
What is Software
Engineering?

Martin Kellogg

What is Software Engineering?

Today’s agenda:

● Finish slides from last Friday
● What is research? How is it similar/different from SE generally?
● Your relationship to researchers, as a developer
● What sort of problems does SE research solve

Is Open Source a Good Business Model?

What business
models can you
combine with open
source successfully?

Model: “Open Core”, closed plugins

● “Open Core” model: core component of a product is an open
source utility; premium plugins available for a fee

Model: “Open Core”, closed plugins

● “Open Core” model: core component of a product is an open
source utility; premium plugins available for a fee

● Example: Apache Kafka, a distributed message broker (glue in an
event-based system)
○ Product is open source, maintained by Apache foundation,

supported by company “Confluent”
○ Confluent provides plugins to connect Kafka to many

different systems out-of-the-box

Model: Open Source as a Utility

● The largest, most successful open source projects implement
utility infrastructure:
○ Operating systems, web servers, logging libraries, languages

Model: Open Source as a Utility

● The largest, most successful open source projects implement
utility infrastructure:
○ Operating systems, web servers, logging libraries, languages

● Business model: build and sell products and services using those
utilities, contribute improvements back to the ecosystem

Model: Open Source as a Utility

● The largest, most successful open source projects implement
utility infrastructure:
○ Operating systems, web servers, logging libraries, languages

● Business model: build and sell products and services using those
utilities, contribute improvements back to the ecosystem
○ i.e., sell expertise

Model: Open Source as a Utility

● The largest, most successful open source projects implement
utility infrastructure:
○ Operating systems, web servers, logging libraries, languages

● Business model: build and sell products and services using those
utilities, contribute improvements back to the ecosystem
○ i.e., sell expertise
○ many companies provide specialized “distributions” of these

open source infrastructure and specialized tools to improve
them; support the upstream project

Open source and the law

Open source and the law

● Copyright provides creators with protection for creative,
intellectual and artistic works - including software

Open source and the law

● Copyright provides creators with protection for creative,
intellectual and artistic works - including software
○ Alternative: public domain (nobody has exclusive property

rights)

Open source and the law

● Copyright provides creators with protection for creative,
intellectual and artistic works - including software
○ Alternative: public domain (nobody has exclusive property

rights)
● Open source software is generally copyrighted, with copyright

retained by contributors or assigned to a foundation/corporation
that maintains the product

Open source and the law

● Copyright provides creators with protection for creative,
intellectual and artistic works - including software
○ Alternative: public domain (nobody has exclusive property

rights)
● Open source software is generally copyrighted, with copyright

retained by contributors or assigned to a foundation/corporation
that maintains the product

● Copyright holder can grant a license for use, placing restrictions on
how it can be used (perhaps for a fee)
○ Common open source licenses: MIT, BSD, Apache, GPL

Open source licenses

Two broad classes of open source licenses:

Open source licenses

Two broad classes of open source licenses:

● permissive licenses (e.g., MIT, Apache, BSD) allow a combination of
the licensed code and some other code (i.e., a derivative work) to be
released under a different license (including proprietary)

Open source licenses

Two broad classes of open source licenses:

● permissive licenses (e.g., MIT, Apache, BSD) allow a combination of
the licensed code and some other code (i.e., a derivative work) to be
released under a different license (including proprietary)
○ goal: encourage adoption and use of the software

Open source licenses

Two broad classes of open source licenses:

● permissive licenses (e.g., MIT, Apache, BSD) allow a combination of
the licensed code and some other code (i.e., a derivative work) to be
released under a different license (including proprietary)
○ goal: encourage adoption and use of the software

● copyleft licenses (e.g., GPL, CC-BY-SA) forces all linked code to be
released under the same license

Open source licenses

Two broad classes of open source licenses:

● permissive licenses (e.g., MIT, Apache, BSD) allow a combination of
the licensed code and some other code (i.e., a derivative work) to be
released under a different license (including proprietary)
○ goal: encourage adoption and use of the software

● copyleft licenses (e.g., GPL, CC-BY-SA) forces all linked code to be
released under the same license
○ goal: protect the commons, require users to contribute back

Open source licenses

Two broad classes of open source licenses:

● permissive licenses (e.g., MIT, Apache, BSD) allow a combination of
the licensed code and some other code (i.e., a derivative work) to be
released under a different license (including proprietary)
○ goal: encourage adoption and use of the software

● copyleft licenses (e.g., GPL, CC-BY-SA) forces all linked code to be
released under the same license
○ goal: protect the commons, require users to contribute back

Philosophy: do we force
participation, or try to
grow/incentivize it in
other ways?

Model: Dual Licensing

Model: Dual Licensing

● Offer a free copyleft (e.g. GPL) license to encourage broad
adoption, prevent competitors from improving it without sharing
those improvements.

Model: Dual Licensing

● Offer a free copyleft (e.g. GPL) license to encourage broad
adoption, prevent competitors from improving it without sharing
those improvements.

● Offer custom, more permissive licenses to third parties who are
willing to pay for that (e.g. enterprise)

Model: Dual Licensing

● Offer a free copyleft (e.g. GPL) license to encourage broad
adoption, prevent competitors from improving it without sharing
those improvements.

