
Requirements and 
Specifications (Part 2/2)

Martin Kellogg



Requirements and Specifications (Part 2)

Today’s agenda:

● Reading Quiz
● GroupThink Specification Exercise, part 2
● Requirements elicitation
● Formal specifications



Reading quiz: reqs and specs part 2
Q1: The author describes formal specifications as providing three main 

benefits. Which of the following is NOT one of those:

● A. It provides clear documentation of the system requirements, 

behavior, and properties.

● B. It clarifies your understanding of the system.

● C. It finds really subtle, dangerous bugs.

● D. It makes writing the code quicker and easier.

Q2: TRUE or FALSE: the author argues that formal specifications are 

useful in all contexts, and that every developer should write them for 

every project that they work on



Reading quiz: reqs and specs part 2
Q1: The author describes formal specifications as providing three main 

benefits. Which of the following is NOT one of those:

● A. It provides clear documentation of the system requirements, 

behavior, and properties.

● B. It clarifies your understanding of the system.

● C. It finds really subtle, dangerous bugs.

● D. It makes writing the code quicker and easier.

Q2: TRUE or FALSE: the author argues that formal specifications are 

useful in all contexts, and that every developer should write them for 

every project that they work on



Reading quiz: reqs and specs part 2
Q1: The author describes formal specifications as providing three main 

benefits. Which of the following is NOT one of those:

● A. It provides clear documentation of the system requirements, 

behavior, and properties.

● B. It clarifies your understanding of the system.

● C. It finds really subtle, dangerous bugs.

● D. It makes writing the code quicker and easier.

Q2: TRUE or FALSE: the author argues that formal specifications are 

useful in all contexts, and that every developer should write them for 

every project that they work on



Requirements and Specifications (Part 2)

Today’s agenda:

● Reading Quiz
● GroupThink Specification Exercise, part 2
● Requirements elicitation
● Formal specifications



Re-form your groups from Tuesday

You have 20 minutes to go over the specifications again
● I have more copies at the front

After that, we’ll play another round of the game, with a new rule:
● Answers that contradict the specification count for zero, even if 

you all answer together

If you were not in class on Tuesday, join a group (try to balance group 
sizes).



Requirements and Specifications (Part 2)

Today’s agenda:

● Reading Quiz
● GroupThink Specification Exercise, part 2
● Requirements elicitation
● Formal specifications



Requirements

● The document I gave you during the GroupThink game was an 
example of a set of requirements



Requirements

● The document I gave you during the GroupThink game was an 
example of a set of requirements
○ where do requirements come from?
○ what kinds of requirements are there?
○ why is this related to specification?





Requirements elicitation

● Option 1: users tell developers what they want
○ Client determines the problem and the solution
○ Requirements might be formally provided in the form of a 

contract or statement of work
○ Client might provide all requirements, or just some subset 

(e.g., “must be HIPAA compliant”)



Requirements elicitation

● Option 1: users tell developers what they want
○ Client determines the problem and the solution
○ Requirements might be formally provided in the form of a 

contract or statement of work
○ Client might provide all requirements, or just some subset 

(e.g., “must be HIPAA compliant”)
Not always possible: clients often 

don’t know what they want



Requirements elicitation

● Option 2: direct research
○ Interview users, ask questions about their problems, propose 

potential solutions, examine those solutions
○ Embed your client in your design team, or better yet, become 

an anthropologist in your client’s environment
○ Build requirements documents that demonstrate your 

understanding of the requirements, iterate



Requirements elicitation

● Option 2: direct research
○ Interview users, ask questions about their problems, propose 

potential solutions, examine those solutions
○ Embed your client in your design team, or better yet, become 

an anthropologist in your client’s environment
○ Build requirements documents that demonstrate your 

understanding of the requirements, iterate
○ Empowers your team with credibility and authority 



What kinds of requirements are you eliciting?

Definition: a functional specification is a description of what a system 
should do that doesn’t specify how the system should do it



What kinds of requirements are you eliciting?

Definition: a functional specification is a description of what a system 
should do that doesn’t specify how the system should do it
● Input, Output 
● Interface 
● Response to events
● etc.



What kinds of requirements are you eliciting?

Definition: a functional specification is a description of what a system 
should do that doesn’t specify how the system should do it
● Input, Output 
● Interface 
● Response to events
● etc.

