Process

Martin Kellogg

Process

Today's agenda:

- Reading Quiz
- Development methodologies
- Planning, estimation, and risk
- Measuring progress

Reading quiz: process

Q1: **TRUE** OR **FALSE**: the Agile Manifesto says that practitioners should value responding to change over following a plan

Q2: **TRUE** OR **FALSE**: Agile projects usually have fixed deadlines and costs

Q3: **TRUE** OR **FALSE**: The Individual Project 1 specification includes a significant component (that you need to implement and submit) named ImageEditorArea.ts. This component adds a "Microsoft Paint"-like capability to Covey.Town.

Reading quiz: process

Q1: TRUE OR FALSE: the Agile Manifesto says that practitioners should value responding to change over following a plan

Q2: **TRUE** OR **FALSE**: Agile projects usually have fixed deadlines and costs

Q3: TRUE OR FALSE: The Individual Project 1 specification includes a significant component (that you need to implement and submit) named ImageEditorArea.ts. This component adds a "Microsoft Paint"-like capability to Covey.Town.

Process

Today's agenda:

- Reading Quiz
- Development methodologies
- Planning, estimation, and risk
- Measuring progress

 Traditionally, a large component of undergrad Software Engineering classes

- Traditionally, a large component of undergrad Software Engineering classes
- I'm not going to make you memorize the stages of the Waterfall method, or the tenets of Agile, or the like

- Traditionally, a large component of undergrad Software Engineering classes
- I'm not going to make you memorize the stages of the Waterfall method, or the tenets of Agile, or the like
 - Why? No one actually follows these procedures to the letter

- Traditionally, a large component of undergrad Software Engineering classes
- I'm not going to make you memorize the stages of the Waterfall method, or the tenets of Agile, or the like
 - Why? No one actually follows these procedures to the letter
- Instead, my goal in this lecture is to give you an overview of the traditional ways of organizing a software development effort and give you the vocabulary to talk about it

Definition: a *software process* is the set of activities and associated results that produce a software product

Definition: a *software process* is the set of activities and associated results that produce a software product

Definition: a *software development methodology* is a template for a process: a specific set of activities (usually accompanied by an animating philosophy) for a team to follow to achieve a desired result

Definition: a *software process* is the set of activities and associated results that produce a software product

Definition: a *software development methodology* is a template for a process: a specific set of activities (usually accompanied by an <u>animating philosophy</u>) for a team to follow to achieve a desired result

e.g., the Agile manifesto

Definition: a *software process* is the set of activities and associated results that produce a software product

Definition: a *software development methodology* is a template for a process: a specific set of activities (usually accompanied by an animating philosophy) for a team to follow to <u>achieve a desired result</u>

not a guarantee - just a goal

A list of methodologies

- Waterfall
- Spiral
- Agile
- Scrum
- Extreme Programming (XP)
- "wagile"

A list of methodologies

- Waterfall
- Spiral
- Agile
- Scrum

We'll discuss these four - you can look up the others on your own if you're curious

- Extreme Programming (XP)
- "wagile"

Why have a methodology at all?

Why have a methodology at all?

- Standardization among developers
- Shared language
- Estimation: your boss probably wants to know when you'll be able to ship!
- You implicitly have a process, whether you know it or not (and it might not be very good if you're not paying attention)

Why have a methodology at all?

- Standardization among developers
- Shared language
- Estimation: your boss probably wants to know when you'll be able to ship!
- You implicitly have a process, whether you know it or not (and it might not be very good if you're not paying attention)

sometimes this is called an *ad hoc* methodology

- Requirements: Mid-project informal agreement to changes suggested by customer or manager.
- QA: Late detection of requirements and design issues.
 Test-debug-reimplement cycle limits development of new features.
- Defect Tracking: Bug reports collected informally.
- System Integration: Integration of independently developed components at the very end of the project.
- Scheduling: When project is behind, developers are asked weekly for new estimates.

- Requirements: Mid-project inf suggested by customer or man
 - **Project scope expands 25-50%**
- QA: Late detection of requirements and design issues.
 Test-debug-reimplement cycle limits development of new features.
- Defect Tracking: Bug reports collected informally.
- System Integration: Integration of independently developed components at the very end of the project.
- Scheduling: When project is behind, developers are asked weekly for new estimates.

