What is Software
Engineering?
Martin Kellogg

What is Software Engineering?

Today’s agenda:

e Finishslides from last Friday

e Whatisresearch? How is it similar/different from SE generally?
e Your relationship to researchers, as a developer

e What sort of problems does SE research solve

Is Open Source a Good Business Model?

= A

February 3, 1976

An open Letter to mobbyists

T0 me, the most critical thing the hobby macket right mow
i3 the lack of good software courses, books and software itself,
Without good software ard an owner who understands progqramsing, a
hobby computer is wasted. Will guality softwere be written for the
hoblby market?

Almost a year ago, Paul Allen and myself, cxpecting the hobby
market to expand, hired Monte Davidoff and developed Altair BASIC.
Though the initial work took only two months, the three of us have
spent most of the last year documenting, improving and adding fea-
tures to BASIC. Now we have 4K, K, EXTENDED, ROM and DISK BASIC.
The value of Lhe compuler tims we have used exceeds $40,000.

The feedback we ha gotten from the hundreds of pecple who
say they are using DASIC has all been positive. Two surpcising
things are apparent, however. 1) Most of th “users” nover bought
BASIC (less than LO% of all Altair za have bought BASIC), il
2) The amount of royalties we have received from sales to hobbyists
makes the time spant of Altair BASTC worth less than $2 an howr.

Why is this? As the majority of hobbyists must be aware, wmost
of you steal your softwa Hardware must be paid for. but soft-
ware is scmething to sha Wro cares Af the people who worked on
1t get paid?

Ts this falz? One thing you don't o by stealing software ks
get back at MITS for some problem you way have had. MITS doesn't
make money selling eoftware. The. royalty pasd to ua, the manual,
the tape and the overhead make it a break-even operation. One thing
you do do is pravent good software from being written. Who can af-
ford to do professional work for nothing? What hobbyist can put
J-man years into programeing, tinding sll bugs, documenting his pro-
duct and distribute for free? The fact is, no one besides us has
invested a lot of money in hobty software. We have written 6800
BASIC, and are wziting 5080 APL and 6800 APL, Lut therw is very Lit-
tle incontive to make this software available to hobbyista. Most
directly, the thing you do is theft.

What about the guys who re-sell Altair BASIC, aren't they mak-
ing money on hobly software? Yes, but those who have been repotted
t0 us may lose in the end. They are the ohes who give hobbyists a
bad name, and should be kicked cut of any club meeting they show up
at.

I would appreciate letters from any one who wants to pay up, of
bas & suggestion or comwent. Just write me at 1180 Alvarado SE, 8114,
Albugquerque, New Mexico, 87108, Nothing would please me more than
being able to hire ten programwers and deluge the hobby market with

good softvare. s
Bl Dita

8] Oates
General Partner, Micro-soft

The A Register
€he New 1Jork Times

Microsoft Buys GitHub for $7.5
Billion, Moving to Grow in Coding’s
New Era

MS' Ballmer: Linux is communism
After a short silence, Motormouth is back, folks...

A GiaremLea Von 31002000 10.10 UTC

MS ANALYSTS Steve Ballmer was the only person Lo raise the issue of Linux when he
wrapped up Microsoft's annual financial analysts meeling in Seattie, aithough he put
Sun and Oracle ahead in terms of being stronger competitors. They of course are
‘civilised’ compatitors - but the Linux crowd, in the world of Prez Steve, are communists.

€5 Give this article 2~ N

Redmond top man Satya Nadella: ‘Microsoft
LOVES Linux’

Open-source 'love' fairly runneth over at cloud event

What business
models can you
combine with open
source successfully?

e\

20 Oct 2014 at 23:45, Neil McAllster

By Steve Lohr

Model: “Open Core”, closed plugins

e “Open Core” model: core component of a product is an open
source utility; available for a fee

Model: “Open Core”, closed plugins

e “Open Core” model: core component of a product is an open
source utility; available for a fee

e Example: Apache Kafka, a distributed message broker (glue in an

event-based system)
o Product is open source, maintained by Apache foundation,

supported by company “Confluent”
o Confluent provides plugins to connect Kafka to many

different systems out-of-the-box

Model: Open Source as a Utility

e The largest, most successful open source projects implement
utility infrastructure:
o Operating systems, web servers, logging libraries, languages

Model: Open Source as a Utility

e The largest, most successful open source projects implement
utility infrastructure:
o Operating systems, web servers, logging libraries, languages
e Business model: build and sell products and services using those
utilities, contribute improvements back to the ecosystem

Model: Open Source as a Utility

e The largest, most successful open source projects implement
utility infrastructure:
o Operating systems, web servers, logging libraries, languages
e Business model: build and sell products and services using those

utilities, contribute improvements back to the ecosystem
o i.e., sell expertise

Model: Open Source as a Utility

e The largest, most successful open source projects implement
utility infrastructure:
o Operating systems, web servers, logging libraries, languages
e Business model: build and sell products and services using those
utilities, contribute improvements back to the ecosystem
o i.e., sell expertise
o many companies provide specialized “distributions” of these
open source infrastructure and specialized tools to improve
them; support the upstream project

Open source and the law

Open source and the law

e Copyright provides creators with protection for creative,
intellectual and artistic works - including software

Open source and the law

e Copyright provides creators with protection for creative,
intellectual and artistic works - including software
o Alternative: public domain (nobody has exclusive property
rights)

