
Free and Open-source
Software

Martin Kellogg

Free and Open-source Software

Today’s agenda:

● Finish static analysis slides
● Reading Quiz
● History + the “free software” philosophy
● Open-source: licenses and business models
● Mid-semester survey: how am I doing?

Free and Open-source Software

Today’s agenda:

● Finish static analysis slides
● Reading Quiz
● History + the “free software” philosophy
● Open-source: licenses and business models
● Mid-semester survey: how am I doing?

Announcements
● reminder: optional reading #1

due soon (Saturday night)
● we plan return all graded

revised project plans by Friday
evening

Free and Open-source Software

Today’s agenda:

● Finish static analysis slides
● Reading Quiz
● History + the “free software” philosophy
● Open-source: licenses and business models
● Mid-semester survey: how am I doing?

Limitations of static analysis

● static analysis abstracts away information to remain decidable

Limitations of static analysis

● static analysis abstracts away information to remain decidable
○ potential problem: what if the information that was abstracted

away is important?

Limitations of static analysis

● static analysis abstracts away information to remain decidable
○ potential problem: what if the information that was abstracted

away is important?
■ can we come up with a program for which one of our

example static analyses “gets the wrong answer”?

Limitations of static analysis

● static analysis abstracts away information to remain decidable
○ potential problem: what if the information that was abstracted

away is important?
■ can we come up with a program for which one of our

example static analyses “gets the wrong answer”?
○ can we ever have a “perfect” abstraction?

Limitations of static analysis

● static analysis abstracts away information to remain decidable
○ potential problem: what if the information that was abstracted

away is important?
■ can we come up with a program for which one of our

example static analyses “gets the wrong answer”?
○ can we ever have a “perfect” abstraction?

■ of course not (Rice’s theorem again)

Limitations of static analysis

● static analysis abstracts away information to remain decidable
○ potential problem: what if the information that was abstracted

away is important?
■ can we come up with a program for which one of our

example static analyses “gets the wrong answer”?
○ can we ever have a “perfect” abstraction?

■ of course not (Rice’s theorem again)
■ but, in practice, we can get very close

Limitations of static analysis

● static analysis is best when the rules it enforces are:

Limitations of static analysis

● static analysis is best when the rules it enforces are:
○ simple to express to the computer
○ hard for a human to apply

Limitations of static analysis

● static analysis is best when the rules it enforces are:
○ simple to express to the computer
○ hard for a human to apply

● implication: if you find yourself struggling to follow a well-defined
(but complicated for a human) rule set while writing code, it might
be time to reach for a static analysis

Limitations of static analysis

● static analysis is best when the rules it enforces are:
○ simple to express to the computer
○ hard for a human to apply

● implication: if you find yourself struggling to follow a well-defined
(but complicated for a human) rule set while writing code, it might
be time to reach for a static analysis
○ this sort of situation comes up often:

Limitations of static analysis

● static analysis is best when the rules it enforces are:
○ simple to express to the computer
○ hard for a human to apply

● implication: if you find yourself struggling to follow a well-defined
(but complicated for a human) rule set while writing code, it might
be time to reach for a static analysis
○ this sort of situation comes up often:

■ x86/64 calling convention

Limitations of static analysis

● static analysis is best when the rules it enforces are:
○ simple to express to the computer
○ hard for a human to apply

● implication: if you find yourself struggling to follow a well-defined
(but complicated for a human) rule set while writing code, it might
be time to reach for a static analysis
○ this sort of situation comes up often:

■ x86/64 calling convention
■ complex API protocols (“call A then B then C then …”)

Limitations of static analysis

● static analysis is best when the rules it enforces are:
○ simple to express to the computer
○ hard for a human to apply

● implication: if you find yourself struggling to follow a well-defined
(but complicated for a human) rule set while writing code, it might
be time to reach for a static analysis
○ this sort of situation comes up often:

■ x86/64 calling convention
■ complex API protocols (“call A then B then C then …”)
■ security rules, etc.

Static analysis in practice

You’re likely to encounter:

Static analysis in practice

You’re likely to encounter:
● static type systems (sound)

Static analysis in practice

You’re likely to encounter:
● static type systems (sound)
● linters or other style checkers (syntactic = not dataflow)

Static analysis in practice

You’re likely to encounter:
● static type systems (sound)
● linters or other style checkers (syntactic = not dataflow)
● “heuristic” bug-finding tools backed by dataflow analyses

Static analysis in practice

You’re likely to encounter:
● static type systems (sound)
● linters or other style checkers (syntactic = not dataflow)
● “heuristic” bug-finding tools backed by dataflow analyses

heuristic is a fancy
word for “best effort”

Static analysis in practice

You’re likely to encounter:
● static type systems (sound)
● linters or other style checkers (syntactic = not dataflow)
● “heuristic” bug-finding tools backed by dataflow analyses

○ built into modern IDEs

Static analysis in practice

You’re likely to encounter:
● static type systems (sound)
● linters or other style checkers (syntactic = not dataflow)
● “heuristic” bug-finding tools backed by dataflow analyses