- Requirements: Mid-project informal agreement to changes suggested by customer or manager.
- QA: Late detection of requirem

 Test-debug-reimplement cycle

 Release with known defects
- Defect Tracking: Bug reports collected informally.
- System Integration: Integration of independently developed components at the very end of the project.
- Scheduling: When project is behind, developers are asked weekly for new estimates.

Defect cost vs. detection time

- An IBM report gives an average defect repair cost of (2008\$):
 - \$25 during coding
 - \$100 at build time
 - \$450 during testing/QA
 - \$16,000 post-release

- Requirements: Mid-project informal agreement to changes suggested by customer or manager.
- QA: Late detection of requirements and design issues.
 Test-debug-reimplement cycle limits
 Defect Tracking: Bug reports collecte

 Bugs forgotten
- System Integration: Integration of independently developed components at the very end of the project.
- Scheduling: When project is behind, developers are asked weekly for new estimates.

- Requirements: Mid-project informal agreement to changes suggested by customer or manager.
- QA: Late detection of requirements and design issues.
 Test-debug-reimplement cycle limits development of new features.
- Defect Tracking: Bug reports collected informally.
- System Integration: Integration components at the very end of t

 Interfaces out of sync
- Scheduling: When project is behind, developers are asked weekly for new estimates.

- Requirements: Mid-project informal agreement to changes suggested by customer or manager.
- QA: Late detection of requirements and design issues.
 Test-debug-reimplement cycle limits development of new features.
- Defect Tracking: Bug reports collected informally.
- System Integration: Integration of independently developed components at the very end of the project.
- Scheduling: When project is behind, developers are asked weekly for new estimates.
 Project falls further behind

A process hypothesis

- A process can increase flexibility and efficiency for software development.
- If this is true, an up-front investment (of resources, e.g., "time") in process can yield greater returns later on - by avoiding the problems on the previous slide!

A list of methodologies

- Waterfall
- Spiral
- Agile
- Scrum
- Extreme Programming (XP)
- "wagile"

In the waterfall software development model, the following phases are carried out in order:

Requirements gathering: produce a document

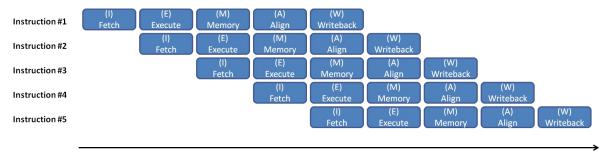
- Requirements gathering: produce a document
- Analysis: create models, schema, and business rules

- Requirements gathering: produce a document
- Analysis: create models, schema, and business rules
- Design: create the software architecture

- Requirements gathering: produce a document
- Analysis: create models, schema, and business rules
- Design: create the software architecture
- Coding: the development, proving, and integration of software

- Requirements gathering: produce a document
- Analysis: create models, schema, and business rules
- Design: create the software architecture
- Coding: the development, proving, and integration of software
- Testing: the systematic discovery and debugging of defects

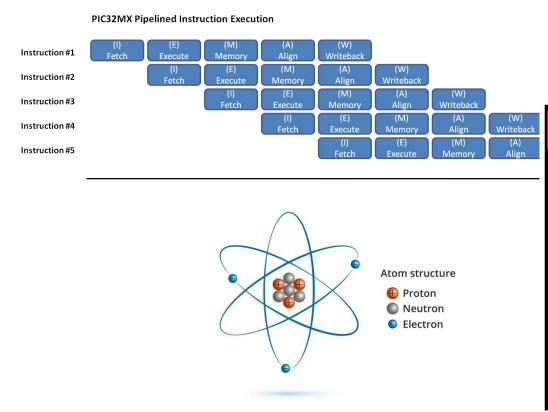
- Requirements gathering: produce a document
- Analysis: create models, schema, and business rules
- Design: create the software architecture
- Coding: the development, proving, and integration of software
- Testing: the systematic discovery and debugging of defects
- Operations: the installation, migration, support, and maintenance of complete systems