Open source and the law

e Copyright provides creators with protection for creative,
intellectual and artistic works - including software
o Alternative: public domain (nobody has exclusive property
rights)
e Open source software is generally copyrighted, with copyright
retained by contributors or assigned to a foundation/corporation

that maintains the product

Open source and the law

e Copyright provides creators with protection for creative,

intellectual and artistic works - including software
o Alternative: public domain (nobody has exclusive property
rights)

e Open source software is generally copyrighted, with copyright
retained by contributors or assigned to a foundation/corporation
that maintains the product

e Copyright holder can grant a license for use, placing restrictions on
how it can be used (perhaps for a fee)

o Common open source licenses: MIT, BSD, Apache, GPL

Open source licenses

Two broad classes of open source licenses:

Open source licenses

Two broad classes of open source licenses:

e permissive licenses (e.g., MIT, Apache, BSD) allow a combination of
the licensed code and some other code (i.e., a derivative work) to be
released under a (including proprietary)

Open source licenses

Two broad classes of open source licenses:

e permissive licenses (e.g., MIT, Apache, BSD) allow a combination of
the licensed code and some other code (i.e., a derivative work) to be
released under a (including proprietary)

o goal: encourage adoption and use of the software

Open source licenses

Two broad classes of open source licenses:

e permissive licenses (e.g., MIT, Apache, BSD) allow a combination of
the licensed code and some other code (i.e., a derivative work) to be
released under a (including proprietary)

o goal: encourage adoption and use of the software

e copyleft licenses (e.g., GPL, CC-BY-SA) forces all linked code to be
released under the

Open source licenses

Two broad classes of open source licenses:

permissive licenses (e.g., MIT, Apache, BSD) allow a combination of
the licensed code and some other code (i.e., a derivative work) to be
released under a (including proprietary)

o goal: encourage adoption and use of the software

copyleft licenses (e.g., GPL, CC-BY-SA) forces all linked code to be
released under the

o goal: protect the commons, require users to contribute back

(.)

. Philosophy: do we force
Open source licenses participation, or try to
grow/incentivize itin

Two broad classes of open source licenses: 7
other ways:

e permissive licenses (e.g., MIT, Apache, B
the licensed code and some other code (i.e., a derivative work) to be
released under a (including proprietary)
o goal: encourage adoption and use of the software

e copyleft licenses (e.g., GPL, CC-BY-SA) forces all linked code to be
released under the
o goal: protect the commons, require users to contribute back

Model: Dual Licensing

Model: Dual Licensing

e Offer afree copyleft (e.g. GPL) license to encourage broad
adoption, prevent competitors from improving it without sharing
those improvements.

Model: Dual Licensing

e Offer afree copyleft (e.g. GPL) license to encourage broad
adoption, prevent competitors from improving it without sharing

those improvements.
e Offer custom, more permissive licenses to third parties who are

willing to pay for that (e.g. enterprise)

Model: Dual Licensing

e Offer afree copyleft (e.g. GPL) license to encourage broad
adoption, prevent competitors from improving it without sharing
those improvements.

e Offer custom, more permissive licenses to third parties who are
willing to pay for that (e.g. enterprise)

e Only possible when thereis a ,who can
unilaterally change license

Model: Dual Licensing

e Offer afree copyleft (e.g. GPL) license to encourage broad
adoption, prevent competitors from improving it without sharing
those improvements.

e Offer custom, more permissive licenses to third parties who are
willing to pay for that (e.g. enterprise)

e Only possible when thereis a ,who can
unilaterally change license

e Risk:losing control of the copyleft portion via

Model: Dual Licensing

e Offer afree copyleft (e.g. GPL) license to encourage broad
adoption, prevent competitors from improving it without sharing
those improvements.

e Offer custom, more permissive licenses to third parties who are
willing to pay for that (e.g. enterprise)

e Only possible when thereis a ,who can
unilaterally change license

e Risk:losing control of the copyleft portion via

e Examples: MySQL, Qt

When communities move on: forks

e When software is released under a permissive license, the only
rights that the creator can realistically retain are trademarks on
name/images - code can otherwise be “forked”

When communities move on: forks

e When software is released under a permissive license, the only
rights that the creator can realistically retain are trademarks on
name/images - code can otherwise be “forked”

e Example:

o Sun bought StarOffice in 1999, GPL open-sourced as
OpenOffice in 2000 with aim of fighting MS Office

When communities move on: forks

e When software is released under a permissive license, the only
rights that the creator can realistically retain are trademarks on
name/images - code can otherwise be “forked”

e Example:

o Sun bought StarOffice in 1999, GPL open-sourced as
OpenOffice in 2000 with aim of fighting MS Office

o 2010: Oracle buys Sun, fires many internal developers,
frustrating external community

When communities move on: forks

e When software is released under a permissive license, the only
rights that the creator can realistically retain are trademarks on
name/images - code can otherwise be “forked”

e Example:

o Sun bought StarOffice in 1999, GPL open-sourced as
OpenOffice in 2000 with aim of fighting MS Office

o 2010: Oracle buys Sun, fires many internal developers,
frustrating external community

o 2011: Community forms a foundation, creates fork LibreOffice,
OpenOffice dies off (Oracle transfers to Apache)

Model: Hosted OSS As A Service

Model: Hosted OSS As A Service

e Model: Creators of open source software provide a cloud hosted,
¢ ” installation of the software, as a service

Model: Hosted OSS As A Service

e Model: Creators of open source software provide a cloud hosted,
¢ " installation of the software, as a service
e Risk: No competitive advantage vs cloud utility providers (e.g. AWS)

