
Version Control
Martin Kellogg

Version Control

Today’s agenda:

● Reading Quiz
● How does a version control system work?
● How to use your VCS
● GitHub workflows

Reading Quiz: version control

Q1: TRUE or FALSE: if you try to run a push command (e.g., git
push) but git rejects your updates, you should try to run git push
–-force instead

Q2: TRUE or FALSE: the reading suggests you commit everything in
your local working copy every time you commit, including e.g.,
generated binary files

Q3: TRUE or FALSE: the reading suggests that you should run pull
commands (e.g., git pull) frequently: at least once a day

Reading Quiz: version control

Q1: TRUE or FALSE: if you try to run a push command (e.g., git
push) but git rejects your updates, you should try to run git push
–-force instead

Q2: TRUE or FALSE: the reading suggests you commit everything in
your local working copy every time you commit, including e.g.,
generated binary files

Q3: TRUE or FALSE: the reading suggests that you should run pull
commands (e.g., git pull) frequently: at least once a day

Reading Quiz: version control

Q1: TRUE or FALSE: if you try to run a push command (e.g., git
push) but git rejects your updates, you should try to run git push
–-force instead

Q2: TRUE or FALSE: the reading suggests you commit everything in
your local working copy every time you commit, including e.g.,
generated binary files

Q3: TRUE or FALSE: the reading suggests that you should run pull
commands (e.g., git pull) frequently: at least once a day

Reading Quiz: version control

Q1: TRUE or FALSE: if you try to run a push command (e.g., git
push) but git rejects your updates, you should try to run git push
–-force instead

Q2: TRUE or FALSE: the reading suggests you commit everything in
your local working copy every time you commit, including e.g.,
generated binary files

Q3: TRUE or FALSE: the reading suggests that you should run pull
commands (e.g., git pull) frequently: at least once a day

Version Control

Today’s agenda:

● Reading Quiz
● How does a version control system work?
● How to use your VCS
● GitHub workflows

Version Control

Today’s agenda:

● Reading Quiz
● How does a version control system work?
● How to use your VCS
● GitHub workflows

Announcements:
● IP1 due on Thursday.

○ Don’t overcomplicate it:
implementations are
(mostly) simple

○ Brief explanation of testing
your tests

● Huzefa’s OH changes:
○ Monday OH now 4:30-5:30
○ All OH in GITC 4234

Version Control

Today’s agenda:

● Reading Quiz
● How does a version control system work?
● How to use your VCS
● GitHub workflows

Let’s share a file

Let’s share a file

Let’s share a file
These systems are fine
for “binary blobs”: files
that you don’t intend to
change once shared
● but not for code

Let’s share a file
These systems are fine
for “binary blobs”: files
that you don’t intend to
change once shared
● but not for code

Goals of version control

Goals of version control

● Keep a history of your work
○ Explain the purpose of each change
○ Checkpoint specific versions (known good state)
○ Recover specific state (fix bugs, test old versions)

Goals of version control

● Keep a history of your work
○ Explain the purpose of each change
○ Checkpoint specific versions (known good state)
○ Recover specific state (fix bugs, test old versions)

● Coordinate/merge work between team members
○ Or yourself, on multiple computers, or multiple features

What is version control

Definition: a version control system is a program that manages many
versions of one or more text-based documents by storing diffs
between them

What is version control

Definition: a version control system is a program that manages many
versions of one or more text-based documents by storing diffs
between them

● can be either centralized or distributed

What is version control

Definition: a version control system is a program that manages many
versions of one or more text-based documents by storing diffs
between them

● can be either centralized or distributed

one main repository, many
remotes with working copies

What is version control

Definition: a version control system is a program that manages many
versions of one or more text-based documents by storing diffs
between them

● can be either centralized or distributed

one main repository, many
remotes with working copies

What is version control

Definition: a version control system is a program that manages many
versions of one or more text-based documents by storing diffs
between them

● can be either centralized or distributed

one main repository, many
remotes with working copies

many repositories, each
repository has a working copy

What is version control

Definition: a version control system is a program that manages many
versions of one or more text-based documents by storing diffs
between them

● can be either centralized or distributed

one main repository, many
remotes with working copies

many repositories, each
repository has a working copy

What is version control

Definition: a version control system is a program that manages many
versions of one or more text-based documents by storing diffs
between them

