than toil

○ tasks like team meetings, setting and grading goals, and HR
paperwork (that are not tied to operations) are overhead

Operations: toil

What’s so bad about toil?

Operations: toil

What’s so bad about toil?

● career stagnation (it doesn’t get you promoted)
● lowers morale (it’s boring)
● creates confusion (easy to forget to do a manual task!)
● slows progress (could be doing useful work instead)
● sets precedent (avoid letting toil become normal!)
● promotes attrition (“I want to work on something interesting!”)

Operations: toil

What’s so bad about toil?

● career stagnation (it doesn’t get you promoted)
● lowers morale (it’s boring)
● creates confusion (easy to forget to do a manual task!)
● slows progress (could be doing useful work instead)
● sets precedent (avoid letting toil become normal!)
● promotes attrition (“I want to work on something interesting!”)

Despite all this, a little bit of toil is often
okay. After all, engineers only have so
many productive hours in every day, and
sometimes a mental break is nice :)

DevOps example: Google SREs

DevOps example: Google SREs

● SRE teams are a mix of:
○ software engineers
○ software-inclined sysadmins

DevOps example: Google SREs

● SRE teams are a mix of:
○ software engineers
○ software-inclined sysadmins

● goal: SRE teams should spend at least 50% of their time on
“development” work and at most 50% on toil

DevOps example: Google SREs

● SRE teams are a mix of:
○ software engineers
○ software-inclined sysadmins

● goal: SRE teams should spend at least 50% of their time on
“development” work and at most 50% on toil

● SRE teams are assigned to a collection of related “SWE” (i.e.,
software engineering/development) teams, each of which works on
one of the systems
○ SRE team manages ops for all of these systems

DevOps example: Google SREs

● SRE teams are a mix of:
○ software engineers
○ software-inclined sysadmins

● goal: SRE teams should spend at least 50% of their time on
“development” work and at most 50% on toil

● SRE teams are assigned to a collection of related “SWE” (i.e.,
software engineering/development) teams, each of which works on
one of the systems
○ SRE team manages ops for all of these systems

● SRE motto: “Hope is not a strategy”

Another DevOps example: AWS

Another DevOps example: AWS

● unlike Google, AWS does not have dedicated ops teams

Another DevOps example: AWS

● unlike Google, AWS does not have dedicated ops teams
● all development teams are solely responsible for the operations of

their own services

Another DevOps example: AWS

● unlike Google, AWS does not have dedicated ops teams
● all development teams are solely responsible for the operations of

their own services
○ teams are also small (“two-pizza”) and usually organized around

a single microservice

Another DevOps example: AWS

● unlike Google, AWS does not have dedicated ops teams
● all development teams are solely responsible for the operations of

their own services
○ teams are also small (“two-pizza”) and usually organized around

a single microservice
● this setup is leaner (no need to staff SRE teams!)

Another DevOps example: AWS

● unlike Google, AWS does not have dedicated ops teams
● all development teams are solely responsible for the operations of

their own services
○ teams are also small (“two-pizza”) and usually organized around

a single microservice
● this setup is leaner (no need to staff SRE teams!)

○ but means teams must choose between delivering new features
and reducing operational burden

Another DevOps example: AWS

● unlike Google, AWS does not have dedicated ops teams
● all development teams are solely responsible for the operations of

their own services
○ teams are also small (“two-pizza”) and usually organized around

a single microservice
● this setup is leaner (no need to staff SRE teams!)

○ but means teams must choose between delivering new features
and reducing operational burden
■ makes technical debt riskier to take on (why?)

DevOps (1/2)

Today’s agenda:

● Operations, Toil, and the DevOps philosophy
● Ops challenge example: deployment
● Achieving reliability

○ the service reliability hierarchy + SLAs/targets
○ monitoring
○ incident/emergency response
○ post-mortems + learning from failure

Deployment

Deployment

● Deployment is the process of installing your software on a server
(with its dependencies), connecting it to the internet, etc.

Deployment

● Deployment is the process of installing your software on a server
(with its dependencies), connecting it to the internet, etc.

● The key challenge in deployment is predictability: we want to
make sure that the software behaves as expected when deployed
○ i.e., we want to avoid “it works on my machine” syndrome

Deployment

● Deployment is the process of installing your software on a server
(with its dependencies), connecting it to the internet, etc.