Model: Hosted OSS As A Service

e Model: Creators of open source software provide a cloud hosted,
¢ " installation of the software, as a service
e Risk: No competitive advantage vs cloud utility providers (e.g. AWS)
o AWS could even improve your GPL code and not share because
it is not distributing the program (it operates it as a service)

Model: Hosted OSS As A Service

e Model: Creators of open source software provide a cloud hosted,
¢ " installation of the software, as a service
e Risk: No competitive advantage vs cloud utility providers (e.g. AWS)
o AWS could even improve your GPL code and not share because
it is not distributing the program (it operates it as a service)
e Example: MongoDB Atlas (document-oriented database)

Model: Hosted OSS As A Service

e Model: Creators of open source software provide a cloud hosted,
¢ " installation of the software, as a service
e Risk: No competitive advantage vs cloud utility providers (e.g. AWS)
o AWS could even improve your GPL code and not share because
it is not distributing the program (it operates it as a service)
e Example: MongoDB Atlas (document-oriented database)
o MongoDB created a new license to
operating MongoDB as a service

Model: Hosted OSS As A Service

e Model: Creators of open source software provide a cloud hosted,
¢ " installation of the software, as a service
e Risk: No competitive advantage vs cloud utility providers (e.g. AWS)
o AWS could even improve your GPL code and not share because
it is not distributing the program (it operates it as a service)
e Example: MongoDB Atlas (document-oriented database)
o MongoDB created a new license to
operating MongoDB as a service
o Amazon created their own fork of the GPLed version of
MongoDB, ignored code only released under new license

Another example: Java & open-source

e While the Java specification is public, there used to be no open
source Java runtime implementation

Another example: Java & open-source

e While the Java specification is public, there used to be no open
source Java runtime implementation

e Much open source software was/is written in Java, creating “The
Java Trap” for open source

Another example: Java & open-source

e While the Java specification is public, there used to be no open
source Java runtime implementation

e Much open source software was/is written in Java, creating “The
Java Trap” for open source

o 1996-2006: GNU, Apache (backed by IBM and Apple), and others
attempted to create open source implementations; Sun refused to
permit these runtimes to be tested for compatibility, prohibiting
them from using the term “Java”

Another example: Java & open-source

e While the Java specification is public, there used to be no open
source Java runtime implementation

e Much open source software was/is written in Java, creating “The
Java Trap” for open source

o 1996-2006: GNU, Apache (backed by IBM and Apple), and others
attempted to create open source implementations; Sun refused to
permit these runtimes to be tested for compatibility, prohibiting
them from using the term “Java”

e 2007:Sunreleases OpenJDK under GPL; third party projects
abandoned mostly uncompleted

~

Why did Sun release
Another example: Java & ope| openJpk?

e While the Java specification is public, t
source Java runtime implementation _

™\

J

e Much open source software was/is written in Java, creating “The

Java Trap” for open source

o 1996-2006: GNU, Apache (backed by IBM and Apple), and others
attempted to create open source implementations; Sun refused to
permit these runtimes to be tested for compatibility, prohibiting

them from using the term “Java”

e 2007:Sunreleases OpenJDK under GPL; third party projects

abandoned mostly uncompleted

~

Why did Sun release
Another example: Java & ope| openJpk?
They feared

e While the Java specification is public, t
of Java.

source Java runtime implementation _

™\

J

e Much open source software was/is written in Java, creating “The

Java Trap” for open source

o 1996-2006: GNU, Apache (backed by IBM and Apple), and others
attempted to create open source implementations; Sun refused to
permit these runtimes to be tested for compatibility, prohibiting

them from using the term “Java”

e 2007:Sunreleases OpenJDK under GPL; third party projects

abandoned mostly uncompleted

Another example: Android

Another example: Android

e Model: “Product” is the (app store, ads, etc) and the
hardware (made by competing manufacturers), not Android itself

Another example: Android

e Model: “Product” is the (app store, ads, etc) and the
hardware (made by competing manufacturers), not Android itself

e Androidis entirely open source, built on Linux; applications are
written in Java/Kotlin, executed using a custom-built runtime

Another example: Android

Model: “Product” is the (app store, ads, etc) and the
hardware (made by competing manufacturers), not Android itself
Android is entirely open source, built on Linux; applications are
written in Java/Kotlin, executed using a custom-built runtime

To provide implementations of (e.g. java.util.X),
Android used the open source Apache Harmony implementations

Another example: Android

e Model: “Product” is the (app store, ads, etc) and the
hardware (made by competing manufacturers), not Android itself

e Androidis entirely open source, built on Linux; applications are
written in Java/Kotlin, executed using a custom-built runtime

e To provide implementations of (e.g. java.util.X),
Android used the open source Apache Harmony implementations

e Oraclev Google: Oracle asserted that Java APls were their
property (copyright) and Google misused that; judge ruled that
APIs specifications cannot be copyrighted

Risks of using Open Source in Industry

Risks of using Open Source in Industry

e Arelicenses compatible? A significant concern for licenses with
copyleft:

Risks of using Open Source in Industry

e Arelicenses compatible? A significant concern for licenses with
copyleft:
o Adopting libraries with copyleft clause generally means what
you distribute linked against that library must also have same
copyleft clause (and be open source)

Risks of using Open Source in Industry

e Arelicenses compatible? A significant concern for licenses with
copyleft:

o Adopting libraries with copyleft clause generally means what
you distribute linked against that library must also have same
copyleft clause (and be open source)

o Including permissive-licensed software in copyleft-licensed
software is generally compatible

Risks of using Open Source in Industry

e Arelicenses compatible? A significant concern for licenses with
copyleft:

o Adopting libraries with copyleft clause generally means what
you distribute linked against that library must also have same
copyleft clause (and be open source)

o Including permissive-licensed software in copyleft-licensed
software is generally compatible

e Areyou certain that the software truly is released under the license
that is stated? Did all contributors agree to that license?