● Offer custom, more permissive licenses to third parties who are
willing to pay for that (e.g. enterprise)

● Only possible when there is a single copyright owner, who can
unilaterally change license

Model: Dual Licensing

● Offer a free copyleft (e.g. GPL) license to encourage broad
adoption, prevent competitors from improving it without sharing
those improvements.

● Offer custom, more permissive licenses to third parties who are
willing to pay for that (e.g. enterprise)

● Only possible when there is a single copyright owner, who can
unilaterally change license

● Risk: losing control of the copyleft portion via forking

Model: Dual Licensing

● Offer a free copyleft (e.g. GPL) license to encourage broad
adoption, prevent competitors from improving it without sharing
those improvements.

● Offer custom, more permissive licenses to third parties who are
willing to pay for that (e.g. enterprise)

● Only possible when there is a single copyright owner, who can
unilaterally change license

● Risk: losing control of the copyleft portion via forking
● Examples: MySQL, Qt

When communities move on: forks

● When software is released under a permissive license, the only
rights that the creator can realistically retain are trademarks on
name/images - code can otherwise be “forked”

When communities move on: forks

● When software is released under a permissive license, the only
rights that the creator can realistically retain are trademarks on
name/images - code can otherwise be “forked”

● Example:
○ Sun bought StarOffice in 1999, GPL open-sourced as

OpenOffice in 2000 with aim of fighting MS Office

When communities move on: forks

● When software is released under a permissive license, the only
rights that the creator can realistically retain are trademarks on
name/images - code can otherwise be “forked”

● Example:
○ Sun bought StarOffice in 1999, GPL open-sourced as

OpenOffice in 2000 with aim of fighting MS Office
○ 2010: Oracle buys Sun, fires many internal developers,

frustrating external community

When communities move on: forks

● When software is released under a permissive license, the only
rights that the creator can realistically retain are trademarks on
name/images - code can otherwise be “forked”

● Example:
○ Sun bought StarOffice in 1999, GPL open-sourced as

OpenOffice in 2000 with aim of fighting MS Office
○ 2010: Oracle buys Sun, fires many internal developers,

frustrating external community
○ 2011: Community forms a foundation, creates fork LibreOffice,

OpenOffice dies off (Oracle transfers to Apache)

Model: Hosted OSS As A Service

Model: Hosted OSS As A Service

● Model: Creators of open source software provide a cloud hosted,
“fully managed” installation of the software, as a service

Model: Hosted OSS As A Service

● Model: Creators of open source software provide a cloud hosted,
“fully managed” installation of the software, as a service

● Risk: No competitive advantage vs cloud utility providers (e.g. AWS)

Model: Hosted OSS As A Service

● Model: Creators of open source software provide a cloud hosted,
“fully managed” installation of the software, as a service

● Risk: No competitive advantage vs cloud utility providers (e.g. AWS)
○ AWS could even improve your GPL code and not share because

it is not distributing the program (it operates it as a service)

Model: Hosted OSS As A Service

● Model: Creators of open source software provide a cloud hosted,
“fully managed” installation of the software, as a service

● Risk: No competitive advantage vs cloud utility providers (e.g. AWS)
○ AWS could even improve your GPL code and not share because

it is not distributing the program (it operates it as a service)
● Example: MongoDB Atlas (document-oriented database)

Model: Hosted OSS As A Service

● Model: Creators of open source software provide a cloud hosted,
“fully managed” installation of the software, as a service

● Risk: No competitive advantage vs cloud utility providers (e.g. AWS)
○ AWS could even improve your GPL code and not share because

it is not distributing the program (it operates it as a service)
● Example: MongoDB Atlas (document-oriented database)

○ MongoDB created a new license to require copyleft for service
providers operating MongoDB as a service

Model: Hosted OSS As A Service

● Model: Creators of open source software provide a cloud hosted,
“fully managed” installation of the software, as a service

● Risk: No competitive advantage vs cloud utility providers (e.g. AWS)
○ AWS could even improve your GPL code and not share because

it is not distributing the program (it operates it as a service)
● Example: MongoDB Atlas (document-oriented database)

○ MongoDB created a new license to require copyleft for service
providers operating MongoDB as a service

○ Amazon created their own fork of the GPL’ed version of
MongoDB, ignored code only released under new license

Another example: Java & open-source

● While the Java specification is public, there used to be no open
source Java runtime implementation

Another example: Java & open-source

● While the Java specification is public, there used to be no open
source Java runtime implementation

● Much open source software was/is written in Java, creating “The
Java Trap” for open source

Another example: Java & open-source

● While the Java specification is public, there used to be no open
source Java runtime implementation

● Much open source software was/is written in Java, creating “The
Java Trap” for open source

● 1996-2006: GNU, Apache (backed by IBM and Apple), and others
attempted to create open source implementations; Sun refused to
permit these runtimes to be tested for compatibility, prohibiting
them from using the term “Java”

Another example: Java & open-source

● While the Java specification is public, there used to be no open
source Java runtime implementation

● Much open source software was/is written in Java, creating “The
Java Trap” for open source

● 1996-2006: GNU, Apache (backed by IBM and Apple), and others
attempted to create open source implementations; Sun refused to
permit these runtimes to be tested for compatibility, prohibiting
them from using the term “Java”

● 2007: Sun releases OpenJDK under GPL; third party projects
abandoned mostly uncompleted

Another example: Java & open-source

● While the Java specification is public, there used to be no open
source Java runtime implementation

● Much open source software was/is written in Java, creating “The
Java Trap” for open source

● 1996-2006: GNU, Apache (backed by IBM and Apple), and others
attempted to create open source implementations; Sun refused to
permit these runtimes to be tested for compatibility, prohibiting
them from using the term “Java”

● 2007: Sun releases OpenJDK under GPL; third party projects
abandoned mostly uncompleted

Why did Sun release
OpenJDK?
They feared losing
control of Java.

