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Today’s agenda:

● Operations, Toil, and the DevOps philosophy
● Ops challenge example: deployment
● Achieving reliability

○ the service reliability hierarchy + SLAs/targets
○ monitoring
○ incident/emergency response
○ post-mortems + learning from failure
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Definition: operations refers to anything that happens after the 
developers (think that they) are done building the software, including:
● setting up the servers that will run the software and installing the 

software on them
● conducting system/acceptance tests
● running the software and keeping it running
● measuring the performance of the running software
● fixing any problems that arise while the software is running
● deploying new versions of the software
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● traditionally, operations are mostly conducted by system 
administrators (or sysadmins) rather than by developers
○ sysadmins are specialists in specific tech stacks

■ e.g., experts at Linux or Windows, etc.
○ e.g., NJIT’s IT degree program was (probably) originally 

intended as preparation for this kind of role
● this approach is best when systems change rarely

○ e.g., when software is released on physical media
○ other advantages: easy to staff for, off-the-shelf tooling, etc.
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● two business models: 
○ services (i.e., the developing organization runs the software and 

sells access to customers)
■ service ops: need to set up the servers/machines on which 

the software will run, install the software + dependencies, 
configure firewalls, etc.

○ products (i.e., sell/lease the software to others to run)
■ product ops: still need to system test in the anticipated 

operating environment(s),  set up servers providing those 
environments,  install the software + dependencies, etc.

Traditional approach to operations 
can work in either of these models!
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Key idea: combine the development and operations teams
● “DevOps” is a portmanteau of “developers” + “operators”
● DevOps teams are organized around services/projects

○ what does this sound similar to?
● operational burden is shared by the developers who are building 

the system
○ better alignment of incentives between developers and 

operators, since same people perform both roles
● encourage operators to automate toil
● may still have some dedicated ops roles (e.g., SREs at Google)



Operations: the DevOps approach

figure credit: Atlassian
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● manual: includes work such as manually running a script that 
automates some task (typing the command itself is toil!)

● repetitive: if you’re performing a task for the first time ever, or even 
the second time, this work is not toil

● automatable: if human judgment is essential for the task, there’s a 
good chance it’s not toil



Operations: toil

Definition: toil is the kind of work tied to running a production service 
that tends to be manual, repetitive, automatable, tactical, devoid of 
enduring value, and that scales linearly as a service grows

● tactical: toil is usually interrupt-driven and reactive



Operations: toil

Definition: toil is the kind of work tied to running a production service 
that tends to be manual, repetitive, automatable, tactical, devoid of 
enduring value, and that scales linearly as a service grows

● tactical: toil is usually interrupt-driven and reactive
● no enduring value: if your service remains in the same state after 

you have finished a task, the task was probably toil



Operations: toil

Definition: toil is the kind of work tied to running a production service 
that tends to be manual, repetitive, automatable, tactical, devoid of 
enduring value, and that scales linearly as a service grows

● tactical: toil is usually interrupt-driven and reactive
● no enduring value: if your service remains in the same state after 

you have finished a task, the task was probably toil
● O(n) with service growth: if the work involved in a task scales up 

linearly with service size, traffic volume, or user count, that task is 
probably toil



Operations: toil

Definition: toil is the kind of work tied to running a production service 
that tends to be manual, repetitive, automatable, tactical, devoid of 
enduring value, and that scales linearly as a service grows

● tactical: toil is usually interrupt-driven and reactive
● no enduring value: if your service remains in the same state after 

you have finished a task, the task was probably toil
● O(n) with service growth: if the work involved in a task scales up 

linearly with service size, traffic volume, or user count, that task is 
probably toil

A task doesn’t need to have all of these 
attributes to be toil. But, the more closely 
work matches one or more of these 
descriptors, the more likely it is to be toil.
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Things that aren’t toil:

● work you don’t like to do is not always toil
○ useful, productive work can be unpleasant

■ e.g., cleaning up the entire alerting configuration for your 
service and removing clutter may not be fun, but it’s not toil

○ but most toil is unpleasant
● overhead is also different than toil

○ tasks like team meetings, setting and grading goals, and HR 
paperwork (that are not tied to operations) are overhead
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What’s so bad about toil?

● career stagnation (it doesn’t get you promoted)
● lowers morale (it’s boring)
● creates confusion (easy to forget to do a manual task!)
● slows progress (could be doing useful work instead)
● sets precedent (avoid letting toil become normal!)
● promotes attrition (“I want to work on something interesting!”)