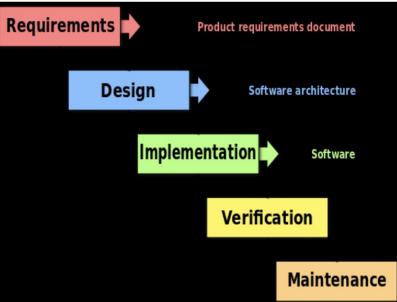

In the waterfall software development model, the following phases are carried out in order:

- Requirements gathering: produce a docu
- Analysis: create models, schema, and bus
- Design: create the software architecture
- Coding: the development, proving, and integration of software
- Testing: the systematic discovery and debugging of defects
- Operations: the installation, migration, support, and maintenance of complete systems

Is this realistic? Why or why not?

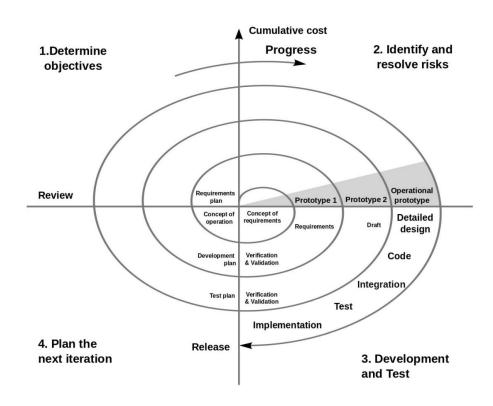
Other lies you've probably been told


PIC32MX Pipelined Instruction Execution

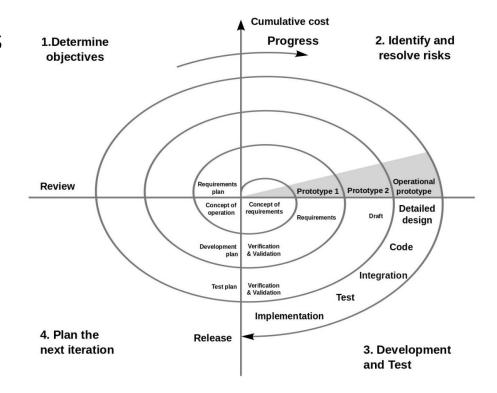


Time

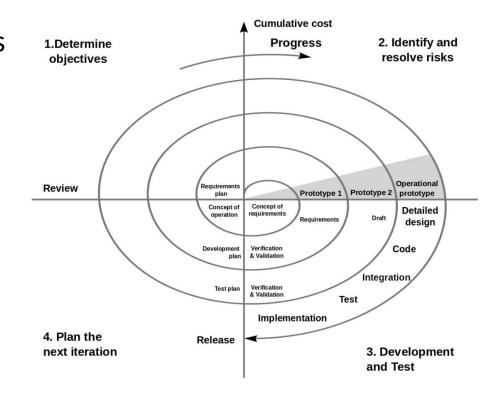
Other lies you've probably been told



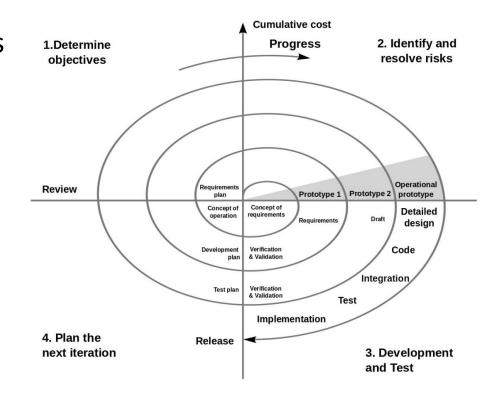
The Waterfall methodology: an idealized model


- Do NOT attempt to actually follow the Waterfall methodology in real life
 - you will have a bad time

The Waterfall methodology: an idealized model


- Do NOT attempt to actually follow the Waterfall methodology in real life
 - you will have a bad time
- But, it provides a useful foundation for thinking about methodologies:
 - the Waterfall stages do represent real activities you'll do during the development lifecycle
 - you probably won't do them all in the proscribed order

- Key idea: construct a series of increasingly-complete prototypes
- Effectively iterated waterfall



- Key idea: construct a series of increasingly-complete prototypes
- Effectively iterated waterfall
- How realistic do you think this is?