Risks of using Open Source

e Arelicenses compatible? A significa
copyleft:

o Adopting libraries with copyleft A

Industry must balance
these risks against the

of OSS:
reusing existing code

~

At

you distribute linked against that library must also have same
copyleft clause (and be open source)
o Including permissive-licensed software in copyleft-licensed

software is generally compatible

e Areyou certain that the software truly is released under the license
that is stated? Did all contributors agree to that license?

Licensing and Large Language Models (LLMs)

e Recent development: large language models trained on all code in
public repositories on GitHub (e.g., Codex, GPTs)

Licensing and Large Language Models (LLMs)

e Recent development: large language models trained on all code in
public repositories on GitHub (e.g., Codex, GPTs)

e Tools like GitHub Copilot as you program,
based on the Codex model

Licensing and Large Language Models (LLMs)

e Recent development: large language models trained on all code in
public repositories on GitHub (e.g., Codex, GPTs)
e Tools like GitHub Copilot as you program,
based on the Codex model
o Copilot has been observed to output entire snippets of code
from public GitHub repositories

Licensing and Large Language Models (LLMs)

e Recent development: large language models trained on all code in
public repositories on GitHub (e.g., Codex, GPTs)
e Tools like GitHub Copilot as you program,
based on the Codex model
o Copilot has been observed to output entire snippets of code
from public GitHub repositories
e Ongoing over:

Licensing and Large Language Models (LLMs)

e Recent development: large language models trained on all code in
public repositories on GitHub (e.g., Codex, GPTs)

e Tools like GitHub Copilot as you program,
based on the Codex model
o Copilot has been observed to output entire snippets of code

from public GitHub repositories

e Ongoing over:

o Does training Codex on public code violate copyleft licenses?

Licensing and Large Language Models (LLMs)

e Recent development: large language models trained on all code in
public repositories on GitHub (e.g., Codex, GPTs)
e Tools like GitHub Copilot as you program,
based on the Codex model
o Copilot has been observed to output entire snippets of code
from public GitHub repositories
e Ongoing over:
o Does training Codex on public code violate copyleft licenses?
o Who is the owner of Copilot’s output, especially when it is
similar to public code that has an owner?

Licensing and Large Language Models (LLMs)

e Recent development: large language models trained on all code in

public repositories on GitHub (e.gzaé"“““'“'f y
Many companies forbid)

e Tools like GitHub Copilot their devel ’ ,
based on the Codex model elr cve o.pe.rs romusing
Copilot or similar tools

o Copilot has been observed tc ,
. . because of the risks from
from public GitHub repositor H ooal battles!
e Ongoing over: \hese legal batties: J
o Does training Codex on public code violate copyleft licenses?
o Who is the owner of Copilot’s output, especially when it is
similar to public code that has an owner?

Advice: Large Language Models (LLMs) in SE

Advice: Large Language Models (LLMs) in SE

e Current trends suggest that LLMs are going to be a major part of
software engineering (and many other disciplines) going forward

Advice: Large Language Models (LLMs) in SE

e Current trends suggest that LLMs are going to be a major part of
software engineering (and many other disciplines) going forward
o many engineers want to use them, even if they're not currently
permitted to due to legal risks
m great for generating boilerplate, tests, etc.

Advice: Large Language Models (LLMs) in SE

e Current trends suggest that LLMs are going to be a major part of
software engineering (and many other disciplines) going forward
o many engineers want to use them, even if they're not currently
permitted to due to legal risks
m great for generating boilerplate, tests, etc.
e My view: LLMs are like an untrustworthy but very smart compiler

Advice: Large Language Models (LLMs) in SE

e Current trends suggest that LLMs are going to be a major part of
software engineering (and many other disciplines) going forward
o many engineers want to use them, even if they're not currently
permitted to due to legal risks
m great for generating boilerplate, tests, etc.
e My view: LLMs are like an untrustworthy but very smart compiler
o unlike traditional compiler, do not promise to preserve
semantics (and might)

Advice: Large Language Models (LLMs) in SE

e Current trends suggest that LLMs are going to be a major part of
software engineering (and many other disciplines) going forward
o many engineers want to use them, even if they're not currently
permitted to due to legal risks
m great for generating boilerplate, tests, etc.
e My view: LLMs are like an untrustworthy but very smart compiler
o unlike traditional compiler, do not promise to preserve
semantics (and might)
o butinput can be natural language or a specification, rather than
another program

Advice: Large Language Models (LLMs) in SE

e Currenttrendssuggest that LLMs are gomg to be a major part of

software engineering (an/ I f e \ward
o many engineers wa Possible future workflow: rently

permitted todue to | SN génerat.e cod‘e
a great for genera deductive verification tools

e My view: LLMs are like check fo.r correctness
o unlike traditional co sDerevineimelceele)

semantics (and might)
o butinput can be natural language or a specification, rather than

another program

mpiler

Takeaways: free and open-source software

e Free software and open-source software represent different
philosophies about how code should be shared:
o Free software: if | share with you, you need to share with me
o Open source software: | share with you, you do what you want
e Because software is copyrightable, licenses enforce philosophy
O licenses enforce free software principles
e Many viable open source business models, but all have risks
e Licensing concerns are the main reason to avoid open-source code
in industry (industry loves permissive licenses)

What is Software Engineering?