○ built into modern IDEs
○ aim for low false positive rates

Static analysis in practice

You’re likely to encounter:
● static type systems (sound)
● linters or other style checkers (syntactic = not dataflow)
● “heuristic” bug-finding tools backed by dataflow analyses

○ built into modern IDEs
○ aim for low false positive rates
○ widely used in industry:

■ ErrorProne at Google, Infer at Meta, SpotBugs at many
places (including Amazon), Coverity, Fortify, etc.

https://github.com/google/error-prone
https://fbinfer.com/
https://spotbugs.github.io/
https://scan.coverity.com/
https://www.microfocus.com/en-us/cyberres/application-security/static-code-analyzer

Static analysis in practice

Less common, but useful to know about:

Static analysis in practice

Less common, but useful to know about:
● pluggable type systems

Static analysis in practice

Less common, but useful to know about:
● pluggable type systems

○ these are extensions to a type system that lets it prove more
properties, e.g., adding nullness-checking to Java

Static analysis in practice

Less common, but useful to know about:
● pluggable type systems

○ these are extensions to a type system that lets it prove more
properties, e.g., adding nullness-checking to Java

○ most common sound analysis (used by Google, Uber, others)

What is a pluggable type?

 @Positive int x

30

What is a pluggable type?

 @Positive int x

31

Basetype

What is a pluggable type?

 @Positive int x

32

BasetypeType qualifier

What is a pluggable type?

 @Negative int x

33

BasetypeType qualifier

What is a pluggable type?

 @NonConstant int x

34

BasetypeType qualifier

What is a pluggable type?

 @Positive int x

35

BasetypeType qualifier

What is a pluggable type?

 @Positive int x

36

BasetypeType qualifier

Qualified type

Pluggable type systems: key ideas

Pluggable type systems: key ideas

● developers already use static type systems, so they’re familiar with
the general idea of types => relatively easy to use (compared to
other sound static analyses)

Pluggable type systems: key ideas

● developers already use static type systems, so they’re familiar with
the general idea of types => relatively easy to use (compared to
other sound static analyses)

● type qualifiers encode property of interest
○ effectively a “second” type system

Pluggable type systems: key ideas

● developers already use static type systems, so they’re familiar with
the general idea of types => relatively easy to use (compared to
other sound static analyses)

● type qualifiers encode property of interest
○ effectively a “second” type system

● qualified types are a Cartesian product of a type from the
pluggable type system and a type from the base type system

Pluggable type systems: key ideas

● developers already use static type systems, so they’re familiar with
the general idea of types => relatively easy to use (compared to
other sound static analyses)

● type qualifiers encode property of interest
○ effectively a “second” type system

● qualified types are a Cartesian product of a type from the
pluggable type system and a type from the base type system

● typechecking is naturally modular = fast
○ but this comes at a cost: programmers need to write types

Pluggable type systems: key ideas

● developers already use static type systems, so they’re familiar with
the general idea of types => relatively easy to use (compared to
other sound static analyses)

● type qualifiers encode property of interest
○ effectively a “second” type system

● qualified types are a Cartesian product of a type from the
pluggable type system and a type from the base type system

● typechecking is naturally modular = fast
○ but this comes at a cost: programmers need to write types

designing better (more
expressive, more usable,
etc.) pluggable type
systems is an area of
active research (mine!)

Static analysis in practice

Less common, but useful to know about:
● pluggable type systems

○ these are extensions to a type system that lets it prove more
properties, e.g., adding nullness-checking to Java

○ most common sound analysis (used by Google, Uber, others)
● formal verification (subject of 3/7 reading)

Static analysis in practice

Less common, but useful to know about:
● pluggable type systems

○ these are extensions to a type system that lets it prove more
properties, e.g., adding nullness-checking to Java

○ most common sound analysis (used by Google, Uber, others)
● formal verification (subject of 3/7 reading)

○ you write a specification

Static analysis in practice

Less common, but useful to know about:
● pluggable type systems

○ these are extensions to a type system that lets it prove more
properties, e.g., adding nullness-checking to Java

○ most common sound analysis (used by Google, Uber, others)
● formal verification (subject of 3/7 reading)

○ you write a specification
○ tool verifies that code matches that specification

Static analysis in practice

Less common, but useful to know about:
● pluggable type systems

○ these are extensions to a type system that lets it prove more
properties, e.g., adding nullness-checking to Java

○ most common sound analysis (used by Google, Uber, others)
● formal verification (subject of 3/7 reading)

○ you write a specification
○ tool verifies that code matches that specification
○ very high effort, but enables sound reasoning about complex

properties (= worth it for very high value systems)

Static analysis in practice: soundiness

● all “sound” static analyses have a trusted computing base (TCB)

Static analysis in practice: soundiness

● all “sound” static analyses have a trusted computing base (TCB)
○ the TCB is the code whose correctness must be assumed for

the analysis to actually be sound

Static analysis in practice: soundiness

● all “sound” static analyses have a trusted computing base (TCB)
○ the TCB is the code whose correctness must be assumed for

the analysis to actually be sound
● TCB size is an important differentiator between “sound” analyses

Static analysis in practice: soundiness

● all “sound” static analyses have a trusted computing base (TCB)
○ the TCB is the code whose correctness must be assumed for

the analysis to actually be sound
● TCB size is an important differentiator between “sound” analyses

○ e.g., TCB for many of my pluggable type systems includes the
entire Java compiler (limits soundness a lot!)