Another example: Java & open-source

● While the Java specification is public, there used to be no open
source Java runtime implementation

● Much open source software was/is written in Java, creating “The
Java Trap” for open source

● 1996-2006: GNU, Apache (backed by IBM and Apple), and others
attempted to create open source implementations; Sun refused to
permit these runtimes to be tested for compatibility, prohibiting
them from using the term “Java”

● 2007: Sun releases OpenJDK under GPL; third party projects
abandoned mostly uncompleted

Why did Sun release
OpenJDK?
They feared losing
control of Java.

Another example: Android

Another example: Android

● Model: “Product” is the ecosystem (app store, ads, etc) and the
hardware (made by competing manufacturers), not Android itself

Another example: Android

● Model: “Product” is the ecosystem (app store, ads, etc) and the
hardware (made by competing manufacturers), not Android itself

● Android is entirely open source, built on Linux; applications are
written in Java/Kotlin, executed using a custom-built runtime

Another example: Android

● Model: “Product” is the ecosystem (app store, ads, etc) and the
hardware (made by competing manufacturers), not Android itself

● Android is entirely open source, built on Linux; applications are
written in Java/Kotlin, executed using a custom-built runtime

● To provide implementations of core Java APIs (e.g. java.util.X),
Android used the open source Apache Harmony implementations

Another example: Android

● Model: “Product” is the ecosystem (app store, ads, etc) and the
hardware (made by competing manufacturers), not Android itself

● Android is entirely open source, built on Linux; applications are
written in Java/Kotlin, executed using a custom-built runtime

● To provide implementations of core Java APIs (e.g. java.util.X),
Android used the open source Apache Harmony implementations

● Oracle v Google: Oracle asserted that Java APIs were their
property (copyright) and Google misused that; judge ruled that
APIs specifications cannot be copyrighted

Risks of using Open Source in Industry

Risks of using Open Source in Industry

● Are licenses compatible? A significant concern for licenses with
copyleft:

Risks of using Open Source in Industry

● Are licenses compatible? A significant concern for licenses with
copyleft:
○ Adopting libraries with copyleft clause generally means what

you distribute linked against that library must also have same
copyleft clause (and be open source)

Risks of using Open Source in Industry

● Are licenses compatible? A significant concern for licenses with
copyleft:
○ Adopting libraries with copyleft clause generally means what

you distribute linked against that library must also have same
copyleft clause (and be open source)

○ Including permissive-licensed software in copyleft-licensed
software is generally compatible

Risks of using Open Source in Industry

● Are licenses compatible? A significant concern for licenses with
copyleft:
○ Adopting libraries with copyleft clause generally means what

you distribute linked against that library must also have same
copyleft clause (and be open source)

○ Including permissive-licensed software in copyleft-licensed
software is generally compatible

● Are you certain that the software truly is released under the license
that is stated? Did all contributors agree to that license?

Risks of using Open Source in Industry

● Are licenses compatible? A significant concern for licenses with
copyleft:
○ Adopting libraries with copyleft clause generally means what

you distribute linked against that library must also have same
copyleft clause (and be open source)

○ Including permissive-licensed software in copyleft-licensed
software is generally compatible

● Are you certain that the software truly is released under the license
that is stated? Did all contributors agree to that license?

Industry must balance
these risks against the
clear benefit of OSS:
reusing existing code

Licensing and Large Language Models (LLMs)

● Recent development: large language models trained on all code in
public repositories on GitHub (e.g., Codex, GPTs)

Licensing and Large Language Models (LLMs)

● Recent development: large language models trained on all code in
public repositories on GitHub (e.g., Codex, GPTs)

● Tools like GitHub Copilot suggest lines of code as you program,
based on the Codex model

Licensing and Large Language Models (LLMs)

● Recent development: large language models trained on all code in
public repositories on GitHub (e.g., Codex, GPTs)

● Tools like GitHub Copilot suggest lines of code as you program,
based on the Codex model
○ Copilot has been observed to output entire snippets of code

from public GitHub repositories

Licensing and Large Language Models (LLMs)

● Recent development: large language models trained on all code in
public repositories on GitHub (e.g., Codex, GPTs)

● Tools like GitHub Copilot suggest lines of code as you program,
based on the Codex model
○ Copilot has been observed to output entire snippets of code

from public GitHub repositories
● Ongoing legal battles over:

Licensing and Large Language Models (LLMs)

● Recent development: large language models trained on all code in
public repositories on GitHub (e.g., Codex, GPTs)

● Tools like GitHub Copilot suggest lines of code as you program,
based on the Codex model
○ Copilot has been observed to output entire snippets of code

from public GitHub repositories
● Ongoing legal battles over:

○ Does training Codex on public code violate copyleft licenses?