Despite all this, a little bit of toil is often 
okay. After all, engineers only have so 
many productive hours in every day, and 
sometimes a mental break is nice :)
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● SRE teams are a mix of:
○ software engineers
○ software-inclined sysadmins

● goal: SRE teams should spend at least 50% of their time on 
“development” work and at most 50% on toil

● SRE teams are assigned to a collection of related “SWE” (i.e., 
software engineering/development) teams, each of which works on 
one of the systems
○ SRE team manages ops for all of these systems

● SRE motto: “Hope is not a strategy”
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Another DevOps example: AWS

● unlike Google, AWS does not have dedicated ops teams
● all development teams are solely responsible for the operations of 

their own services
○ teams are also small (“two-pizza”) and usually organized around 

a single microservice
● this setup is leaner (no need to staff SRE teams!)

○ but means teams must choose between delivering new features 
and reducing operational burden
■ makes technical debt riskier to take on (why?)
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Today’s agenda:

● Operations, Toil, and the DevOps philosophy
● Ops challenge example: deployment
● Achieving reliability

○ the service reliability hierarchy + SLAs/targets
○ monitoring
○ incident/emergency response
○ post-mortems + learning from failure
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● Deployment is the process of installing your software on a server 
(with its dependencies), connecting it to the internet, etc.

● The key challenge in deployment is predictability: we want to 
make sure that the software behaves as expected when deployed
○ i.e., we want to avoid “it works on my machine” syndrome

● Other challenges: 
○ may need to run on a wide variety of servers
○ may need to run on servers you don’t control/own
○ may need to safely share secrets (e.g., ssh keys)
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● When deploying a service, you usually have two choices:
○ host it on servers that you own and manage (“on-prem 

deployment”, short for “on premise”)
○ pay someone else to host it (“cloud deployment”)

■ within the general cloud deployment category, you may 
get to choose whether to rent whole servers, share time on 
servers, or even pretend not to have a server at all (this is 
called “function-as-a-service”, e.g., via AWS Lambda)
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Deployment: installing software

● Directly installing your software onto the machine’s main 
operating system (bare metal deployment) is rare (especially 
when deploying into the cloud)
○ ideally, you want all of your servers to have the same 

environment (so that if there is a problem, you only need to 
debug it in one context)

○ in practice, this is achieved via virtualization
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Deployment: virtualization

Definition: virtualization is the use of software to simulate portions 
of a computer system
● we can use virtualization to present a system that appears the 

same to our software, regardless of the underlying hardware
● three major kinds:

○ Full virtualization (a.k.a. emulation)
○ Paravirtualization/OS virtualization
○ Container virtualization
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Deployment: virtualization: emulation

● The host simulates 
everything down to and 
including the CPU level of the 
guest

● The guest CPU can be 
different from that of the 
host

● Examples: the JVM, game 
console emulators

Image credit: Steven Zeil via 
https://www.cs.odu.edu/~zeil/cs-devops/f20/Public/virtualization/index.html
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Deployment: virtualization: paravirtualization

● CPU is not emulated, but OS is
● Allows code between OS calls to 

run natively
● Many devices are simulated
● Guest CPU must be same as on 

host
● Guest OS can be different from 

that of host
● examples: VirtualBox, VMWare

Image credit: Steven Zeil via 
https://www.cs.odu.edu/~zeil/cs-devops/f20/Public/virtualization/index.html

As described so far, this is hosted 
paravirtualization, where the “virtual 
machine” is just a user-space program.
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Deployment: virtualization: paravirtualization

● Alternative to hosted 
paravirtualization: hypervisors

● A hypervisor is a special “thin” 
operating system that runs 
other operating systems
○ this is how cloud machines 

actually are deployed
● Examples: Xen, Hyper-V

Image credit: Steven Zeil via 
https://www.cs.odu.edu/~zeil/cs-devops/f20/Public/virtualization/index.html
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● you’ll have different options for debugging + incident response 
depending on your team’s virtualization strategy
○ if you’re using virtualization, you ought to have easy access to 

an identical environment for debugging. Use it!
● containers are extremely useful in practice, but limit your choice 

of hardware + OS
○ almost all servers are some variant of Linux, so this limitation 

is less important in practice than it might seem
○ most big tech companies use containers in some form
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