Static analysis in practice: soundiness

● all “sound” static analyses have a trusted computing base (TCB)
○ the TCB is the code whose correctness must be assumed for

the analysis to actually be sound
● TCB size is an important differentiator between “sound” analyses

○ e.g., TCB for many of my pluggable type systems includes the
entire Java compiler (limits soundness a lot!)

○ TCB for some formal verifiers is very small (< 1000 LoC)
■ but these tools (e.g., Coq) are much harder to use

Static analysis in practice: soundiness

● all “sound” static analyses have a trusted computing base (TCB)
○ the TCB is the code whose correctness must be assumed for

the analysis to actually be sound
● TCB size is an important differentiator between “sound” analyses

○ e.g., TCB for many of my pluggable type systems includes the
entire Java compiler (limits soundness a lot!)

○ TCB for some formal verifiers is very small (< 1000 LoC)
■ but these tools (e.g., Coq) are much harder to use

● soundness theorems also usually make some assumptions about
the code being analyzed (e.g., no calls to native code, no reflection)

Static analysis: summary

● static analysis is very good at enforcing simple rules
○ much better than humans at this

● all interesting semantic properties of programs are undecidable, so
all static analyses must approximate
○ goal in analysis design is to abstract away unimportant details,

but keep important details
○ dataflow analysis is one technique for static analysis
○ trade-offs between false positives, false negatives, analysis time

● soundness & completeness are possible, but rare
○ all soundness guarantees come with caveats about the TCB

Free and Open-source Software

Today’s agenda:

● Finish static analysis slides
● Reading Quiz
● History + the “free software” philosophy
● Open-source: licenses and business models
● Mid-semester survey: how am I doing?

Reading quiz: free and open-source software

Q1: The author claims that the term “open source software” means:

A. software you can get for zero price
B. software which gives the user certain freedoms
C. software whose source code you can look at
D. none of the above

Q2: The author claims that the term “free software” means:

● same options (A, B, C, D) as Q1

Reading quiz: free and open-source software

Q1: The author claims that the term “open source software” means:

A. software you can get for zero price
B. software which gives the user certain freedoms
C. software whose source code you can look at
D. none of the above

Q2: The author claims that the term “free software” means:

● same options (A, B, C, D) as Q1

Reading quiz: free and open-source software

Q1: The author claims that the term “open source software” means:

A. software you can get for zero price
B. software which gives the user certain freedoms
C. software whose source code you can look at
D. none of the above

Q2: The author claims that the term “free software” means:

● same options (A, B, C, D) as Q1

The official definition of open source software
(... too long to include here) was derived
indirectly from our criteria for free software. It
is not the same; … However, the obvious
meaning for … “open source software” is “You
can look at the source code.” Indeed, most
people seem to misunderstand “open source
software” that way.

Reading quiz: free and open-source software

Q1: The author claims that the term “open source software” means:

A. software you can get for zero price
B. software which gives the user certain freedoms
C. software whose source code you can look at
D. none of the above

Q2: The author claims that the term “free software” means:

● same options (A, B, C, D) as Q1

Free and Open-source Software

Today’s agenda:

● Finish static analysis slides
● Reading Quiz
● History + the “free software” philosophy
● Open-source: licenses and business models
● Mid-semester survey: how am I doing?

The rest of this slide deck is heavily based on the work of Jonathan Bell, Adeel Bhutta, and Mitch Wand, ©2022,
released under CC-BY-SA. My modifications ©2023, by Martin Kellogg, also released under CC-BY-SA.

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Why does this matter?

Why does this matter?

● Part of being a software engineer (vs just a programmer) is
understanding the context of your work

Why does this matter?

● Part of being a software engineer (vs just a programmer) is
understanding the context of your work

● “Free” vs “open-source” vs “closed-source”/”proprietary” is an
important philosophical debate within the larger software
engineering community

Why does this matter?

● Part of being a software engineer (vs just a programmer) is
understanding the context of your work

● “Free” vs “open-source” vs “closed-source”/”proprietary” is an
important philosophical debate within the larger software
engineering community

● This debate has consequences for both how you build and how you
use software that, as a software engineer, you should understand

Why does this matter?

● Part of being a software engineer (vs just a programmer) is
understanding the context of your work

● “Free” vs “open-source” vs “closed-source”/”proprietary” is an
important philosophical debate within the larger software
engineering community

● This debate has consequences for both how you build and how you
use software that, as a software engineer, you should understand
○ plus, it’s the sort of thing that other, more senior engineers will

expect you to have an informed opinion about

What is “open-source”?