Licensing and Large Language Models (LLMs)

● Recent development: large language models trained on all code in
public repositories on GitHub (e.g., Codex, GPTs)

● Tools like GitHub Copilot suggest lines of code as you program,
based on the Codex model
○ Copilot has been observed to output entire snippets of code

from public GitHub repositories
● Ongoing legal battles over:

○ Does training Codex on public code violate copyleft licenses?
○ Who is the owner of Copilot’s output, especially when it is

similar to public code that has an owner?

Licensing and Large Language Models (LLMs)

● Recent development: large language models trained on all code in
public repositories on GitHub (e.g., Codex model)

● Tools like GitHub Copilot suggest lines of code as you program,
based on the Codex model
○ Copilot has been observed to output entire snippets of code

from public GitHub repositories
● Ongoing legal battles over:

○ Does training Codex on public code violate copyleft licenses?
○ Who is the owner of Copilot’s output, especially when it is

similar to public code that has an owner?

Many companies forbid
their developers from using
Copilot or similar tools
because of the risks from
these legal battles!

Advice: Large Language Models (LLMs) in SE

Advice: Large Language Models (LLMs) in SE

● Current trends suggest that LLMs are going to be a major part of
software engineering (and many other disciplines) going forward

Advice: Large Language Models (LLMs) in SE

● Current trends suggest that LLMs are going to be a major part of
software engineering (and many other disciplines) going forward
○ many engineers want to use them, even if they’re not currently

permitted to due to legal risks
■ great for generating boilerplate, tests, etc.

Advice: Large Language Models (LLMs) in SE

● Current trends suggest that LLMs are going to be a major part of
software engineering (and many other disciplines) going forward
○ many engineers want to use them, even if they’re not currently

permitted to due to legal risks
■ great for generating boilerplate, tests, etc.

● My view: LLMs are like an untrustworthy but very smart compiler

Advice: Large Language Models (LLMs) in SE

● Current trends suggest that LLMs are going to be a major part of
software engineering (and many other disciplines) going forward
○ many engineers want to use them, even if they’re not currently

permitted to due to legal risks
■ great for generating boilerplate, tests, etc.

● My view: LLMs are like an untrustworthy but very smart compiler
○ unlike traditional compiler, do not promise to preserve

semantics (and might hallucinate)

Advice: Large Language Models (LLMs) in SE

● Current trends suggest that LLMs are going to be a major part of
software engineering (and many other disciplines) going forward
○ many engineers want to use them, even if they’re not currently

permitted to due to legal risks
■ great for generating boilerplate, tests, etc.

● My view: LLMs are like an untrustworthy but very smart compiler
○ unlike traditional compiler, do not promise to preserve

semantics (and might hallucinate)
○ but input can be natural language or a specification, rather than

another program

Advice: Large Language Models (LLMs) in SE

● Current trends suggest that LLMs are going to be a major part of
software engineering (and many other disciplines) going forward
○ many engineers want to use them, even if they’re not currently

permitted to due to legal risks
■ great for generating boilerplate, tests, etc.

● My view: LLMs are like an untrustworthy but very smart compiler
○ unlike traditional compiler, do not promise to preserve

semantics (and might hallucinate)
○ but input can be natural language or a specification, rather than

another program

Possible future workflow:
1. LLMs generate code
2. deductive verification tools

check for correctness
3. SDE reviews final code

Takeaways: free and open-source software

● Free software and open-source software represent different
philosophies about how code should be shared:
○ Free software: if I share with you, you need to share with me
○ Open source software: I share with you, you do what you want

● Because software is copyrightable, licenses enforce philosophy
○ copyleft licenses enforce free software principles

● Many viable open source business models, but all have risks
● Licensing concerns are the main reason to avoid open-source code

in industry (industry loves permissive licenses)

What is Software Engineering?

Today’s agenda:

● Finish slides from last Friday
● What is research? How is it similar/different from SE generally?
● Your relationship to researchers, as a developer
● What sort of problems does SE research solve

What is research?

What is research?

● Research is the process of innovation: creating or discovering
something that has never been built/known before

What is research?

● Research is the process of innovation: creating or discovering
something that has never been built/known before

● All software development is to some extent innovative

What is research?

● Research is the process of innovation: creating or discovering
something that has never been built/known before

● All software development is to some extent innovative
○ the cost of copying software is zero, so any new software has

by definition not been created before

What is research?

● Research is the process of innovation: creating or discovering
something that has never been built/known before

● All software development is to some extent innovative
○ the cost of copying software is zero, so any new software has

by definition not been created before
○ this contrasts with many other fields, where practitioners

(“engineers” or otherwise) are not doing anything
fundamentally novel

What is research?

● Research is the process of innovation: creating or discovering
something that has never been built/known before

● All software development is to some extent innovative
○ the cost of copying software is zero, so any new software has

by definition not been created before
○ this contrasts with many other fields, where practitioners

(“engineers” or otherwise) are not doing anything
fundamentally novel
■ in those field, anyone doing something new is doing

“research”

What is research?