Today’s agenda:

e Finishslides from last Friday

e Whatisresearch? How is it similar/different from SE generally?
e Your relationship to researchers, as a developer

e What sort of problems does SE research solve

What is research?

What is research?

e Research is the process of innovation: creating or discovering
something that has never been built/known before

What is research?

e Research is the process of innovation: creating or discovering
something that has never been built/known before
e All software development is to some extent innovative

What is research?

e Research is the process of innovation: creating or discovering
something that has never been built/known before
e All software development is to some extent innovative
o the cost of copying software is zero, so any new software has
by definition not been created before

What is research?

e Research is the process of innovation: creating or discovering
something that has never been built/known before
e All software development is to some extent innovative
o the cost of copying software is zero, so any new software has
by definition not been created before
o this contrasts with many other fields, where practitioners
(“engineers” or otherwise) are doing anything
fundamentally novel

What is research?

e Research is the process of innovation: creating or discovering
something that has never been built/known before
e All software development is to some extent innovative
o the cost of copying software is zero, so any new software has
by definition not been created before
o this contrasts with many other fields, where practitioners
(“engineers” or otherwise) are doing anything
fundamentally novel
m inthose field, anyone doing something new is doing
“research”

What is research?

e |[f all software development is innovative, what distinguishes
from just doing software
engineering?

What is research?

e |[f all software development is innovative, what distinguishes
from just doing software
engineering?
o the key difference is that most computer science research is
meta in some way

What is research?

e |[f all software development is innovative, what distinguishes
from just doing software
engineering?
o the key difference is that most computer science research is
meta in some way
m e.g,it might explore how to build classes of programs,
like operating systems (OS) or compilers (PL)

What is research?

e |[f all software development is innovative, what distinguishes
from just doing software
engineering?
o thekey difference is that most computer science research is
meta in some way
m e.g,it might explore how to build classes of programs,
like operating systems (OS) or compilers (PL)
m or, it might explore foundational notions of what
computers can and cannot do (CS theory)

What is research?

e |[f all software development is innovative, what distinguishes
from just doing software
engineering?
o thekey difference is that most computer science research is
meta in some way
m e.g,it might explore how to build classes of programs,
like operating systems (OS) or compilers (PL)
m or, it might explore foundational notions of what
computers can and cannot do (CS theory)
m or explore what computers we can (arch)

What is research?

e Sothenwhat’s meta about software engineering research?

What is research?

e Sothenwhat’s meta about software engineering research?
e Software engineering researchers study:

What is research?

e Sothenwhat’s meta about software engineering research?
e Software engineering researchers study:
o developers do
m e.g.,studies of developers, what makes them more or less
productive, etc.

What is research?

e Sothenwhat’s meta about software engineering research?
e Software engineering researchers study:
o developers do
m e.g.,studies of developers, what makes them more or less
productive, etc.
o howtheydoit
m e.g.,software architecture, design patterns

What is research?

e Sothenwhat’s meta about software engineering research?
e Software engineering researchers study:
o developers do
m e.g.,studies of developers, what makes them more or less
productive, etc.
o howtheydoit
m e.g.,software architecture, design patterns
o better ways to improve
m e.g., new kinds of testing, static analysis, etc.

What is research?

e Sothenwhat’s meta about software engineering research?
e Software engineering researchers study:
o developers do
m e.g.,studies of developers, what makes them more or less
productive, etc.
o howtheydoit
m e.g.,software architecture, design patterns
o better ways to improve software quality
m e.g., new kinds of testing, static analysis, etc.
o and anything else related to improving developer productivity

N ?)
What 1S researCh° We'll come back to this stuff later

e Sothenwhat's meta abou in the lecture in a bit more detail,
with some examples.

e Software engineering resd_)
o developers do
m e.g.,studies of developers, what makes them more or less
productive, etc.
o howtheydoit
m e.g.,software architecture, design patterns
o better ways to improve
m e.g., new kinds of testing, static analysis, etc.
o and anything else related to improving developer productivity

Who does research?

Who does research?

e Most computer science research occurs in universities
o including NJIT!

Who does research?

e Most computer science research occurs in universities
o including NJIT!

e Mostresearchis actually done by students (especially PhD
students), working under a professor

Who does research?

e Most computer science research occurs in universities
o including NJIT!
e Mostresearchis actually done by students (especially PhD
students), working under a professor
o professor supplies high-level research vision + experience
and training

Who does research?

e Most computer science research occurs in universities
o including NJIT!
e Mostresearchis actually done by students (especially PhD
students), working under a professor
o professor supplies high-level research vision + experience
and training
o student does the grunt work of writing code, gather data, etc.

r 2

Who does research? Not just PhD students: as an
undergraduate you can get

e Most computer science researc| involved inresearch too (1did!)
o including NJIT! - /
e Mostresearchis actually done by students (especially PhD
students), working under a professor
o professor supplies high-level research vision + experience
and training
o student does the grunt work of writing code, gather data, etc.

