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Requirements and Specifications (Part 2)

Today’s agenda:

● Reading Quiz
● GroupThink Specification Exercise, part 2
● Requirements elicitation
● Formal specifications



Reading quiz: reqs and specs part 2
Q1: The author describes formal specifications as providing three main 

benefits. Which of the following is NOT one of those:

● A. It provides clear documentation of the system requirements, 

behavior, and properties.

● B. It clarifies your understanding of the system.

● C. It finds really subtle, dangerous bugs.

● D. It makes writing the code quicker and easier.

Q2: TRUE or FALSE: the author argues that formal specifications are 

useful in all contexts, and that every developer should write them for 

every project that they work on
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Re-form your groups from Tuesday

You have 20 minutes to go over the specifications again
● I have more copies at the front

After that, we’ll play another round of the game, with a new rule:
● Answers that contradict the specification count for zero, even if 

you all answer together

If you were not in class on Tuesday, join a group (try to balance group 
sizes).
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● The document I gave you during the GroupThink game was an 
example of a set of requirements
○ where do requirements come from?
○ what kinds of requirements are there?
○ why is this related to specification?





Requirements elicitation

● Option 1: users tell developers what they want
○ Client determines the problem and the solution
○ Requirements might be formally provided in the form of a 

contract or statement of work
○ Client might provide all requirements, or just some subset 

(e.g., “must be HIPAA compliant”)
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○ Client determines the problem and the solution
○ Requirements might be formally provided in the form of a 

contract or statement of work
○ Client might provide all requirements, or just some subset 
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Not always possible: clients often 

don’t know what they want
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● Option 2: direct research
○ Interview users, ask questions about their problems, propose 

potential solutions, examine those solutions
○ Embed your client in your design team, or better yet, become 

an anthropologist in your client’s environment
○ Build requirements documents that demonstrate your 

understanding of the requirements, iterate



Requirements elicitation

● Option 2: direct research
○ Interview users, ask questions about their problems, propose 

potential solutions, examine those solutions
○ Embed your client in your design team, or better yet, become 

an anthropologist in your client’s environment
○ Build requirements documents that demonstrate your 

understanding of the requirements, iterate
○ Empowers your team with credibility and authority 
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What kinds of requirements are you eliciting?

● But, not all specs are functional!

Definition: A quality requirement specifies not the functionality of the 
system, but the manner in which it delivers that functionality

Quality requirements can be more important than functional 
requirements:

○ Can work around missing functionality 
○ Low-quality system may be unusable 
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is simpler
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Can we have all the quality requirements?

● Who is going to ask for a slow, inefficient, unmaintainable system?
● A better way to think about quality requirements is as design 

criteria to help choose between alternative implementations
● The question becomes: to what extent must a product satisfy 

these requirements to be acceptable? 

Trade-offs!



Expressing Quality Requirements

● Requirements serve as contracts: they should be 
testable/falsifiable 



Expressing Quality Requirements

● Requirements serve as contracts: they should be 
testable/falsifiable 

● An informal goal is a general intention (e.g., “ease of use” or “high 
security”) 
○ May still be helpful to developers as they convey the intentions 

of the system users 



Expressing Quality Requirements

● Requirements serve as contracts: they should be 
testable/falsifiable 

● An informal goal is a general intention (e.g., “ease of use” or “high 
security”) 
○ May still be helpful to developers as they convey the intentions 

of the system users 
● A verifiable non-functional requirement is a statement using some 

measure that can be objectively tested



Expressing Quality Requirements

● Requirements serve as contracts: they should be 
testable/falsifiable 

● An informal goal is a general intention (e.g., “ease of use” or “high 
security”) 
○ May still be helpful to developers as they convey the intentions 

of the system users 
● A verifiable non-functional requirement is a statement using some 

measure that can be objectively tested

Advice: when possible, 
make your quality 
requirements verifiable
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● Informal goal: “the system should be easy to use by experienced 
controllers, and should be organized such that user errors are 
minimized.” 



Informal vs. Verifiable Example

● Informal goal: “the system should be easy to use by experienced 
controllers, and should be organized such that user errors are 
minimized.” 

● Verifiable non-functional requirement: “Experienced controllers 
shall be able to use all the system functions after a total of two 
hours training. After this training, the average number of errors 
made by experienced users shall not exceed two per day, on 
average.”
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User stories

“As a <role>, I can <capability>, so that I can <receive benefit>.”

● also requires a condition of satisfaction, which is the measurement 
you will use to decide if the user story has been completed
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User stories: examples

“As a <role>, I can <capability>, so that I can <receive benefit>.”

● “As a computer user, I want to backup my entire hard drive so that 
my files are safe”

● “As a typical computer user, I want to specify folders to backup, so 
that my most important files are safe”

● “As a power user, I want to specify subfolders and filetypes NOT 
to backup, so that my backup doesn’t fill up with things that I 
don’t need to preserve”
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Writing user stories: INVEST principles

User stories should be:
● Independent 
● Negotiable 
● Valuable 
● Estimable 
● Small 
● Testable
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● formal specifications are common in some safety-critical domains 

(e.g., aerospace, automotive software)
● to build one, you typically need to invest in learning a formal 

specification language (e.g., TLA+, which is the only one I’ve seen 
used in industry)
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● today’s reading mostly was focused on formal specifications
● formal specifications are common in some safety-critical domains 

(e.g., aerospace, automotive software)
● to build one, you typically need to invest in learning a formal 

specification language (e.g., TLA+, which is the only one I’ve seen 
used in industry)

This class doesn’t cover formal 
specifications in any detail, but 
you should be aware of their 
existence: writing a model of 
your system (in any spec 
language, or none at all) is a 
good way to catch design errors.

https://lamport.azurewebsites.net/tla/tla.html


How to write specifications

Many ways:

● as English prose (e.g., the group think game’s spec)
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Executable formal specifications

It is sometimes possible to refine a formal specification into a program.

● such specifications are usually written in a special-purpose 
programming language (interactive proof assistant)

● allows you to write proofs that directly apply to your executable 
code

● much, much more labor-intensive to develop than a standard 
software project

● area of active research!



Takeaways: requirements and specifications

● Make sure you build the right thing (spend time gathering 
requirements)

● Specifications can help to:
○ increase understanding of system requirements between 

engineers and customer
○ document what the system does/will do
○ improve code quality

● Writing good specifications and getting everyone to understand 
them is hard and therefore worth spending time on