● can be either centralized or distributed

one main repository, many
remotes with working copies

many repositories, each
repository has a working copy

Any two repos can talk
to each other

What is version control

Definition: a version control system is a program that manages many
versions of one or more text-based documents by storing diffs
between them

● can be either centralized or distributed

one main repository, many
remotes with working copies

many repositories, each
repository has a working copy

typical setup: distributed VCS
with a single, privileged main

Advantages of distributed VCS

● checkpoint work without publishing to teammates
● commit, examine history when not connected to the network
● more accurate history
● more effective merging algorithms

Advantages of distributed VCS

● checkpoint work without publishing to teammates
● commit, examine history when not connected to the network
● more accurate history
● more effective merging algorithms

Less important in CS 490:

● share changes selectively with teammates
● flexibility in repository organization and workflow
● faster performance

Advantages of distributed VCS

● checkpoint work without publishing to teammates
● commit, examine history when not connected to the network
● more accurate history
● more effective merging algorithms

Less important in CS 490:

● share changes selectively with teammates
● flexibility in repository organization and workflow
● faster performance

Distributed VCS is now
the industry standard
(e.g., git, hg). (Some
organizations do still use
centralized, though.)

Distributed VCS prevents some operations

● No update if uncommitted changes exist: must commit first
● No push if not ahead of remote: must pull & merge first
● No partial update (e.g., updating just one directory)

○ update gets all changes in a changeset (= a commit)

Distributed VCS prevents some operations

● No update if uncommitted changes exist: must commit first
● No push if not ahead of remote: must pull & merge first
● No partial update (e.g., updating just one directory)

○ update gets all changes in a changeset (= a commit)
● Rationale:

○ Maintain more accurate, complete history
○ Keep all users in sync
○ Avoid painful conflicts
○ Avoid loss of work

Coordinating with others

● pull incorporates others’ changes into your repository
○ (update brings changes into your working copy)
○ (N.b.: git pull does pull, merge, and update)

Coordinating with others

● pull incorporates others’ changes into your repository
○ (update brings changes into your working copy)
○ (N.b.: git pull does pull, merge, and update)

● If you are behind, nothing more to do
○ Behind = your history is a prefix of master history

Coordinating with others

● pull incorporates others’ changes into your repository
○ (update brings changes into your working copy)
○ (N.b.: git pull does pull, merge, and update)

● If you are behind, nothing more to do
○ Behind = your history is a prefix of master history

● If you have made changes in parallel, you must merge
○ Merge = create a new version incorporating all changes

Coordinating with others: rebasing

● rebase rewrites history

Coordinating with others: rebasing

● rebase rewrites history
reality rebased

Coordinating with others: rebasing

● rebase rewrites history
reality rebased

Similar diffs

Coordinating with others: rebasing

● rebase rewrites history
● Cleaner history, easier to read

reality rebased

Coordinating with others: rebasing

● rebase rewrites history
● Cleaner history, easier to read
● Mixes commits #3 and #7
● Does not show context for

change #3

reality rebased

Coordinating with others: rebasing

● rebase rewrites history
● Cleaner history, easier to read
● Mixes commits #3 and #7
● Does not show context for

change #3
● Squash-and-merge is a safer

form of rebasing

reality rebased

Coordinating with others: conflicts

Two changes can either be:
● Conflict-free:
● Conflicting:

Coordinating with others: conflicts

Two changes can either be:
● Conflict-free: changes are to different lines of a file
● Conflicting:

Coordinating with others: conflicts

Two changes can either be:
● Conflict-free: changes are to different lines of a file
● Conflicting:

○ Simultaneous changes to the same lines of a file
○ Requires manual conflict resolution

Coordinating with others: conflicts

Two changes can either be:
● Conflict-free: changes are to different lines of a file
● Conflicting:

○ Simultaneous changes to the same lines of a file
○ Requires manual conflict resolution

“Conflict-free” is a textual, not semantic, notion
● A heuristic about when to get the user involved
● Could yield compile errors or test failures

Coordinating with others: conflicts

Two changes can either be:
● Conflict-free: changes are to different lines of a file
● Conflicting:

○ Simultaneous changes to the same lines of a file
○ Requires manual conflict resolution

“Conflict-free” is a textual, not semantic, notion
● A heuristic about when to get the user involved
● Could yield compile errors or test failures

Aside: false positives and false negatives

Can X actually happen?