● If all software development is innovative, what distinguishes
computer science research from just doing software
engineering?

What is research?

● If all software development is innovative, what distinguishes
computer science research from just doing software
engineering?
○ the key difference is that most computer science research is

meta in some way

What is research?

● If all software development is innovative, what distinguishes
computer science research from just doing software
engineering?
○ the key difference is that most computer science research is

meta in some way
■ e.g., it might explore how to build classes of programs,

like operating systems (OS) or compilers (PL)

What is research?

● If all software development is innovative, what distinguishes
computer science research from just doing software
engineering?
○ the key difference is that most computer science research is

meta in some way
■ e.g., it might explore how to build classes of programs,

like operating systems (OS) or compilers (PL)
■ or, it might explore foundational notions of what

computers can and cannot do (CS theory)

What is research?

● If all software development is innovative, what distinguishes
computer science research from just doing software
engineering?
○ the key difference is that most computer science research is

meta in some way
■ e.g., it might explore how to build classes of programs,

like operating systems (OS) or compilers (PL)
■ or, it might explore foundational notions of what

computers can and cannot do (CS theory)
■ or explore what computers we can physically build (arch)

What is research?

● So then what’s meta about software engineering research?

What is research?

● So then what’s meta about software engineering research?
● Software engineering researchers study:

What is research?

● So then what’s meta about software engineering research?
● Software engineering researchers study:

○ what developers do
■ e.g., studies of developers, what makes them more or less

productive, etc.

What is research?

● So then what’s meta about software engineering research?
● Software engineering researchers study:

○ what developers do
■ e.g., studies of developers, what makes them more or less

productive, etc.
○ how they do it

■ e.g., software architecture, design patterns

What is research?

● So then what’s meta about software engineering research?
● Software engineering researchers study:

○ what developers do
■ e.g., studies of developers, what makes them more or less

productive, etc.
○ how they do it

■ e.g., software architecture, design patterns
○ better ways to improve software quality

■ e.g., new kinds of testing, static analysis, etc.

What is research?

● So then what’s meta about software engineering research?
● Software engineering researchers study:

○ what developers do
■ e.g., studies of developers, what makes them more or less

productive, etc.
○ how they do it

■ e.g., software architecture, design patterns
○ better ways to improve software quality

■ e.g., new kinds of testing, static analysis, etc.
○ and anything else related to improving developer productivity

What is research?

● So then what’s meta about software engineering research?
● Software engineering researchers study:

○ what developers do
■ e.g., studies of developers, what makes them more or less

productive, etc.
○ how they do it

■ e.g., software architecture, design patterns
○ better ways to improve software quality

■ e.g., new kinds of testing, static analysis, etc.
○ and anything else related to improving developer productivity

We’ll come back to this stuff later
in the lecture in a bit more detail,
with some examples.

Who does research?

Who does research?

● Most computer science research occurs in universities
○ including NJIT!

Who does research?

● Most computer science research occurs in universities
○ including NJIT!

● Most research is actually done by students (especially PhD
students), working under a professor

Who does research?

● Most computer science research occurs in universities
○ including NJIT!

● Most research is actually done by students (especially PhD
students), working under a professor
○ professor supplies high-level research vision + experience

and training

Who does research?

● Most computer science research occurs in universities
○ including NJIT!

● Most research is actually done by students (especially PhD
students), working under a professor
○ professor supplies high-level research vision + experience

and training
○ student does the grunt work of writing code, gather data, etc.

Who does research?

● Most computer science research occurs in universities
○ including NJIT!

● Most research is actually done by students (especially PhD
students), working under a professor
○ professor supplies high-level research vision + experience

and training
○ student does the grunt work of writing code, gather data, etc.

Not just PhD students: as an
undergraduate you can get
involved in research too (I did!)

Who does research?

● Most computer science research occurs in universities
○ including NJIT!

● Most research is actually done by students (especially PhD
students), working under a professor
○ professor supplies high-level research vision + experience

and training
○ student does the grunt work of writing code, gather data, etc.

● Some research is done in industry

Who does research?

● Most computer science research occurs in universities
○ including NJIT!

● Most research is actually done by students (especially PhD
students), working under a professor
○ professor supplies high-level research vision + experience

and training
○ student does the grunt work of writing code, gather data, etc.

● Some research is done in industry
○ e.g., Microsoft has MSR, AWS has ARG, etc.

Who does research?

● Most computer science research occurs in universities
○ including NJIT!

● Most research is actually done by students (especially PhD
students), working under a professor
○ professor supplies high-level research vision + experience

and training
○ student does the grunt work of writing code, gather data, etc.

● Some research is done in industry
○ e.g., Microsoft has MSR, AWS has ARG, etc.
○ sometimes developers do research by accident, too!

Who does research?

● Most computer science research occurs in universities
○ including NJIT!

● Most research is actually done by students (especially PhD
students), working under a professor
○ professor supplies high-level research vision + experience

and training
○ student does the grunt work of writing code, gather data, etc.

● Some research is done in industry
○ e.g., Microsoft has MSR, AWS has ARG, etc.
○ sometimes developers do research by accident, too!