Who does research?

e Most computer science research occurs in universities
o including NJIT!

e Mostresearchis actually done by students (especially PhD
students), working under a professor
o professor supplies high-level research vision + experience

and training
o student does the grunt work of writing code, gather data, etc.

e Someresearchisdoneinindustry

Who does research?

e Most computer science research occurs in universities
o including NJIT!
e Mostresearchis actually done by students (especially PhD
students), working under a professor
o professor supplies high-level research vision + experience
and training
o student does the grunt work of writing code, gather data, etc.

e Someresearchisdoneinindustry
o e.g., Microsoft has MSR, AWS has ARG, etc.

Who does research?

e Most computer science research occurs in universities
o including NJIT!
e Mostresearchis actually done by students (especially PhD
students), working under a professor
o professor supplies high-level research vision + experience
and training
o student does the grunt work of writing code, gather data, etc.
e Someresearchisdoneinindustry
o e.g., Microsoft has MSR, AWS has ARG, etc.
o sometimes developers do research by accident, too!

Who does research?

e Most computer science research occurs in universities
o including NJIT! 7~ ™\
e Most researchis acl However, developers rarely publish
students), working their resegrch, which is important if
you want it to be a part of the total

° profeSS.OI.' SUPPIl" <um of human knowledge.
and training _ /

o student does the grunt work of writing code, gather data, etc.

e Someresearchisdoneinindustry
o e.g., Microsoft has MSR, AWS has ARG, etc.
o sometimes developers do research by accident, too!

Aside: should you do a PhD?

Aside: should you do a PhD?

e |n my experience, most undergrads think that doing a PhD is just
like

Aside: should you do a PhD?

e |n my experience, most undergrads think that doing a PhD is just
like
o Thisis along way from the truth: being a PhD student is more
like a job that gives you a PhD when you do it long enough

Aside: should you do a PhD?

e |n my experience, most undergrads think that doing a PhD is just
like
o Thisis along way from the truth: being a PhD student is more
like a job that gives you a PhD when you do it long enough
m for example, PhD students in CS are typically paid,
although not very much (“stipends”)

Aside: should you do a PhD?

e |n my experience, most undergrads think that doing a PhD is just
like
o Thisis along way from the truth: being a PhD student is more
like a job that gives you a PhD when you do it long enough
m for example, PhD students in CS are typically paid,
although not very much (“stipends”)
m the PhD student’s advisor (a professor) is their boss

Aside: should you do a PhD?

e |[n my experience, most un N
like “ Another misconception: in the US,
o Thisis alongway from| You usually do not need a master’s
degree to start a PhD program!

like a job that gives yo

m for example, PhD st
although not very much (“stipends”)

m the PhD student’s advisor (a professor) is their boss

J

Aside: should you do a PhD?

e |n my experience, most undergrads think that doing a PhD is just
like
o Thisis along way from the truth: being a PhD student is more
like a job that gives you a PhD when you do it long enough
m for example, PhD students in CS are typically paid,
although not very much (“stipends”)
m the PhD student’s advisor (a professor) is their boss
e For thisreason, in my opinion more undergraduates should at
least doing a PhD

Aside: should you do a PhD?

e |n my experience, most undergrads think that doing a PhD is just
like
o Thisis along way from the truth: being a PhD student is more
like a job that gives you a PhD when you do it long enough
m for example, PhD students in CS are typically paid,
although not very much (“stipends”)
m the PhD student’s advisor (a professor) is their boss
e For thisreason, in my opinion more undergraduates should at
least doing a PhD
o it might be more affordable than you think!

Aside: should you do a PhD?

e Prosof doingaPhD:

Aside: should you do a PhD?

e Prosof doingaPhD:
o Yyoubecome a in a topic

Aside: should you do a PhD?

e Prosof doingaPhD:
o Yyoubecome a in a topic
o pushforth the

Aside: should you do a PhD?

e Prosof doingaPhD:
o Yyoubecome a in a topic
o pushforth the
o some jobs are only accessible to people with PhDs:

Aside: should you do a PhD?

e Prosof doingaPhD:
o Yyoubecome a in a topic
o pushforth the
o some jobs are only accessible to people with PhDs:
m professor
e although you can teach without a PhD, you can’t get
tenure without one

Aside: should you do a PhD?

e Prosof doingaPhD:
o Yyoubecome a in a topic
o pushforth the
o some jobs are only accessible to people with PhDs:
m professor
e although you can teach without a PhD, you can’t get
tenure without one
m industrial researcher
e e.g. static analysis designer, ML architecture
developer, etc.

Aside: should you do a PhD?

e ConsofdoingaPhD:

Aside: should you do a PhD?

e ConsofdoingaPhD:
o it's abad financial decision (due to opportunity cost)
m PhD students get paid, but much less than e.g., software
engineer salaries

Aside: should you do a PhD?

e ConsofdoingaPhD:
o it's abad financial decision (due to opportunity cost)
m PhD students get paid, but much less than e.g., software
engineer salaries
o ittakes alongtime
m typically 4 to 6 years, sometimes longer

Aside: should you do a PhD?

e ConsofdoingaPhD:
o it's abad financial decision (due to opportunity cost)
m PhD students get paid, but much less than e.g., software
engineer salaries
o ittakes alongtime
m typically 4 to 6 years, sometimes longer
o it's
m Yyou're working on only one thing for 4-6 years!
m rates of mental health problems among PhD students are
much higher than the general population

Aside: should you do a PhD?

e |[fdespite those cons, you think a PhD is something you might be
interested in, come talk to me (or another professor in the
department)

Aside: should you do a PhD?

e |[fdespite those cons, you think a PhD is something you might be
interested in, come talk to me (or another professor in the

department)

NVhich professor to approach? Choose\
a research professor whose work
sounds interesting to you (or who you
know already from class).