What is “open-source”?

Definition: open source refers to any source code that is made freely
available for possible modification and redistribution [Wikipedia]

What is “open-source”?

Definition: open source refers to any source code that is made freely
available for possible modification and redistribution [Wikipedia]
● “open source” != “open source software” (we’ll talk about why later)

What is “open-source”?

Definition: open source refers to any source code that is made freely
available for possible modification and redistribution [Wikipedia]
● “open source” != “open source software” (we’ll talk about why later)
● I’ll abbreviate “open source software” as OSS

The Case against Open Source

The Case against Open Source

● “Open-Source Doomsday”: Once all
software is free, we’ll stop making more
software and have a market collapse

● Innovation will be stifled by the risk that
software will be copied

● Making source code public means easier
to attack

● “Anarchistic” licensing prevents
companies from profiting from open
source software

The Case for Open Source

The Case for Open Source

● Many eyes make all bugs shallow
● End-users can improve and customize

software to their needs
● New features can be proposed and

developed organically
● Greater productivity when more code is

reused (easier with open source)
○ i.e., DRY on an industry-wide scale

History: open-source

History: open-source

● in the early days of computing, innovation focused on hardware

History: open-source

● in the early days of computing, innovation focused on hardware
○ no one was worried about keeping their code secret, since it

usually would only run on their hardware anyway

History: open-source

● in the early days of computing, innovation focused on hardware
○ no one was worried about keeping their code secret, since it

usually would only run on their hardware anyway
● what software development did occur happened mostly in

academic labs, and AT&T’s Bell Research Labs

History: open-source

● in the early days of computing, innovation focused on hardware
○ no one was worried about keeping their code secret, since it

usually would only run on their hardware anyway
● what software development did occur happened mostly in

academic labs, and AT&T’s Bell Research Labs
● Unix created at Bell Labs using the new, portable language “C”

(~1970), licenses initially released with source code

History: open-source

● in the early days of computing, innovation focused on hardware
○ no one was worried about keeping their code secret, since it

usually would only run on their hardware anyway
● what software development did occur happened mostly in

academic labs, and AT&T’s Bell Research Labs
● Unix created at Bell Labs using the new, portable language “C”

(~1970), licenses initially released with source code
○ Unix quickly gained a lot of popularity for two reasons:

History: open-source

● in the early days of computing, innovation focused on hardware
○ no one was worried about keeping their code secret, since it

usually would only run on their hardware anyway
● what software development did occur happened mostly in

academic labs, and AT&T’s Bell Research Labs
● Unix created at Bell Labs using the new, portable language “C”

(~1970), licenses initially released with source code
○ Unix quickly gained a lot of popularity for two reasons:

■ portable between hardware (just need a C compiler)

History: open-source

● in the early days of computing, innovation focused on hardware
○ no one was worried about keeping their code secret, since it

usually would only run on their hardware anyway
● what software development did occur happened mostly in

academic labs, and AT&T’s Bell Research Labs
● Unix created at Bell Labs using the new, portable language “C”

(~1970), licenses initially released with source code
○ Unix quickly gained a lot of popularity for two reasons:

■ portable between hardware (just need a C compiler)
■ Bell Labs practically gave it away to universities

History: Unix

● 1978: UC Berkeley begins distributing
their own derived version of Unix (BSD)

History: Unix

● 1978: UC Berkeley begins distributing
their own derived version of Unix (BSD)

● 1983: AT&T broken up by DOJ, UNIX
licensing changed: no more source
releases

History: Unix

● 1978: UC Berkeley begins distributing
their own derived version of Unix (BSD)

● 1983: AT&T broken up by DOJ, UNIX
licensing changed: no more source
releases

● Also 1983: “Starting this Thanksgiving I
am going to write a complete
Unix-compatible software system called
GNU (Gnu’s Not Unix), and give it away
free to everyone who can use it”

The Free Software Philosophy

● UNIX distributed with source code, but with a restrictive license

The Free Software Philosophy

● UNIX distributed with source code, but with a restrictive license
● The Free Software Foundation promoted four “freedoms”:

The Free Software Philosophy

● UNIX distributed with source code, but with a restrictive license
● The Free Software Foundation promoted four “freedoms”:

0. The freedom to run the program as you wish, for any purpose

The Free Software Philosophy

● UNIX distributed with source code, but with a restrictive license
● The Free Software Foundation promoted four “freedoms”:

0. The freedom to run the program as you wish, for any purpose
1. The freedom to study how the program works, and change it so

it does your computing as you wish

The Free Software Philosophy

● UNIX distributed with source code, but with a restrictive license
● The Free Software Foundation promoted four “freedoms”:

0. The freedom to run the program as you wish, for any purpose
1. The freedom to study how the program works, and change it so

it does your computing as you wish
2. The freedom to redistributed copies (of the original) so you can

help others

The Free Software Philosophy

● UNIX distributed with source code, but with a restrictive license
● The Free Software Foundation promoted four “freedoms”:

0. The freedom to run the program as you wish, for any purpose
1. The freedom to study how the program works, and change it so

it does your computing as you wish
2. The freedom to redistributed copies (of the original) so you can

help others
3. The freedom to distribute copies of your modified version to

others

The Free Software Philosophy

● UNIX distributed with source code, but with a restrictive license
● The Free Software Foundation promoted four “freedoms”:

0. The freedom to run the program as you wish, for any purpose
1. The freedom to study how the program works, and change it so

it does your computing as you wish
2. The freedom to redistributed copies (of the original) so you can

help others
3. The freedom to distribute copies of your modified version to

others
“Free as in speech, not as in beer”

The Free Software Philosophy

● the FSF claims: Free software should be licensed under the GNU
Public License (GPL), considering questions like:

The Free Software Philosophy

● the FSF claims: Free software should be licensed under the GNU
Public License (GPL), considering questions like:
○ Are you required to redistribute any modifications (under same

license) - “copyleft”

The Free Software Philosophy

● the FSF claims: Free software should be licensed under the GNU
Public License (GPL), considering questions like:
○ Are you required to redistribute any modifications (under same

license) - “copyleft”
○ Can you redistribute executable binaries, or only source?

The Free Software Philosophy

● the FSF claims: Free software should be licensed under the GNU
Public License (GPL), considering questions like:
○ Are you required to redistribute any modifications (under same

license) - “copyleft”
○ Can you redistribute executable binaries, or only source?
○ Are you allowed to use the software in a restrictive hardware

environment? (“tivoization”)

The Free Software Philosophy

● the FSF claims: Free software should be licensed under the GNU
Public License (GPL), considering questions like:
○ Are you required to redistribute any modifications (under same

license) - “copyleft”
○ Can you redistribute executable binaries, or only source?
○ Are you allowed to use the software in a restrictive hardware

environment? (“tivoization”)

Difference between GPL v2 and
GPL v3: is tivoization banned?

The Free Software Philosophy

● the FSF claims: Free software should be licensed under the GNU
Public License (GPL), considering questions like:
○ Are you required to redistribute any modifications (under same

license) - “copyleft”
○ Can you redistribute executable binaries, or only source?
○ Are you allowed to use the software in a restrictive hardware

environment? (“tivoization”)
● Popular alternative: “Do whatever you want with this software, but

don’t blame me if it doesn’t work” (“freeware”)

History: GNU/Linux (1991-Today)

● Stallman (FSF founder) set out to build an operating system in
1983, ended up building a tremendous set of utilities (“GNU
coreutils”) that are needed by an OS (compiler, utilities, etc)

History: GNU/Linux (1991-Today)

● Stallman (FSF founder) set out to build an operating system in
1983, ended up building a tremendous set of utilities (“GNU
coreutils”) that are needed by an OS (compiler, utilities, etc)

Remember: 1983 = Unix licensing
changed because of AT&T breakup

History: GNU/Linux (1991-Today)

● Stallman (FSF founder) set out to build an operating system in
1983, ended up building a tremendous set of utilities (“GNU
coreutils”) that are needed by an OS (compiler, utilities, etc)

● Linux is an operating system built around and with the GNU
utilities, licensed under GPL

History: GNU/Linux (1991-Today)

● Stallman (FSF founder) set out to build an operating system in
1983, ended up building a tremendous set of utilities (“GNU
coreutils”) that are needed by an OS (compiler, utilities, etc)

● Linux is an operating system built around and with the GNU
utilities, licensed under GPL

● Rise of the internet, demand for internet servers drives demand
for cheap/free OS

History: GNU/Linux (1991-Today)

● Stallman (FSF founder) set out to build an operating system in
1983, ended up building a tremendous set of utilities (“GNU
coreutils”) that are needed by an OS (compiler, utilities, etc)

● Linux is an operating system built around and with the GNU
utilities, licensed under GPL

● Rise of the internet, demand for internet servers drives demand
for cheap/free OS

● Companies began adopting and supporting Linux for enterprise
customers: e.g., IBM committed over $1B; Red Hat and others

The Cathedral and the Bazaar (1997)

● Eric S Raymond’s influential 1997 essay compares two software
development methodologies for OSS: “cathedral” or “bazaar”

The Cathedral and the Bazaar (1997)

● Eric S Raymond’s influential 1997 essay compares two software
development methodologies for OSS: “cathedral” or “bazaar”

● “cathedral” model, where releases are available for anyone to
see, but the development process is restricted to insiders

The Cathedral and the Bazaar (1997)

● Eric S Raymond’s influential 1997 essay compares two software
development methodologies for OSS: “cathedral” or “bazaar”

● “cathedral” model, where releases are available for anyone to
see, but the development process is restricted to insiders

● However, most of the open source software ecosystem today
follows the “bazaar” model:
○ Users treated as co-developers
○ Release software early for feedback
○ Modularize + reuse components
○ Democratic organization

The Cathedral and the Bazaar (1997)

● Eric S Raymond’s influential 1997 essay compares two software
development methodologies for OSS: “cathedral” or “bazaar”

● “cathedral” model, where releases are available for anyone to
see, but the development process is restricted to insiders

● However, most of the open source software ecosystem today
follows the “bazaar” model:
○ Users treated as co-developers
○ Release software early for feedback
○ Modularize + reuse components
○ Democratic organization

How did the bazaar
model become
dominant is OSS?