However, developers rarely publish
their research, which is important if
you want it to be a part of the total
sum of human knowledge.

Aside: should you do a PhD?

Aside: should you do a PhD?

● In my experience, most undergrads think that doing a PhD is just
like “more school”.

Aside: should you do a PhD?

● In my experience, most undergrads think that doing a PhD is just
like “more school”.
○ This is a long way from the truth: being a PhD student is more

like a job that gives you a PhD when you do it long enough

Aside: should you do a PhD?

● In my experience, most undergrads think that doing a PhD is just
like “more school”.
○ This is a long way from the truth: being a PhD student is more

like a job that gives you a PhD when you do it long enough
■ for example, PhD students in CS are typically paid,

although not very much (“stipends”)

Aside: should you do a PhD?

● In my experience, most undergrads think that doing a PhD is just
like “more school”.
○ This is a long way from the truth: being a PhD student is more

like a job that gives you a PhD when you do it long enough
■ for example, PhD students in CS are typically paid,

although not very much (“stipends”)
■ the PhD student’s advisor (a professor) is their boss

Aside: should you do a PhD?

● In my experience, most undergrads think that doing a PhD is just
like “more school”.
○ This is a long way from the truth: being a PhD student is more

like a job that gives you a PhD when you do it long enough
■ for example, PhD students in CS are typically paid,

although not very much (“stipends”)
■ the PhD student’s advisor (a professor) is their boss

Another misconception: in the US,
you usually do not need a master’s
degree to start a PhD program!

Aside: should you do a PhD?

● In my experience, most undergrads think that doing a PhD is just
like “more school”.
○ This is a long way from the truth: being a PhD student is more

like a job that gives you a PhD when you do it long enough
■ for example, PhD students in CS are typically paid,

although not very much (“stipends”)
■ the PhD student’s advisor (a professor) is their boss

● For this reason, in my opinion more undergraduates should at
least consider doing a PhD

Aside: should you do a PhD?

● In my experience, most undergrads think that doing a PhD is just
like “more school”.
○ This is a long way from the truth: being a PhD student is more

like a job that gives you a PhD when you do it long enough
■ for example, PhD students in CS are typically paid,

although not very much (“stipends”)
■ the PhD student’s advisor (a professor) is their boss

● For this reason, in my opinion more undergraduates should at
least consider doing a PhD
○ it might be more affordable than you think!

Aside: should you do a PhD?

● Pros of doing a PhD:

Aside: should you do a PhD?

● Pros of doing a PhD:
○ you become a world expert in a topic

Aside: should you do a PhD?

● Pros of doing a PhD:
○ you become a world expert in a topic
○ push forth the bounds of human knowledge

Aside: should you do a PhD?

● Pros of doing a PhD:
○ you become a world expert in a topic
○ push forth the bounds of human knowledge
○ some jobs are only accessible to people with PhDs:

Aside: should you do a PhD?

● Pros of doing a PhD:
○ you become a world expert in a topic
○ push forth the bounds of human knowledge
○ some jobs are only accessible to people with PhDs:

■ professor
● although you can teach without a PhD, you can’t get

tenure without one

Aside: should you do a PhD?

● Pros of doing a PhD:
○ you become a world expert in a topic
○ push forth the bounds of human knowledge
○ some jobs are only accessible to people with PhDs:

■ professor
● although you can teach without a PhD, you can’t get

tenure without one
■ industrial researcher

● e.g., static analysis designer, ML architecture
developer, etc.

Aside: should you do a PhD?

● Cons of doing a PhD:

Aside: should you do a PhD?

● Cons of doing a PhD:
○ it’s a bad financial decision (due to opportunity cost)

■ PhD students get paid, but much less than e.g., software
engineer salaries

Aside: should you do a PhD?

● Cons of doing a PhD:
○ it’s a bad financial decision (due to opportunity cost)

■ PhD students get paid, but much less than e.g., software
engineer salaries

○ it takes a long time
■ typically 4 to 6 years, sometimes longer

Aside: should you do a PhD?

● Cons of doing a PhD:
○ it’s a bad financial decision (due to opportunity cost)

■ PhD students get paid, but much less than e.g., software
engineer salaries

○ it takes a long time
■ typically 4 to 6 years, sometimes longer

○ it’s mentally taxing
■ you’re working on only one thing for 4-6 years!
■ rates of mental health problems among PhD students are

much higher than the general population

Aside: should you do a PhD?

● If despite those cons, you think a PhD is something you might be
interested in, come talk to me (or another professor in the
department)

Aside: should you do a PhD?

● If despite those cons, you think a PhD is something you might be
interested in, come talk to me (or another professor in the
department)

Which professor to approach? Choose
a research professor whose work
sounds interesting to you (or who you
know already from class).
● at NJIT, research professors all

have “professor” in the title
● teaching professors are “lecturers”

Aside: should you do a PhD?

● If despite those cons, you think a PhD is something you might be
interested in, come talk to me (or another professor in the
department)

Which professor to approach? Choose
a research professor whose work
sounds interesting to you (or who you
know already from class).
● at NJIT, research professors all

have “professor” in the title
● teaching professors are “lecturers”

to find out about a
professor’s work,
google “their name
NJIT” and read their
website

Aside: should you do a PhD?