- Key idea: construct a series of increasingly-complete prototypes
- Effectively iterated waterfall
- How realistic do you think this is?

Still not very realistic!

A list of methodologies

- Waterfall
- Spiral
- Agile
- Scrum
- Extreme Programming (XP)
- "wagile"

Agile & Scrum

Agile is more a philosophy than a methodology in the traditional sense

Agile & Scrum

- Agile is more a philosophy than a methodology in the traditional sense
- Scrum is an instantiation of that philosophy as a methodology

- Individuals and interactions over processes and tools
- Working software over comprehensive documentation
- Customer collaboration over contract negotiation
- Responding to change over following a plan

Focus on people

- Individuals and interactions over processes and tools
- Working software over comprehensive documentation
- Customer collaboration over contract negotiation
- Responding to change over following a plan

- Individuals and interactions over processes and tools
- Working software over comprehensive do Always have a prototype
- Customer collaboration over contract negotiation
- Responding to change over following a plan

- Individuals and interactions over processes and tools
- Working software over comprehensive documentation
- Customer collaboration over contract n

Keep the client involved

Responding to change over following a plan

- Individuals and interactions over processes and tools
- Working software over comprehensive documentation
- Customer collaboration over contract negotiation
- Responding to change over following a plan

Change requirements as you learn about the problem

The Scrum methodology

- Scrum is one common Agile methodology
- Focused around a "scrum master" who is responsible for process
- Work is divided into sprints where each team member is responsible for dealing with certain tasks
 - starts with a "sprint planning meeting": tasks are assigned
 - each day includes a "standup" ceremony
 - at the end of the sprint, a "sprint retrospective meeting" looks back on how the sprint went
 - typically sprints are 1-2 weeks

- Sprint terminology is common, even when not directly using scrum
- "Daily standups" are a routine for many engineers
- Planning often happens in the form of user stories

- Sprint terminology is common, even when not directly using scrum
- "Daily standups" are a routine for many engineers
- Planning often happens in the form of user stories
 - As a ____, I want to _____

- Sprint terminology is common, even when not directly using scrum
- "Daily standups" are a routine for many engineers
- Planning often happens in the form of user stories
 - As a ____, I want to _____
 - E.g., "as a new Covey. Town user, I want to create an account"

- Sprint terminology is common, even when not directly using scrum
- "Daily standups" are a routine for many engineers
- Planning often happens in the form of user stories
 - As a ____, I want to _____
 - E.g., "as a new Covey.Town user, I want to create an account"

We'll ask you to write user stories and plan in terms of sprints when you propose your group course project

Process

Today's agenda:

- Reading Quiz
- Development methodologies
- Planning, estimation, and risk
- Measuring progress

Planning

 A project should plan time, cost and resources adequately to estimate the work needed and to effectively manage risk during project execution.

Planning

 A project should plan time, cost and resources adequately to estimate the work needed and to effectively manage risk during project execution.

Planning = estimate +/- risk

Software tends to be innovative

- Software tends to be innovative
 - Cost of copying existing code ≈ 0, so any project you're actually working on probably is different than what came before

- Software tends to be innovative
 - Cost of copying existing code ≈ 0, so any project you're actually working on probably is different than what came before
 - "It's not research if you know it's going to work"

- Software tends to be innovative
 - Cost of copying existing code ≈ 0, so any project you're actually working on probably is different than what came before
 - "It's not research if you know it's going to work"
 - Compare to other kinds of engineering: one highway/bridge/skyscraper/etc isn't that different than the next

Planning: milestones and deliverables

Definition: A *milestone* is a clean end point of a (sub)task

Planning: milestones and deliverables

Definition: A *milestone* is a clean end point of a (sub)task

- Reports, prototypes, completed subprojects, etc.
- "80% done" is NOT a suitable milestone (too vague)

Planning: milestones and deliverables

Definition: A *milestone* is a clean end point of a (sub)task

- Reports, prototypes, completed subprojects, etc.
- "80% done" is NOT a suitable milestone (too vague)

Definition: A *deliverable* is a milestone that's customer-facing

sometimes used interchangeably with milestone

Why milestones and deliverables?