Properties of a good functional spec:
● Completeness: All requirements are 

documented 
● Consistency: No conflicts between 

requirements 
● Precision: No ambiguity in 

requirements



What kinds of requirements are you eliciting?

Definition: a functional specification is a description of what a system 
should do that doesn’t specify how the system should do it
● Input, Output 
● Interface 
● Response to events
● etc.

Properties of a good functional spec:
● Completeness: All requirements are 

documented 
● Consistency: No conflicts between 

requirements 
● Precision: No ambiguity in 

requirements



What kinds of requirements are you eliciting?

Definition: a functional specification is a description of what a system 
should do that doesn’t specify how the system should do it
● Input, Output 
● Interface 
● Response to events
● etc.

Properties of a good functional spec:
● Completeness: All requirements are 

documented 
● Consistency: No conflicts between 

requirements 
● Precision: No ambiguity in 

requirements



What kinds of requirements are you eliciting?

Definition: a functional specification is a description of what a system 
should do that doesn’t specify how the system should do it
● Input, Output 
● Interface 
● Response to events
● etc.

Properties of a good functional spec:
● Completeness: All requirements are 

documented 
● Consistency: No conflicts between 

requirements 
● Precision: No ambiguity in 

requirements



What kinds of requirements are you eliciting?

● But, not all specs are functional!



What kinds of requirements are you eliciting?

● But, not all specs are functional!

Definition: A quality requirement specifies not the functionality of the 
system, but the manner in which it delivers that functionality



What kinds of requirements are you eliciting?

● But, not all specs are functional!

Definition: A quality requirement specifies not the functionality of the 
system, but the manner in which it delivers that functionality

Quality requirements can be more important than functional 
requirements:

○ Can work around missing functionality 
○ Low-quality system may be unusable 



Examples of quality requirements



Examples of quality requirements



Examples of quality requirements

A strategy for the GroupThink game:
● compromise on quality 

requirements so that the system 
is simpler

● people do this in real life all the 
time! (you shouldn’t)



Examples of quality requirements

A strategy for the GroupThink game:
● compromise on quality 

requirements so that the system 
is simpler

● people do this in real life all the 
time! (you shouldn’t)



Can we have all the quality requirements?

● Who is going to ask for a slow, inefficient, unmaintainable system?



Can we have all the quality requirements?

● Who is going to ask for a slow, inefficient, unmaintainable system?
● A better way to think about quality requirements is as design 

criteria to help choose between alternative implementations



Can we have all the quality requirements?

● Who is going to ask for a slow, inefficient, unmaintainable system?
● A better way to think about quality requirements is as design 

criteria to help choose between alternative implementations
● The question becomes: to what extent must a product satisfy 

these requirements to be acceptable? 



Can we have all the quality requirements?

● Who is going to ask for a slow, inefficient, unmaintainable system?
● A better way to think about quality requirements is as design 

criteria to help choose between alternative implementations
● The question becomes: to what extent must a product satisfy 

these requirements to be acceptable? 

Trade-offs!



Expressing Quality Requirements

● Requirements serve as contracts: they should be 
testable/falsifiable 



Expressing Quality Requirements

● Requirements serve as contracts: they should be 
testable/falsifiable 

● An informal goal is a general intention (e.g., “ease of use” or “high 
security”) 
○ May still be helpful to developers as they convey the intentions 

of the system users 



Expressing Quality Requirements

● Requirements serve as contracts: they should be 
testable/falsifiable 

● An informal goal is a general intention (e.g., “ease of use” or “high 
security”) 
○ May still be helpful to developers as they convey the intentions 

of the system users 
● A verifiable non-functional requirement is a statement using some 

measure that can be objectively tested



Expressing Quality Requirements

● Requirements serve as contracts: they should be 
testable/falsifiable 

● An informal goal is a general intention (e.g., “ease of use” or “high 
security”) 
○ May still be helpful to developers as they convey the intentions 

of the system users 
● A verifiable non-functional requirement is a statement using some 

measure that can be objectively tested

Advice: when possible, 
make your quality 
requirements verifiable



Informal vs. Verifiable Example

● Informal goal: “the system should be easy to use by experienced 
controllers, and should be organized such that user errors are 
minimized.” 



Informal vs. Verifiable Example

● Informal goal: “the system should be easy to use by experienced 
controllers, and should be organized such that user errors are 
minimized.” 