● If despite those cons, you think a PhD is something you might be
interested in, come talk to me (or another professor in the
department)

Which professor to approach? Choose
a research professor whose work
sounds interesting to you (or who you
know already from class).
● at NJIT, research professors all

have “professor” in the title
● teaching professors are “lecturers”

Aside: should you do a PhD?

● If despite those cons, you think a PhD is something you might be
interested in, come talk to me (or another professor in the
department)
○ high-quality PhD programs require letters of

recommendation from professors you’ve worked with, so
you should work with a professor :)

Aside: should you do a PhD?

● If despite those cons, you think a PhD is something you might be
interested in, come talk to me (or another professor in the
department)
○ high-quality PhD programs require letters of

recommendation from professors you’ve worked with, so
you should work with a professor :)

○ it’s best to approach professors about joining their research
group when you’re a sophomore or junior

Aside: should you do a PhD?

● If despite those cons, you think a PhD is something you might be
interested in, come talk to me (or another professor in the
department)
○ high-quality PhD programs require letters of

recommendation from professors you’ve worked with, so
you should work with a professor :)

○ it’s best to approach professors about joining their research
group when you’re a sophomore or junior
■ at this stage, you know enough to be useful, but you’ll be

around long enough that you can ramp up on a project

What is Software Engineering?

Today’s agenda:

● Finish slides from last Friday
● What is research? How is it similar/different from SE generally?
● Your relationship to researchers, as a developer
● What sort of problems does SE research solve

Research to a developer

● Assuming you’re not going to do a PhD, why should you care
about research in software engineering (or CS in general)?

Research to a developer

● Assuming you’re not going to do a PhD, why should you care
about research in software engineering (or CS in general)?
○ CS is a very fast-changing, young field

■ implying best practices change a lot: what we’ve covered
in 490 might not be true anymore in 5/10/20 years

Research to a developer

● Assuming you’re not going to do a PhD, why should you care
about research in software engineering (or CS in general)?
○ CS is a very fast-changing, young field

■ implying best practices change a lot: what we’ve covered
in 490 might not be true anymore in 5/10/20 years

○ Many developers are also working in fast-changing domains
within CS
■ e.g., if you’re working on ML, you’ll want to keep up with

the latest ML research

Research to a developer

● You may also have industrial researchers embedded in your
company

Research to a developer

● You may also have industrial researchers embedded in your
company
○ if you’re at a “big tech” company, you definitely do; other

places, it’s a maybe

Research to a developer

● You may also have industrial researchers embedded in your
company
○ if you’re at a “big tech” company, you definitely do; other

places, it’s a maybe
● Especially if you’re working on something cutting edge and

you’re considering trying to keep up with the latest research
yourself, finding an industrial researcher in your company is a
good idea
○ they can keep up with the research so you don’t have to!

Keeping up with research

Keeping up with research

● Industry-focused academic publications
○ e.g., CACM (“Communications of the ACM”) is great for this

Keeping up with research

● Industry-focused academic publications
○ e.g., CACM (“Communications of the ACM”) is great for this

● Find some technology bloggers that you like
○ common tech blog entry: a review of a recent paper by the

blogger (they read it so you don’t have to!)

Keeping up with research

● Industry-focused academic publications
○ e.g., CACM (“Communications of the ACM”) is great for this

● Find some technology bloggers that you like
○ common tech blog entry: a review of a recent paper by the

blogger (they read it so you don’t have to!)
● Attend industry conferences (at your employer’s expense…)

Keeping up with research

● Industry-focused academic publications
○ e.g., CACM (“Communications of the ACM”) is great for this

● Find some technology bloggers that you like
○ common tech blog entry: a review of a recent paper by the

blogger (they read it so you don’t have to!)
● Attend industry conferences (at your employer’s expense…)
● Keep up with research areas you’re particularly interested in

directly, by reading (or, more likely, skimming) papers
○ more advice on this next

Reading papers

● I strongly recommend that you skim papers as a developer

Reading papers

● I strongly recommend that you skim papers as a developer
○ if you’re going to read them at all

Reading papers

● I strongly recommend that you skim papers as a developer
○ if you’re going to read them at all

● “skimming” = “reading only the most important results, and
skipping the details of how those results were reached”

Reading papers

● I strongly recommend that you skim papers as a developer
○ if you’re going to read them at all

● “skimming” = “reading only the most important results, and
skipping the details of how those results were reached”
○ in academic papers, this usually means reading just the abstract

and introduction (and maybe the conclusion)

Reading papers

● I strongly recommend that you skim papers as a developer
○ if you’re going to read them at all

● “skimming” = “reading only the most important results, and
skipping the details of how those results were reached”
○ in academic papers, this usually means reading just the abstract

and introduction (and maybe the conclusion)
● Be careful, though: not all academic papers are equally

high-quality!