- It's easy to tell when a milestone or deliverable is done
- Progress towards milestones and deliverables is hard to measure

Why milestones and deliverables?

- It's easy to tell when a milestone or deliverable is done
- Progress towards milestones and deliverables is hard to measure

"All I need to do is fix this one bug and then it'll work, promise."

Estimation

Two parts:

- How long do you think it will take to reach the next milestone?
- Splitting larger tasks into smaller ones

Estimation

Two parts:

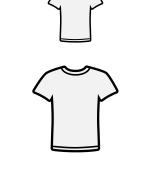
- How long do you think it will take to reach the next milestone?
- Splitting larger tasks into smaller ones

Naturally very fuzzy: we can't see the future

Estimation techniques: t-shirt sizing

small = I can do this task in an afternoon

Estimation techniques: t-shirt sizing



small = I can do this task in an afternoon

medium = I can do this task in a day or two

Estimation techniques: t-shirt sizing

small = I can do this task in an afternoon

medium = I can do this task in a day or two

large = too big to estimate how long it will take

 large tasks should usually come with a small task that is breaking the large task up into medium and small tasks

Estimation techniques: story points

- Assign stories 1, 2, 4, or 8 points (these numbers can vary, but the relationship should be exponential)
- Like large t-shirt estimates, high-point-value stories should usually have a smaller task to break them apart

Estimation techniques: story points

- Assign stories 1, 2, 4, or 8 points (these numbers can vary, but the relationship should be exponential)
- Like large t-shirt estimates, high-point-value stories should usually have a smaller task to break them apart
- T-shirt estimates and story points are two different ways to quantify the relative size of tasks
 - Also lots of other ways!

Estimation techniques: cocomo

Definition: a *constructive cost model* (*cocomo*) is a predictive model of time costs based on project history

Estimation techniques: cocomo

Definition: a *constructive cost model* (*cocomo*) is a predictive model of time costs based on project history

- requires experience with similar projects
- rewards documentation of experience
- basically, it's an empirically-derived set of "effort multipliers". You multiply the time cost by some numbers from a chart:

Cost Drivers				_		
	Very Low	Low	Nominal	High	Very High	Extra High
Product attributes						
Required software reliability	0.75	0.88	1.00	1.15	1.40	
Size of application database		0.94	1.00	1.08	1.16	
Complexity of the product	0.70	0.85	1.00	1.15	1.30	1.65
Hardware attributes						
Run-time performance constraints			1.00	1.11	1.30	1.66
Memory constraints			1.00	1.06	1.21	1.56
Volatility of the virtual machine environment		0.87	1.00	1.15	1.30	
Required turnabout time		0.87	1.00	1.07	1.15	
Personnel attributes						
Analyst capability	1.46	1.19	1.00	0.86	0.71	
Applications experience	1.29	1.13	1.00	0.91	0.82	
Software engineer capability	1.42	1.17	1.00	0.86	0.70	
Virtual machine experience	1.21	1.10	1.00	0.90		
Programming language experience	1.14	1.07	1.00	0.95		
Project attributes						
Application of software engineering methods	1.24	1.10	1.00	0.91	0.82	
Use of software tools	1.24	1.10	1.00	0.91	0.83	
					1	1

1.23

1.08

1.00

1.04

1.10

Required development schedule

Ratings

Risk and uncertainty

 Risk management is the identification, assessment, and prioritization of risks, followed by efforts to minimize, monitor and control unfortunate event outcomes and probabilities.

Risk and uncertainty

- Risk management is the identification, assessment, and prioritization of risks, followed by efforts to minimize, monitor and control unfortunate event outcomes and probabilities.
- Any effective plan for software development must take into account common risks, e.g.,:

Risk and uncertainty

- Risk management is the identification, assessment, and prioritization of risks, followed by efforts to minimize, monitor and control unfortunate event outcomes and probabilities.
- Any effective plan for software development must take into account common risks, e.g.,:
 - Staff illness or turnover, product is too slow, competitor introduces a similar product, etc.