History: Netscape’s “Collaborating with the Net”

● Netscape was the dominant web browser in the early 90’s
○ Business model: free for home and education use,

companies paid to use it

History: Netscape’s “Collaborating with the Net”

● Netscape was the dominant web browser in the early 90’s
○ Business model: free for home and education use,

companies paid to use it
● Microsoft entered browser market with Internet Explorer,

bundled with Windows in 1995, soon overtakes Netscape in
usage (it’s free, with Windows!)
○ also sued by US DoJ for antitrust bundling (!)

History: Netscape’s “Collaborating with the Net”

● Netscape was the dominant web browser in the early 90’s
○ Business model: free for home and education use,

companies paid to use it
● Microsoft entered browser market with Internet Explorer,

bundled with Windows in 1995, soon overtakes Netscape in
usage (it’s free, with Windows!)
○ also sued by US DoJ for antitrust bundling (!)

● January 1998: Netscape becomes first (?) company to make
source code for proprietary product open (Mozilla)

History: Free vs Open Source

● Until Netscape/Mozilla, much of open source movement was
concentrated in the Free Software Foundation and its GPL

History: Free vs Open Source

● Until Netscape/Mozilla, much of open source movement was
concentrated in the Free Software Foundation and its GPL

● “Open Source” coined in 1998 by the Open Source Initiative as a
term to capture Netscape’s aim for an open development
process, Eric Raymond’s “Bazaar”

History: Free vs Open Source

● Until Netscape/Mozilla, much of open source movement was
concentrated in the Free Software Foundation and its GPL

● “Open Source” coined in 1998 by the Open Source Initiative as a
term to capture Netscape’s aim for an open development
process, Eric Raymond’s “Bazaar”
○ Publisher Tim O’Reilly organizes a “Freeware Summit” later

in 1998, soon rebranded as “Open Source Summit”

History: Free vs Open Source

● Until Netscape/Mozilla, much of open source movement was
concentrated in the Free Software Foundation and its GPL

● “Open Source” coined in 1998 by the Open Source Initiative as a
term to capture Netscape’s aim for an open development
process, Eric Raymond’s “Bazaar”
○ Publisher Tim O’Reilly organizes a “Freeware Summit” later

in 1998, soon rebranded as “Open Source Summit”
○ “Open Source is a development methodology; free software

is a social movement” - Richard Stallman, FSF founder

Free and Open-source Software

Today’s agenda:

● Finish static analysis slides
● Reading Quiz
● History + the “free software” philosophy
● Open-source: licenses and business models
● Mid-semester survey: how am I doing?

What makes an open source project successful?

What makes an open source project successful?

● Open source projects thrive when the community surrounding
them contributes to push the project forwards

What makes an open source project successful?

● Open source projects thrive when the community surrounding
them contributes to push the project forwards

● Communities form around collective ownership (even if it’s only
perceived)

What makes an open source project successful?

● Open source projects thrive when the community surrounding
them contributes to push the project forwards

● Communities form around collective ownership (even if it’s only
perceived)

● Contributors bring more than code: also documentation, testing,
support, and outreach

What makes an open source project successful?

● Open source projects thrive when the community surrounding
them contributes to push the project forwards

● Communities form around collective ownership (even if it’s only
perceived)

● Contributors bring more than code: also documentation, testing,
support, and outreach

● Community/ownership models:
○ Corporate owner, community outreach (MySQL, MongoDB)
○ Foundation owner, corporate sponsors (GNU, Linux)

Is Open Source a Good Business Model?

Is Open Source a Good Business Model?

Is Open Source a Good Business Model?

What business
models can you
combine with open
source successfully?

Model: “Open Core”, closed plugins

● “Open Core” model: core component of a product is an open
source utility; premium plugins available for a fee

Model: “Open Core”, closed plugins

● “Open Core” model: core component of a product is an open
source utility; premium plugins available for a fee

● Example: Apache Kafka, a distributed message broker (glue in an
event-based system)
○ Product is open source, maintained by Apache foundation,

supported by company “Confluent”
○ Confluent provides plugins to connect Kafka to many

different systems out-of-the-box

Model: Open Source as a Utility

● The largest, most successful open source projects implement
utility infrastructure:
○ Operating systems, web servers, logging libraries, languages

Model: Open Source as a Utility

● The largest, most successful open source projects implement
utility infrastructure:
○ Operating systems, web servers, logging libraries, languages

● Business model: build and sell products and services using those
utilities, contribute improvements back to the ecosystem

Model: Open Source as a Utility

● The largest, most successful open source projects implement
utility infrastructure:
○ Operating systems, web servers, logging libraries, languages