Reading papers

● I strongly recommend that you skim papers as a developer
○ if you’re going to read them at all

● “skimming” = “reading only the most important results, and
skipping the details of how those results were reached”
○ in academic papers, this usually means reading just the abstract

and introduction (and maybe the conclusion)
● Be careful, though: not all academic papers are equally

high-quality!
○ as a dev, you’re not trained to judge this, so relying on peer

review + recommendations from e.g., tech bloggers is smart

Reading papers

● I strongly recommend that you skim papers as a developer
○ if you’re going to read them at all

● “skimming” = “reading only the most important results, and
skipping the details of how those results were reached”
○ in academic papers, this usually means reading just the abstract

and introduction (and maybe the conclusion)
● Be careful, though: not all academic papers are equally

high-quality!
○ as a dev, you’re not trained to judge this, so relying on peer

review + recommendations from e.g., tech bloggers is smart

Exception: papers published by
industrial research labs (e.g., Google
Research, MSR) are almost always
written in a style closer to what
developers are trained to read. These
are often the ones you want to focus
on as a developer, anyway!

Reading papers: finding papers

Reading papers: finding papers

● In computer science, new research is usually published in
conferences (not journals)

Reading papers: finding papers

● In computer science, new research is usually published in
conferences (not journals)
○ conferences have shorter publication lag, often < 6 months

Reading papers: finding papers

● In computer science, new research is usually published in
conferences (not journals)
○ conferences have shorter publication lag, often < 6 months

● If you want to get a feel for the latest research in a part of CS, you
need to find the best conferences for that field
○ usually, fields have many conferences, of which only 2-4 are

high-quality

Reading papers: finding papers

● In computer science, new research is usually published in
conferences (not journals)
○ conferences have shorter publication lag, often < 6 months

● If you want to get a feel for the latest research in a part of CS, you
need to find the best conferences for that field
○ usually, fields have many conferences, of which only 2-4 are

high-quality
● To find the best conferences, you could:

Reading papers: finding papers

● In computer science, new research is usually published in
conferences (not journals)
○ conferences have shorter publication lag, often < 6 months

● If you want to get a feel for the latest research in a part of CS, you
need to find the best conferences for that field
○ usually, fields have many conferences, of which only 2-4 are

high-quality
● To find the best conferences, you could:

○ ask a peer in industrial research (if you have one)

Reading papers: finding papers

● In computer science, new research is usually published in
conferences (not journals)
○ conferences have shorter publication lag, often < 6 months

● If you want to get a feel for the latest research in a part of CS, you
need to find the best conferences for that field
○ usually, fields have many conferences, of which only 2-4 are

high-quality
● To find the best conferences, you could:

○ ask a peer in industrial research (if you have one)
○ use a website like csrankings.org

https://csrankings.org/

What is Software Engineering?

Today’s agenda:

● Finish slides from last Friday
● What is research? How is it similar/different from SE generally?
● Your relationship to researchers, as a developer
● What sort of problems does SE research solve

Software Engineering Research

Software Engineering Research

● Some research areas in CS are united by methodology
○ e.g., most PL papers are “compilers for X”

Software Engineering Research

● Some research areas in CS are united by methodology
○ e.g., most PL papers are “compilers for X”

● Other areas are united by application
○ e.g., most OS papers are about operating systems

Software Engineering Research

● Some research areas in CS are united by methodology
○ e.g., most PL papers are “compilers for X”

● Other areas are united by application
○ e.g., most OS papers are about operating systems

● Software engineering research is united by an application:
developer productivity

Software Engineering Research

● Some research areas in CS are united by methodology
○ e.g., most PL papers are “compilers for X”

● Other areas are united by application
○ e.g., most OS papers are about operating systems

● Software engineering research is united by an application:
developer productivity
○ as a developer, this is an application you will probably care

about

Software Engineering Research

● Some research areas in CS are united by methodology
○ e.g., most PL papers are “compilers for X”

● Other areas are united by application
○ e.g., most OS papers are about operating systems

● Software engineering research is united by an application:
developer productivity
○ as a developer, this is an application you will probably care

about
○ so SE research is particularly important to developers!

Reading quiz

Q1: the author references a paper by Redwine and Riddle repeatedly.
That paper is about which of the following topics?
A. program verification
B. automated testing
C. technology maturation
D. software architecture

Q2: TRUE or FALSE: the author compares software engineering
research to (and takes inspiration from) a series of “pro forma”
abstracts from the operating systems research community.

Reading quiz

Q1: the author references a paper by Redwine and Riddle repeatedly.
That paper is about which of the following topics?
A. program verification
B. automated testing
C. technology maturation
D. software architecture

Q2: TRUE or FALSE: the author compares software engineering
research to (and takes inspiration from) a series of “pro forma”
abstracts from the operating systems research community.

Reading quiz

Q1: the author references a paper by Redwine and Riddle repeatedly.
That paper is about which of the following topics?
A. program verification
B. automated testing
C. technology maturation
D. software architecture

Q2: TRUE or FALSE: the author compares software engineering
research to (and takes inspiration from) a series of “pro forma”
abstracts from the operating systems research community.

Reading quiz

Q1: the author references a paper by Redwine and Riddle repeatedly.
That paper is about which of the following topics?
A. program verification
B. automated testing
C. technology maturation
D. software architecture

Q2: TRUE or FALSE: the author compares software engineering
research to (and takes inspiration from) a series of “pro forma”
abstracts from the operating systems HCI research community.

Wrapup

● I hope you enjoyed CS 490 this semester
● (but we still have one more class: next Wednesday, you have to

present to me!)