● The key challenge in deployment is predictability: we want to
make sure that the software behaves as expected when deployed
○ i.e., we want to avoid “it works on my machine” syndrome

● Other challenges:
○ may need to run on a wide variety of servers
○ may need to run on servers you don’t control/own
○ may need to safely share secrets (e.g., ssh keys)

Deployment: cloud vs on-prem

● When deploying a service, you usually have two choices:

Deployment: cloud vs on-prem

● When deploying a service, you usually have two choices:
○ host it on servers that you own and manage (“on-prem

deployment”, short for “on premise”)

Deployment: cloud vs on-prem

● When deploying a service, you usually have two choices:
○ host it on servers that you own and manage (“on-prem

deployment”, short for “on premise”)
○ pay someone else to host it (“cloud deployment”)

Deployment: cloud vs on-prem

● When deploying a service, you usually have two choices:
○ host it on servers that you own and manage (“on-prem

deployment”, short for “on premise”)
○ pay someone else to host it (“cloud deployment”)

■ within the general cloud deployment category, you may
get to choose whether to rent whole servers, share time on
servers, or even pretend not to have a server at all (this is
called “function-as-a-service”, e.g., via AWS Lambda)

Deployment: cloud vs on-prem

● Advantages of on-prem deployment:
○ you have total control of the system, which might have

reliability and security benefits
○ can choose exactly the right hardware
○ no “vendor lock-in”

● Advantages of cloud deployment:
○ cloud providers usually have better ops than you do
○ ability to add more servers quickly (“auto-scaling”)
○ easy access to datacenters in multiple regions

Deployment: cloud vs on-prem

● Advantages of on-prem deployment:
○ you have total control of the system, which might have

reliability and security benefits
○ can choose exactly the right hardware
○ no “vendor lock-in”

● Advantages of cloud deployment:
○ cloud providers usually have better ops than you do
○ ability to add more servers quickly (“auto-scaling”)
○ easy access to datacenters in multiple regions

Deployment: installing software

Deployment: installing software

● Directly installing your software onto the machine’s main
operating system (bare metal deployment) is rare (especially
when deploying into the cloud)

Deployment: installing software

● Directly installing your software onto the machine’s main
operating system (bare metal deployment) is rare (especially
when deploying into the cloud)
○ ideally, you want all of your servers to have the same

environment (so that if there is a problem, you only need to
debug it in one context)

Deployment: installing software

● Directly installing your software onto the machine’s main
operating system (bare metal deployment) is rare (especially
when deploying into the cloud)
○ ideally, you want all of your servers to have the same

environment (so that if there is a problem, you only need to
debug it in one context)

○ in practice, this is achieved via virtualization

Deployment: virtualization

Definition: virtualization is the use of software to simulate portions
of a computer system

Deployment: virtualization

Definition: virtualization is the use of software to simulate portions
of a computer system
● we can use virtualization to present a system that appears the

same to our software, regardless of the underlying hardware

Deployment: virtualization

Definition: virtualization is the use of software to simulate portions
of a computer system
● we can use virtualization to present a system that appears the

same to our software, regardless of the underlying hardware
● three major kinds:

○ Full virtualization (a.k.a. emulation)
○ Paravirtualization/OS virtualization
○ Container virtualization

Deployment: virtualization: emulation

Image credit: Steven Zeil via
https://www.cs.odu.edu/~zeil/cs-devops/f20/Public/virtualization/index.html

Deployment: virtualization: emulation

● The host simulates
everything down to and
including the CPU level of the
guest

Image credit: Steven Zeil via
https://www.cs.odu.edu/~zeil/cs-devops/f20/Public/virtualization/index.html

Deployment: virtualization: emulation

● The host simulates
everything down to and
including the CPU level of the
guest

● The guest CPU can be
different from that of the
host

Image credit: Steven Zeil via
https://www.cs.odu.edu/~zeil/cs-devops/f20/Public/virtualization/index.html

Deployment: virtualization: emulation

● The host simulates
everything down to and
including the CPU level of the
guest

● The guest CPU can be
different from that of the
host

● Examples: the JVM, game
console emulators

Image credit: Steven Zeil via
https://www.cs.odu.edu/~zeil/cs-devops/f20/Public/virtualization/index.html

Deployment: virtualization: paravirtualization

Deployment: virtualization: paravirtualization

Image credit: Steven Zeil via
https://www.cs.odu.edu/~zeil/cs-devops/f20/Public/virtualization/index.html

Deployment: virtualization: paravirtualization

● CPU is not emulated, but OS is

Image credit: Steven Zeil via
https://www.cs.odu.edu/~zeil/cs-devops/f20/Public/virtualization/index.html