N\ /

Aside: should you do a PhD?

e |[fdespite those cons, you think a PhD is something you might be

interested in, come talk to me (or another professor in the

NVhich professor to approach? Choose\

department)

to find ou',c about a W who you
professor'swork, w already from class).

google “their name
NJIT” and read their
website

a research professor whose work

_

J

Aside: should you do a PhD?

e |[fdespite those cons, you think a PhD is something you might be
interested in, come talk to me (or another professor in the

department) NVhich professor to approach? Choose\
a research professor whose work
sounds interesting to you (or who you
know already from class).
e at NJIT, research professors all

have “professor” in the title
_® teaching professors are “lecturers” /

Aside: should you do a PhD?

e |[fdespite those cons, you think a PhD is something you might be
interested in, come talk to me (or another professor in the
department)

o high-quality PhD programs require letters of
recommendation from professors you’ve worked with, so
you should work with a professor :)

Aside: should you do a PhD?

e |[fdespite those cons, you think a PhD is something you might be
interested in, come talk to me (or another professor in the
department)

o high-quality PhD programs require letters of
recommendation from professors you’ve worked with, so
you should work with a professor :)

o it's best to approach professors about joining their research
group when you’re a sophomore or junior

Aside: should you do a PhD?

e |[fdespite those cons, you think a PhD is something you might be
interested in, come talk to me (or another professor in the
department)

o high-quality PhD programs require letters of
recommendation from professors you’ve worked with, so
you should work with a professor :)

o it's best to approach professors about joining their research
group when you’re a sophomore or junior

m at this stage, you know enough to be useful, but you'll be
around long enough that you can ramp up on a project

What is Software Engineering?

Today’s agenda:

e Finishslides from last Friday

e Whatisresearch? How is it similar/different from SE generally?
e Your relationship to researchers, as a developer

e What sort of problems does SE research solve

Research to a developer

e Assuming you'’re not going to do a PhD, why should you care
about research in software engineering (or CS in general)?

Research to a developer

e Assuming you'’re not going to do a PhD, why should you care
about research in software engineering (or CS in general)?
o CSis avery fast-changing, young field
m implying best practices change a lot: what we've covered
in 490 might not be true anymore in 5/10/20 years

Research to a developer

e Assuming you'’re not going to do a PhD, why should you care
about research in software engineering (or CS in general)?
o CSis avery fast-changing, young field
m implying best practices change a lot: what we've covered
in 490 might not be true anymore in 5/10/20 years
o Many developers are also working in fast-changing domains
within CS
m e.g,if you're working on ML, you'll want to keep up with
the latest ML research

Research to a developer

e You may also have embedded in your
company

Research to a developer

e You may also have embedded in your
company
o if you're at a “big tech” company, you definitely do; other
places, it's a maybe

Research to a developer

e You may also have embedded in your

company
o if you're at a “big tech” company, you definitely do; other
places, it’'s a maybe
e Especially if you're working on something cutting edge and
you're considering trying to keep up with the latest research
yourself, finding an industrial researcher in your company is a

good idea
o they can keep up with the research so you don't have to!

Keeping up with research

Keeping up with research

e Industry-focused academic publications
o e.g.,CACM (“Communications of the ACM”) is great for this

Keeping up with research

e Industry-focused academic publications
o e.g.,CACM (“Communications of the ACM”) is great for this
e Findsome technology bloggers that you like
o common tech blog entry: areview of a recent paper by the
blogger (they read it so you don’t have to!)

Keeping up with research

e Industry-focused academic publications
o e.g.,CACM (“Communications of the ACM”) is great for this
e Findsome technology bloggers that you like
o common tech blog entry: areview of a recent paper by the
blogger (they read it so you don’t have to!)
e Attend industry conferences (at your employer’s expense...)

Keeping up with research

Industry-focused academic publications

o e.g.,CACM (“Communications of the ACM”) is great for this
Find some technology bloggers that you like

o common tech blog entry: areview of a recent paper by the

blogger (they read it so you don’t have to!)

Attend industry conferences (at your employer’s expense...)
Keep up with research areas you'’re particularly interested in
directly, by reading (or, more likely,) papers

o more advice on this next

Reading papers

e |strongly recommend that you skim papers as a developer

Reading papers

e |strongly recommend that you skim papers as a developer
o if you're goingtoread them at all

Reading papers

e |strongly recommend that you skim papers as a developer
o if you're goingtoread them at all

e “skimming” =“reading only the most important results, and
skipping the details of how those results were reached”

Reading papers

e |strongly recommend that you skim papers as a developer
o if you're goingtoread them at all
e “skimming” =“reading only the ,and
skipping the details of how those results were reached”
o inacademic papers, this usually means reading just the abstract
and introduction (and maybe the conclusion)

Reading papers

e |strongly recommend that you skim papers as a developer
o if you're goingtoread them at all

e “skimming” =“reading only the ,and
skipping the details of how those results were reached”
o inacademic papers, this usually means reading just the abstract

and introduction (and maybe the conclusion)

e Be careful, though: not all academic papers are equally

high-quality!