● Business model: build and sell products and services using those
utilities, contribute improvements back to the ecosystem
○ i.e., sell expertise

Model: Open Source as a Utility

● The largest, most successful open source projects implement
utility infrastructure:
○ Operating systems, web servers, logging libraries, languages

● Business model: build and sell products and services using those
utilities, contribute improvements back to the ecosystem
○ i.e., sell expertise
○ many companies provide specialized “distributions” of these

open source infrastructure and specialized tools to improve
them; support the upstream project

Open source and the law

Open source and the law

● Copyright provides creators with protection for creative,
intellectual and artistic works - including software

Open source and the law

● Copyright provides creators with protection for creative,
intellectual and artistic works - including software
○ Alternative: public domain (nobody has exclusive property

rights)

Open source and the law

● Copyright provides creators with protection for creative,
intellectual and artistic works - including software
○ Alternative: public domain (nobody has exclusive property

rights)
● Open source software is generally copyrighted, with copyright

retained by contributors or assigned to a foundation/corporation
that maintains the product

Open source and the law

● Copyright provides creators with protection for creative,
intellectual and artistic works - including software
○ Alternative: public domain (nobody has exclusive property

rights)
● Open source software is generally copyrighted, with copyright

retained by contributors or assigned to a foundation/corporation
that maintains the product

● Copyright holder can grant a license for use, placing restrictions on
how it can be used (perhaps for a fee)
○ Common open source licenses: MIT, BSD, Apache, GPL

Open source licenses

Two broad classes of open source licenses:

Open source licenses

Two broad classes of open source licenses:

● permissive licenses (e.g., MIT, Apache, BSD) allow a combination of
the licensed code and some other code (i.e., a derivative work) to be
released under a different license (including proprietary)

Open source licenses

Two broad classes of open source licenses:

● permissive licenses (e.g., MIT, Apache, BSD) allow a combination of
the licensed code and some other code (i.e., a derivative work) to be
released under a different license (including proprietary)
○ goal: encourage adoption and use of the software

Open source licenses

Two broad classes of open source licenses:

● permissive licenses (e.g., MIT, Apache, BSD) allow a combination of
the licensed code and some other code (i.e., a derivative work) to be
released under a different license (including proprietary)
○ goal: encourage adoption and use of the software

● copyleft licenses (e.g., GPL, CC-BY-SA) forces all linked code to be
released under the same license

Open source licenses

Two broad classes of open source licenses:

● permissive licenses (e.g., MIT, Apache, BSD) allow a combination of
the licensed code and some other code (i.e., a derivative work) to be
released under a different license (including proprietary)
○ goal: encourage adoption and use of the software

● copyleft licenses (e.g., GPL, CC-BY-SA) forces all linked code to be
released under the same license
○ goal: protect the commons, require users to contribute back

Open source licenses

Two broad classes of open source licenses:

● permissive licenses (e.g., MIT, Apache, BSD) allow a combination of
the licensed code and some other code (i.e., a derivative work) to be
released under a different license (including proprietary)
○ goal: encourage adoption and use of the software

● copyleft licenses (e.g., GPL, CC-BY-SA) forces all linked code to be
released under the same license
○ goal: protect the commons, require users to contribute back

Philosophy: do we force
participation, or try to
grow/incentivize it in
other ways?

Model: Dual Licensing

Model: Dual Licensing

● Offer a free copyleft (e.g. GPL) license to encourage broad
adoption, prevent competitors from improving it without sharing
those improvements.

Model: Dual Licensing

● Offer a free copyleft (e.g. GPL) license to encourage broad
adoption, prevent competitors from improving it without sharing
those improvements.

● Offer custom, more permissive licenses to third parties who are
willing to pay for that (e.g. enterprise)

Model: Dual Licensing

● Offer a free copyleft (e.g. GPL) license to encourage broad
adoption, prevent competitors from improving it without sharing
those improvements.

● Offer custom, more permissive licenses to third parties who are
willing to pay for that (e.g. enterprise)

● Only possible when there is a single copyright owner, who can
unilaterally change license

Model: Dual Licensing

● Offer a free copyleft (e.g. GPL) license to encourage broad
adoption, prevent competitors from improving it without sharing
those improvements.

● Offer custom, more permissive licenses to third parties who are
willing to pay for that (e.g. enterprise)

● Only possible when there is a single copyright owner, who can
unilaterally change license

● Risk: losing control of the copyleft portion via forking

Model: Dual Licensing

● Offer a free copyleft (e.g. GPL) license to encourage broad
adoption, prevent competitors from improving it without sharing
those improvements.