Deployment: virtualization: paravirtualization

● CPU is not emulated, but OS is
● Allows code between OS calls to

run natively

Image credit: Steven Zeil via
https://www.cs.odu.edu/~zeil/cs-devops/f20/Public/virtualization/index.html

Deployment: virtualization: paravirtualization

● CPU is not emulated, but OS is
● Allows code between OS calls to

run natively
● Many devices are simulated

Image credit: Steven Zeil via
https://www.cs.odu.edu/~zeil/cs-devops/f20/Public/virtualization/index.html

Deployment: virtualization: paravirtualization

● CPU is not emulated, but OS is
● Allows code between OS calls to

run natively
● Many devices are simulated
● Guest CPU must be same as on

host

Image credit: Steven Zeil via
https://www.cs.odu.edu/~zeil/cs-devops/f20/Public/virtualization/index.html

Deployment: virtualization: paravirtualization

● CPU is not emulated, but OS is
● Allows code between OS calls to

run natively
● Many devices are simulated
● Guest CPU must be same as on

host
● Guest OS can be different from

that of host

Image credit: Steven Zeil via
https://www.cs.odu.edu/~zeil/cs-devops/f20/Public/virtualization/index.html

Deployment: virtualization: paravirtualization

● CPU is not emulated, but OS is
● Allows code between OS calls to

run natively
● Many devices are simulated
● Guest CPU must be same as on

host
● Guest OS can be different from

that of host
● examples: VirtualBox, VMWare

Image credit: Steven Zeil via
https://www.cs.odu.edu/~zeil/cs-devops/f20/Public/virtualization/index.html

Deployment: virtualization: paravirtualization

● CPU is not emulated, but OS is
● Allows code between OS calls to

run natively
● Many devices are simulated
● Guest CPU must be same as on

host
● Guest OS can be different from

that of host
● examples: VirtualBox, VMWare

Image credit: Steven Zeil via
https://www.cs.odu.edu/~zeil/cs-devops/f20/Public/virtualization/index.html

As described so far, this is hosted
paravirtualization, where the “virtual
machine” is just a user-space program.

Deployment: virtualization: paravirtualization

● Alternative to hosted
paravirtualization: hypervisors

Deployment: virtualization: paravirtualization

● Alternative to hosted
paravirtualization: hypervisors

● A hypervisor is a special “thin”
operating system that runs
other operating systems

Image credit: Steven Zeil via
https://www.cs.odu.edu/~zeil/cs-devops/f20/Public/virtualization/index.html

Deployment: virtualization: paravirtualization

● Alternative to hosted
paravirtualization: hypervisors

● A hypervisor is a special “thin”
operating system that runs
other operating systems
○ this is how cloud machines

actually are deployed

Image credit: Steven Zeil via
https://www.cs.odu.edu/~zeil/cs-devops/f20/Public/virtualization/index.html

Deployment: virtualization: paravirtualization

● Alternative to hosted
paravirtualization: hypervisors

● A hypervisor is a special “thin”
operating system that runs
other operating systems
○ this is how cloud machines

actually are deployed
● Examples: Xen, Hyper-V

Image credit: Steven Zeil via
https://www.cs.odu.edu/~zeil/cs-devops/f20/Public/virtualization/index.html

Deployment: virtualization: containers

Deployment: virtualization: containers

Image credit: Steven Zeil via
https://www.cs.odu.edu/~zeil/cs-devops/f20/Public/virtualization/index.html

Deployment: virtualization: containers

● Guest CPU is same as host’s

Image credit: Steven Zeil via
https://www.cs.odu.edu/~zeil/cs-devops/f20/Public/virtualization/index.html

Deployment: virtualization: containers

● Guest CPU is same as host’s
● Guest OS is same family as

host’s
○ e.g., both are Linux distros

Image credit: Steven Zeil via
https://www.cs.odu.edu/~zeil/cs-devops/f20/Public/virtualization/index.html

Deployment: virtualization: containers

● Guest CPU is same as host’s
● Guest OS is same family as

host’s
○ e.g., both are Linux distros

● A thin OS simulation passes OS
functions down to host.

Image credit: Steven Zeil via
https://www.cs.odu.edu/~zeil/cs-devops/f20/Public/virtualization/index.html

Deployment: virtualization: containers

● Guest CPU is same as host’s
● Guest OS is same family as

host’s
○ e.g., both are Linux distros

● A thin OS simulation passes OS
functions down to host.