Reading papers

e |strongly recommend that you skim papers as a developer
o if you're goingtoread them at all
e “skimming” =“reading only the ,and
skipping the details of how those results were reached”
o inacademic papers, this usually means reading just the abstract
and introduction (and maybe the conclusion)
e Be careful, though: not all academic papers are equally
high-quality!
o asadey,you're not trained to judge this, so relying on peer
review + recommendations from e.g., tech bloggers is smart

Reading papers

e |strongly recommend that you skim papers as a developer
o if you're goingtoread them at all

° sl.<|m.m|ng) rea,dmgﬁxception: papers published by \
sklp.pmg the d.etalls of| industrial research labs (e.g., Google
o in academic paper Research, MSR) are almost always ict
and introduction ({ written in a style closer to what
e Be careful, though: no| developers are trained to read. These
are often the ones you want to focus

t\gn as a developer, anyway! /

(=4

high-quality!
o asadey,you're no
review + recommendations from e.g., tech bloggers is smart

Reading papers: finding papers

Reading papers: finding papers

e Incomputer science, new research is usually published in
conferences (not journals)

Reading papers: finding papers

e [ncomputer science, new research is usually published in
conferences (not journals)
o conferences have shorter publication lag, often < 6 months

Reading papers: finding papers

e [ncomputer science, new research is usually published in
conferences (not journals)
o conferences have shorter publication lag, often < 6 months
e |[fyouwant to get afeel for the latest research in a part of CS, you
need to find the best conferences for that field
o usually, fields have many conferences, of which only 2-4 are
high-quality

Reading papers: finding papers

e Incomputer science, new research is usually published in
conferences (not journals)
o conferences have shorter publication lag, often < 6 months

e |[fyouwant to get afeel for the latest research in a part of CS, you
need to find the best conferences for that field
o usually, fields have many conferences, of which only 2-4 are

high-quality
e To find the best conferences, you could:

Reading papers: finding papers

e Incomputer science, new research is usually published in
conferences (not journals)
o conferences have shorter publication lag, often < 6 months
e |[fyouwant to get afeel for the latest research in a part of CS, you
need to find the best conferences for that field
o usually, fields have many conferences, of which only 2-4 are
high-quality
e To find the best conferences, you could:
o ask apeerinindustrial research (if you have one)

Reading papers: finding papers

e Incomputer science, new research is usually published in
conferences (not journals)
o conferences have shorter publication lag, often < 6 months
e |[fyouwant to get afeel for the latest research in a part of CS, you
need to find the best conferences for that field
o usually, fields have many conferences, of which only 2-4 are
high-quality
e To find the best conferences, you could:
o ask apeerinindustrial research (if you have one)
o use awebsite like csrankings.org

https://csrankings.org/

What is Software Engineering?

Today’s agenda:

e Finishslides from last Friday

e Whatisresearch? How is it similar/different from SE generally?
e Your relationship to researchers, as a developer

e What sort of problems does SE research solve

Software Engineering Research

Software Engineering Research

e Someresearch areasin CS are united by methodology
o e.g., most PL papers are “compilers for X”

Software Engineering Research

e Someresearch areasin CS are united by methodology
o e.g., most PL papers are “compilers for X”

e Other areas are united by application
o e.g., most OS papers are about operating systems

Software Engineering Research

e Someresearch areasin CS are united by methodology
o e.g., most PL papers are “compilers for X”
e Other areas are united by application
o e.g., most OS papers are about operating systems
e Software engineering research is united by an application:

Software Engineering Research

e Someresearch areasin CS are united by methodology
o e.g., most PL papers are “compilers for X”
e Other areas are united by application
o e.g., most OS papers are about operating systems
e Software engineering research is united by an application:

o as adeveloper, this is an application you will probably care
about

Software Engineering Research

e Someresearch areasin CS are united by methodology
o e.g., most PL papers are “compilers for X”
e Other areas are united by application
o e.g., most OS papers are about operating systems
e Software engineering research is united by an application:

o as adeveloper, this is an application you will probably care
about
o so SE research is particularly important to developers!

Reading quiz

Q1: the author references a paper by Redwine and Riddle repeatedly.
That paper is about which of the following topics?

A. program verification

B. automated testing

C. technology maturation

D. software architecture

Q2: TRUE or FALSE: the author compares software engineering
research to (and takes inspiration from) a series of “pro forma”
abstracts from the operating systems research community.

Reading quiz

Q1: the author references a paper by Redwine and Riddle repeatedly.
That paper is about which of the following topics?
A. program verification
B. automated testing
technology maturation
D. software architecture

Q2: TRUE or FALSE: the author compares software engineering
research to (and takes inspiration from) a series of “pro forma”
abstracts from the operating systems research community.

Reading quiz

Q1: the author references a paper by Redwine and Riddle repeatedly.
That paper is about which of the following topics?
A. program verification
B. automated testing
technology maturation
D. software architecture

Q2: TRUE or FALSE: the author compares software engineering
research to (and takes inspiration from) a series of “pro forma”
abstracts from the operating systems research community.

Reading quiz

Q1: the author references a paper by Redwine and Riddle repeatedly.
That paper is about which of the following topics?
A. program verification
B. automated testing
technology maturation
D. software architecture

Q2: TRUE or FALSE: the author compares software engineering
research to (and takes inspiration from) a series of “pro forma”

abstracts from the eperatingsystems HCl research community.

Wrapup

e | hope you enjoyed CS 490 this semester
o (but we still have one more class: next Wednesday, you have to
present to me!)