YES NO

Aside: false positives and false negatives

Can X actually happen?

D
id

 a
 t

o
o

l w
ar

n
 u

s
ab

o
u

t
X

?

Y
E

S
N

O

YES NO

Aside: false positives and false negatives

Can X actually happen?

D
id

 a
 t

o
o

l w
ar

n
 u

s
ab

o
u

t
X

?

Y
E

S
N

O

YES NO

True
positive

Aside: false positives and false negatives

Can X actually happen?

D
id

 a
 t

o
o

l w
ar

n
 u

s
ab

o
u

t
X

?

Y
E

S
N

O

YES NO

True
positive

False
positive

Aside: false positives and false negatives

Can X actually happen?

D
id

 a
 t

o
o

l w
ar

n
 u

s
ab

o
u

t
X

?

Y
E

S
N

O

YES NO

True
positive

False
positive

False
negative

Aside: false positives and false negatives

Can X actually happen?

D
id

 a
 t

o
o

l w
ar

n
 u

s
ab

o
u

t
X

?

Y
E

S
N

O

YES NO

True
positive

False
positive

True
negative

False
negative

Aside: false positives and false negatives

Can X actually happen?

D
id

 a
 t

o
o

l w
ar

n
 u

s
ab

o
u

t
X

?

Y
E

S
N

O

YES NO

True
positive

False
positive

True
negative

False
negative

Useful tool for
thinking about
anything that
might warn us

about a problem

Coordinating with others: conflicts

Two changes can either be:
● Conflict-free: changes are to different lines of a file
● Conflicting:

○ Simultaneous changes to the same lines of a file
○ Requires manual conflict resolution

“Conflict-free” is a textual, not semantic, notion
● A heuristic about when to get the user involved
● Could yield compile errors or test failures

False positives,
false negatives,

both, or neither?

Coordinating with others: conflicts

Two changes can either be:
● Conflict-free: changes are to different lines of a file
● Conflicting:

○ Simultaneous changes to the same lines of a file
○ Requires manual conflict resolution

“Conflict-free” is a textual, not semantic, notion
● A heuristic about when to get the user involved
● Could yield compile errors or test failures

False positives,
false negatives,

both, or neither?

Coordinating with others: resolving conflicts

● There are three versions of the file:
● You decide which version to keep or how

to merge them

Coordinating with others: resolving conflicts

● There are three versions of the file:
● You decide which version to keep or how

to merge them
● Many merge tools exist
● Configure your DVCS to use the merge tool that you prefer

○ Practice this ahead of time!

Coordinating with others: resolving conflicts

● There are three versions of the file:
● You decide which version to keep or how

to merge them
● Many merge tools exist
● Configure your DVCS to use the merge tool that you prefer

○ Practice this ahead of time!

● Don’t panic! Instead, think.

● You can always bail out of the merge and start over

○ You have the full local and remote history

Version Control

Today’s agenda:

● Reading Quiz
● How does a version control system work?
● How to use your VCS
● GitHub workflows

Version Control: advice and best practices

Best practice: don’t commit binary files

Best practice: don’t commit binary files

● The history database records changes, not the entire file every
time you commit

Best practice: don’t commit binary files

● The history database records changes, not the entire file every
time you commit

● Avoid binary files for content (especially simultaneous editing)
○ Word .docx files, Excel .xlsx files, other proprietary formats

Best practice: don’t commit binary files

● The history database records changes, not the entire file every
time you commit

● Avoid binary files for content (especially simultaneous editing)
○ Word .docx files, Excel .xlsx files, other proprietary formats

● Do not commit generated files, such as:
■ Binaries (e.g., .class files), etc.
■ IDE files (your teammates might use other tooling)

Best practice: don’t commit binary files

● The history database records changes, not the entire file every
time you commit

● Avoid binary files for content (especially simultaneous editing)
○ Word .docx files, Excel .xlsx files, other proprietary formats

● Do not commit generated files, such as:
■ Binaries (e.g., .class files), etc.
■ IDE files (your teammates might use other tooling)

○ Wastes space in repository
○ Causes merge conflicts

Best practice: feature branch development

● Whenever you start working on something new, create a branch
○ colloquially called a feature branch, even when it’s not a

feature

Best practice: feature branch development

● Whenever you start working on something new, create a branch
○ colloquially called a feature branch, even when it’s not a

feature
● Pros:

○ features developed in isolation (less risk of main being broken)
○ encourages small PRs

● Cons:
○ large features can make integration difficult

Best practice: feature branch development

● Whenever you start working on something new, create a branch
○ colloquially called a feature branch, even when it’s not a

feature
● Pros:

○ features developed in isolation (less risk of main being broken)
○ encourages small PRs

● Cons:
○ large features can make integration difficult

Advice: use feature branch
development model iff

your team typically ships
features quickly

Advice: synchronize with teammates often

● Pull often

Advice: synchronize with teammates often

● Pull often
○ Avoid getting behind the main repo or your teammates
○ Avoid difficult and/or complex merges

Advice: synchronize with teammates often

● Pull often
○ Avoid getting behind the main repo or your teammates
○ Avoid difficult and/or complex merges

● Push as often as practical

Advice: synchronize with teammates often

● Pull often
○ Avoid getting behind the main repo or your teammates
○ Avoid difficult and/or complex merges

● Push as often as practical
○ Don’t let your teammates get behind you!
○ Don’t destabilize the main build
○ Avoid long periods working on a branch

■ but do work in a feature branch - don’t work directly on
main!

Advice: commit messages

● Always write a commit message

Advice: commit messages

● Always write a commit message
● Commit messages should be descriptive

Advice: commit messages

● Always write a commit message
● Commit messages should be descriptive
● Don’t write a novel: summarize. The code documentation in the

commit should cover the rest.

Advice: commit messages: good or bad?

Advice: commit messages: good or bad?

GOOD: short and to the
point. Contains link to
the PR it was merged in

Advice: commit messages: good or bad?

Advice: commit messages: good or bad?

NOT SO GOOD:
description is vague
(looks auto-generated!)

Advice: commit messages: good or bad?

Advice: commit messages: good or bad?

NOT SO GOOD: I know
writing jokes is fun, but
try to keep commit
messages serious

Advice: commit early and often

Advice: commit early and often

● Make many small commits, not one big one

Advice: commit early and often

● Make many small commits, not one big one
○ Easier to understand, review, merge, revert

Advice: commit early and often

● Make many small commits, not one big one
○ Easier to understand, review, merge, revert

● How to make many small commits:

Advice: commit early and often

● Make many small commits, not one big one
○ Easier to understand, review, merge, revert

● How to make many small commits:
○ Do only one task at a time and commit after each one

Advice: commit early and often

● Make many small commits, not one big one
○ Easier to understand, review, merge, revert

● How to make many small commits:
○ Do only one task at a time and commit after each one
○ Do multiple tasks in one working copy

■ Commit only a subset of files (use Git’s staging area)
■ Error-prone

Advice: commit early and often

● Make many small commits, not one big one
○ Easier to understand, review, merge, revert

● How to make many small commits:
○ Do only one task at a time and commit after each one
○ Do multiple tasks in one working copy

■ Commit only a subset of files (use Git’s staging area)
■ Error-prone

○ Create a branch for each simultaneous task
■ Need to keep track of all your branches, merge
■ Easier to share unfinished work with teammates

Advice: ways to avoid merge conflicts

● Modularize your work
○ Divide work so that individuals or subteams “own” a module
○ Other team members only need to understand its

specification (abstractions!)
○ Requires good documentation and testing

Advice: ways to avoid merge conflicts

● Modularize your work
○ Divide work so that individuals or subteams “own” a module
○ Other team members only need to understand its

specification (abstractions!)
○ Requires good documentation and testing

● Communicate about changes that may conflict
○ Don’t overwhelm the team with such messages

Advice: always use version control

Advice: always use version control

● Still worthwhile, even when working alone
○ backups
○ feature branches are still useful when working on multiple

parts of a system in parallel
○ sharing work across multiple computers

Advice: always use version control

● Still worthwhile, even when working alone
○ backups
○ feature branches are still useful when working on multiple

parts of a system in parallel
○ sharing work across multiple computers

● Use private repos for things that should be private (e.g., your
IP0/1/2 solutions…)
○ GitHub will give you free private repos because you’re

students

Advice: always use version control

● Still worthwhile, even when working alone
○ backups
○ feature branches are still useful when working on multiple

parts of a system in parallel
○ sharing work across multiple computers

● Use private repos for things that should be private (e.g., your
IP0/1/2 solutions…)
○ GitHub will give you free private repos because you’re

students

I use text-based
formats for many files

so that I can version
control them

Version Control

Today’s agenda:

● Reading Quiz
● How does a version control system work?
● How to use your VCS
● GitHub workflows

How to make a PR on GitHub

● start by creating a fork of the project
○ a new repository controlled by you, connected to the main

How to make a PR on GitHub

● start by creating a fork of the project
○ a new repository controlled by you, connected to the main

● in your fork, create a feature branch

How to make a PR on GitHub

● start by creating a fork of the project
○ a new repository controlled by you, connected to the main

● in your fork, create a feature branch
● write code + tests

How to make a PR on GitHub

● start by creating a fork of the project
○ a new repository controlled by you, connected to the main

● in your fork, create a feature branch
● write code + tests
● commit early and often, push to your fork

How to make a PR on GitHub

● start by creating a fork of the project
○ a new repository controlled by you, connected to the main

● in your fork, create a feature branch
● write code + tests
● commit early and often, push to your fork
● prepare for code review: follow code review author’s best

practices

How to make a PR on GitHub

● start by creating a fork of the project
○ a new repository controlled by you, connected to the main

● in your fork, create a feature branch
● write code + tests
● commit early and often, push to your fork
● prepare for code review: follow code review author’s best

practices
○ reminder: what were those? (see lecture 4)

How to make a PR on GitHub

● start by creating a fork of the project
○ a new repository controlled by you, connected to the main

● in your fork, create a feature branch
● write code + tests
● commit early and often, push to your fork
● prepare for code review: follow code review author’s best

practices
○ reminder: what were those? (see lecture 4)

● open PR against “main” repository from your fork’s feature branch

How NOT to make a PR on GitHub

● start by creating a hard fork of the project
○ a new repository controlled by you, unconnected to the main

How NOT to make a PR on GitHub

● start by creating a hard fork of the project
○ a new repository controlled by you, unconnected to the main

● do all of your work on the repository’s main branch

How NOT to make a PR on GitHub

● start by creating a hard fork of the project
○ a new repository controlled by you, unconnected to the main

● do all of your work on the repository’s main branch
● write code (if there are already tests, don’t bother to run them)

How NOT to make a PR on GitHub

● start by creating a hard fork of the project
○ a new repository controlled by you, unconnected to the main

● do all of your work on the repository’s main branch
● write code (if there are already tests, don’t bother to run them)
● commit all of your code at once, when you’re done

How NOT to make a PR on GitHub

● start by creating a hard fork of the project
○ a new repository controlled by you, unconnected to the main

● do all of your work on the repository’s main branch
● write code (if there are already tests, don’t bother to run them)
● commit all of your code at once, when you’re done
● don’t bother to check if you’ve followed best practices

How NOT to make a PR on GitHub

● start by creating a hard fork of the project
○ a new repository controlled by you, unconnected to the main

● do all of your work on the repository’s main branch
● write code (if there are already tests, don’t bother to run them)
● commit all of your code at once, when you’re done
● don’t bother to check if you’ve followed best practices
● email your changes to the maintainer of the original project

How NOT to make a PR on GitHub

● start by creating a hard fork of the project
○ a new repository controlled by you, unconnected to the main

● do all of your work on the repository’s main branch
● write code (if there are already tests, don’t bother to run them)
● commit all of your code at once, when you’re done
● don’t bother to check if you’ve followed best practices
● email your changes to the maintainer of the original project

○ bonus points: email the full working copy, not just the diffs

How NOT to make a PR on GitHub

● start by creating a hard fork of the project
○ a new repository controlled by you, unconnected to the main

● do all of your work on the repository’s main branch
● write code (if there are already tests, don’t bother to run them)
● commit all of your code at once, when you’re done
● don’t bother to check if you’ve followed best practices
● email your changes to the maintainer of the original project

○ bonus points: email the full working copy, not just the diffs

I’ve seen people make
all of these mistakes
(and more)!

Takeaways: version control

● Understand what your VCS is good for (storing text files,
collaboration) and what it isn’t good for (storing binaries!)

● Understand your VCS: don’t just thoughtlessly use the GUI
● Follow best practices when using your VCS:

○ don’t push straight to main
○ practice resolving merge conflicts
○ use process to try to avoid merge conflicts, if possible
○ commit early and often
○ pull as often as you can