● Applications are simulated

Image credit: Steven Zeil via
https://www.cs.odu.edu/~zeil/cs-devops/f20/Public/virtualization/index.html

Deployment: virtualization: containers

● Guest CPU is same as host’s
● Guest OS is same family as

host’s
○ e.g., both are Linux distros

● A thin OS simulation passes OS
functions down to host.

● Applications are simulated
● Examples: Docker, Kubernetes

Image credit: Steven Zeil via
https://www.cs.odu.edu/~zeil/cs-devops/f20/Public/virtualization/index.html

Deployment: virtualization: containers

● Guest CPU is same as host’s
● Guest OS is same family as

host’s
○ e.g., both are Linux distros

● A thin OS simulation passes OS
functions down to host.

● Applications are simulated
● Examples: Docker, Kubernetes

Image credit: Steven Zeil via
https://www.cs.odu.edu/~zeil/cs-devops/f20/Public/virtualization/index.html

Pop Quiz: can Docker running on Windows
virtualize an application written for Linux?
● Answer: one or the other, but not both at

the same time (works via WSL)

Deployment: virtualization: containers

● Guest CPU is same as host’s
● Guest OS is same family as

host’s
○ e.g., both are Linux distros

● A thin OS simulation passes OS
functions down to host.

● Applications are simulated
● Examples: Docker, Kubernetes

Image credit: Steven Zeil via
https://www.cs.odu.edu/~zeil/cs-devops/f20/Public/virtualization/index.html

Pop Quiz: can Docker running on Windows
virtualize an application written for Linux?
● Answer: one or the other, but not both at

the same time (works via WSL)

Deployment: implications

Deployment: implications

● you’ll have different options for debugging + incident response
depending on your team’s virtualization strategy

Deployment: implications

● you’ll have different options for debugging + incident response
depending on your team’s virtualization strategy
○ if you’re using virtualization, you ought to have easy access to

an identical environment for debugging. Use it!

Deployment: implications

● you’ll have different options for debugging + incident response
depending on your team’s virtualization strategy
○ if you’re using virtualization, you ought to have easy access to

an identical environment for debugging. Use it!
● containers are extremely useful in practice, but limit your choice

of hardware + OS

Deployment: implications

● you’ll have different options for debugging + incident response
depending on your team’s virtualization strategy
○ if you’re using virtualization, you ought to have easy access to

an identical environment for debugging. Use it!
● containers are extremely useful in practice, but limit your choice

of hardware + OS
○ almost all servers are some variant of Linux, so this limitation

is less important in practice than it might seem

Deployment: implications

● you’ll have different options for debugging + incident response
depending on your team’s virtualization strategy
○ if you’re using virtualization, you ought to have easy access to

an identical environment for debugging. Use it!
● containers are extremely useful in practice, but limit your choice

of hardware + OS
○ almost all servers are some variant of Linux, so this limitation

is less important in practice than it might seem
○ most big tech companies use containers in some form

Reading Quiz: DevOps (1)

Reading Quiz: DevOps (1)

Q1: One of the readings identifies a structural conflict between the
pace of innovation and product stability. What explicit strategy does
the reading advocate to manage this structural conflict?
A. new goal: automation so that the system is 100% reliable
B. new goal: spend the entirety of an error budget
C. new hiring strategy: hire only people who can be both software

engineers and sysadmins

Q2: TRUE or FALSE: Google SRE has backup communication systems
that don’t rely on other Google infrastructure

Reading Quiz: DevOps (1)

Q1: One of the readings identifies a structural conflict between the
pace of innovation and product stability. What explicit strategy does
the reading advocate to manage this structural conflict?
A. new goal: automation so that the system is 100% reliable
B. new goal: spend the entirety of an error budget
C. new hiring strategy: hire only people who can be both software

engineers and sysadmins

Q2: TRUE or FALSE: Google SRE has backup communication systems
that don’t rely on other Google infrastructure

Reading Quiz: DevOps (1)

Q1: One of the readings identifies a structural conflict between the
pace of innovation and product stability. What explicit strategy does
the reading advocate to manage this structural conflict?
A. new goal: automation so that the system is 100% reliable
B. new goal: spend the entirety of an error budget
C. new hiring strategy: hire only people who can be both software

engineers and sysadmins

Q2: TRUE or FALSE: Google SRE has backup communication systems
that don’t rely on other Google infrastructure