● Verifiable non-functional requirement: “Experienced controllers 
shall be able to use all the system functions after a total of two 
hours training. After this training, the average number of errors 
made by experienced users shall not exceed two per day, on 
average.”



Requirements and Specifications (Part 2)

Today’s agenda:

● Reading Quiz
● GroupThink Specification Exercise, part 2
● Requirements elicitation
● Formal specifications



How to write specifications

Many ways:



How to write specifications

Many ways:

● as English prose (e.g., the group think game’s spec)
● as semi-structured English prose (e.g., user stories)
● as structured English (formal specification)
● as an executable formal specification



How to write specifications

Many ways:

● as English prose (e.g., the group think game’s spec)
● as semi-structured English prose (e.g., user stories)
● as structured English (formal specification)
● as an executable formal specification

Technical writing courses 
should cover how to do this



How to write specifications

Many ways:

● as English prose (e.g., the group think game’s spec)
● as semi-structured English prose (e.g., user stories)
● as structured English (formal specification)
● as an executable formal specification



User stories

“As a <role>, I can <capability>, so that I can <receive benefit>.”



User stories

“As a <role>, I can <capability>, so that I can <receive benefit>.”

● also requires a condition of satisfaction, which is the measurement 
you will use to decide if the user story has been completed



User stories: examples

“As a <role>, I can <capability>, so that I can <receive benefit>.”



User stories: examples

“As a <role>, I can <capability>, so that I can <receive benefit>.”

● “As a computer user, I want to backup my entire hard drive so that 
my files are safe”



User stories: examples

“As a <role>, I can <capability>, so that I can <receive benefit>.”

● “As a computer user, I want to backup my entire hard drive so that 
my files are safe”

● “As a typical computer user, I want to specify folders to backup, so 
that my most important files are safe”



User stories: examples

“As a <role>, I can <capability>, so that I can <receive benefit>.”

● “As a computer user, I want to backup my entire hard drive so that 
my files are safe”

● “As a typical computer user, I want to specify folders to backup, so 
that my most important files are safe”

● “As a power user, I want to specify subfolders and filetypes NOT 
to backup, so that my backup doesn’t fill up with things that I 
don’t need to preserve”



Writing user stories: INVEST principles

User stories should be:



Writing user stories: INVEST principles

User stories should be:
● Independent 
● Negotiable 
● Valuable 
● Estimable 
● Small 
● Testable



How to write specifications

Many ways:

● as English prose (e.g., the group think game’s spec)
● as semi-structured English prose (e.g., user stories)
● as structured English (formal specification)
● as an executable formal specification



Formal specifications

Definition: a formal specification is a model of a system’s design 
expressed in a formal language



Formal specifications

Definition: a formal specification is a model of a system’s design 
expressed in a formal language

● today’s reading mostly was focused on formal specifications
● formal specifications are common in some safety-critical domains 

(e.g., aerospace, automotive software)
● to build one, you typically need to invest in learning a formal 

specification language (e.g., TLA+, which is the only one I’ve seen 
used in industry)

https://lamport.azurewebsites.net/tla/tla.html


Formal specifications

Definition: a formal specification is a model of a system’s design 
expressed in a formal language

● today’s reading mostly was focused on formal specifications
● formal specifications are common in some safety-critical domains 

(e.g., aerospace, automotive software)
● to build one, you typically need to invest in learning a formal 

specification language (e.g., TLA+, which is the only one I’ve seen 
used in industry)

This class doesn’t cover formal 
specifications in any detail, but 
you should be aware of their 
existence: writing a model of 
your system (in any spec 
language, or none at all) is a 
good way to catch design errors.

https://lamport.azurewebsites.net/tla/tla.html


How to write specifications

Many ways:

● as English prose (e.g., the group think game’s spec)
● as semi-structured English prose (e.g., user stories)
● as structured English (formal specification)
● as an executable formal specification



Executable formal specifications

It is sometimes possible to refine a formal specification into a program.

● such specifications are usually written in a special-purpose 
programming language (interactive proof assistant)

● allows you to write proofs that directly apply to your executable 
code

● much, much more labor-intensive to develop than a standard 
software project

● area of active research!



Takeaways: requirements and specifications

● Make sure you build the right thing (spend time gathering 
requirements)

● Specifications can help to:
○ increase understanding of system requirements between 

engineers and customer
○ document what the system does/will do
○ improve code quality

● Writing good specifications and getting everyone to understand 
them is hard and therefore worth spending time on