Strategies for risk management

Strategies for risk management

- Address risk early
- Selectively innovate to increase value while minimizing risk (i.e., focus risk where needed)
- Use iteration and feedback (e.g., prototypes)
- Estimate likelihood and consequences
 - Requires experienced project leads
 - Rough estimates (e.g., <10%, <25%) are OK
- Have contingency plans

Strategies for risk management

- Address risk early
- Selectively innovate to increase value while minimizing risk (i.e., focus risk where needed)
- Use iteration and feedback (e.g., prototypes)
- Estimate likelihood and consequences
 - Requires experienced project leads
 - Rough estimates (e.g., <10%, <25%) are OK
- Have contingency plans

Mostly your ability to do this will come from PRACTICE

Process

Today's agenda:

- Reading Quiz
- Development methodologies
- Planning, estimation, and risk
- Measuring progress

Measuring progress

Easy strategy: only track milestones and deliverables

Measuring progress

Easy strategy: only track milestones and deliverables

Downside: no way to know how close you are to the next one

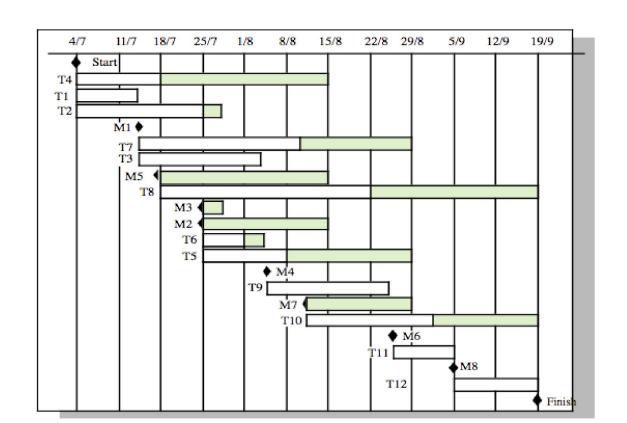
Measuring progress

Easy strategy: only track milestones and deliverables

Downside: no way to know how close you are to the next one

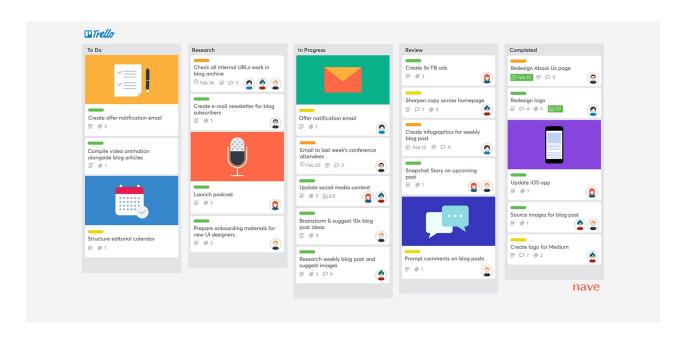
Can we do better? Unfortunately, not really.

Measuring progress: best practices


- have many milestones/deliverables
 - think back to Agile: this is a reason to always have a prototype

Measuring progress: best practices

- have many milestones/deliverables
 - think back to Agile: this is a reason to always have a prototype
- avoid relying too heavily on developers' estimates
 - we are bad at estimating
 - "last mile" problem: what seems to be last 10% of the work often takes 40% or more of the development time


Measuring progress: tools

Gantt chart

Measuring progress: tools

- Gantt chart
- KanBan board

Measuring progress: tools

- Gantt chart
- KanBan board
- Many others: use what works for you

Takeaways

- Process can save time, but don't overdo it
- Lots of methodologies: choose what makes sense for you
- Agile philosophy is generally a good one to follow
 - But don't focus on it at the expense of actually doing your job
- Estimation is hard and you will get it wrong
 - Use rough estimation strategies to avoid over-promising
- Include lots of buffer + risk in your estimates
- Don't trust developer estimates in general

Action items for next class

- Start IP 1 (due February 2, which is surprisingly soon!)