● Offer custom, more permissive licenses to third parties who are
willing to pay for that (e.g. enterprise)

● Only possible when there is a single copyright owner, who can
unilaterally change license

● Risk: losing control of the copyleft portion via forking
● Examples: MySQL, Qt

When communities move on: forks

● When software is released under a permissive license, the only
rights that the creator can realistically retain are trademarks on
name/images - code can otherwise be “forked”

When communities move on: forks

● When software is released under a permissive license, the only
rights that the creator can realistically retain are trademarks on
name/images - code can otherwise be “forked”

● Example:
○ Sun bought StarOffice in 1999, GPL open-sourced as

OpenOffice in 2000 with aim of fighting MS Office

When communities move on: forks

● When software is released under a permissive license, the only
rights that the creator can realistically retain are trademarks on
name/images - code can otherwise be “forked”

● Example:
○ Sun bought StarOffice in 1999, GPL open-sourced as

OpenOffice in 2000 with aim of fighting MS Office
○ 2010: Oracle buys Sun, fires many internal developers,

frustrating external community

When communities move on: forks

● When software is released under a permissive license, the only
rights that the creator can realistically retain are trademarks on
name/images - code can otherwise be “forked”

● Example:
○ Sun bought StarOffice in 1999, GPL open-sourced as

OpenOffice in 2000 with aim of fighting MS Office
○ 2010: Oracle buys Sun, fires many internal developers,

frustrating external community
○ 2011: Community forms a foundation, creates fork LibreOffice,

OpenOffice dies off (Oracle transfers to Apache)

Model: Hosted OSS As A Service

Model: Hosted OSS As A Service

● Model: Creators of open source software provide a cloud hosted,
“fully managed” installation of the software, as a service

Model: Hosted OSS As A Service

● Model: Creators of open source software provide a cloud hosted,
“fully managed” installation of the software, as a service

● Risk: No competitive advantage vs cloud utility providers (e.g. AWS)

Model: Hosted OSS As A Service

● Model: Creators of open source software provide a cloud hosted,
“fully managed” installation of the software, as a service

● Risk: No competitive advantage vs cloud utility providers (e.g. AWS)
○ AWS could even improve your GPL code and not share because

it is not distributing the program (it operates it as a service)

Model: Hosted OSS As A Service

● Model: Creators of open source software provide a cloud hosted,
“fully managed” installation of the software, as a service

● Risk: No competitive advantage vs cloud utility providers (e.g. AWS)
○ AWS could even improve your GPL code and not share because

it is not distributing the program (it operates it as a service)
● Example: MongoDB Atlas (document-oriented database)

Model: Hosted OSS As A Service

● Model: Creators of open source software provide a cloud hosted,
“fully managed” installation of the software, as a service

● Risk: No competitive advantage vs cloud utility providers (e.g. AWS)
○ AWS could even improve your GPL code and not share because

it is not distributing the program (it operates it as a service)
● Example: MongoDB Atlas (document-oriented database)

○ MongoDB created a new license to require copyleft for service
providers operating MongoDB as a service

Model: Hosted OSS As A Service

● Model: Creators of open source software provide a cloud hosted,
“fully managed” installation of the software, as a service

● Risk: No competitive advantage vs cloud utility providers (e.g. AWS)
○ AWS could even improve your GPL code and not share because

it is not distributing the program (it operates it as a service)
● Example: MongoDB Atlas (document-oriented database)

○ MongoDB created a new license to require copyleft for service
providers operating MongoDB as a service

○ Amazon created their own fork of the GPL’ed version of
MongoDB, ignored code only released under new license

Another example: Java & open-source

● While the Java specification is public, there used to be no open
source Java runtime implementation

Another example: Java & open-source

● While the Java specification is public, there used to be no open
source Java runtime implementation

● Much open source software was/is written in Java, creating “The
Java Trap” for open source

Another example: Java & open-source

● While the Java specification is public, there used to be no open
source Java runtime implementation

● Much open source software was/is written in Java, creating “The
Java Trap” for open source

● 1996-2006: GNU, Apache (backed by IBM and Apple), and others
attempted to create open source implementations; Sun refused to
permit these runtimes to be tested for compatibility, prohibiting
them from using the term “Java”

Another example: Java & open-source

● While the Java specification is public, there used to be no open
source Java runtime implementation

● Much open source software was/is written in Java, creating “The
Java Trap” for open source

● 1996-2006: GNU, Apache (backed by IBM and Apple), and others
attempted to create open source implementations; Sun refused to
permit these runtimes to be tested for compatibility, prohibiting
them from using the term “Java”

● 2007: Sun releases OpenJDK under GPL; third party projects
abandoned mostly uncompleted

Another example: Java & open-source

● While the Java specification is public, there used to be no open
source Java runtime implementation

● Much open source software was/is written in Java, creating “The
Java Trap” for open source

● 1996-2006: GNU, Apache (backed by IBM and Apple), and others
attempted to create open source implementations; Sun refused to
permit these runtimes to be tested for compatibility, prohibiting
them from using the term “Java”

● 2007: Sun releases OpenJDK under GPL; third party projects
abandoned mostly uncompleted

Why did Sun release
OpenJDK?
They feared losing
control of Java.

Another example: Java & open-source

● While the Java specification is public, there used to be no open
source Java runtime implementation

● Much open source software was/is written in Java, creating “The
Java Trap” for open source

● 1996-2006: GNU, Apache (backed by IBM and Apple), and others
attempted to create open source implementations; Sun refused to
permit these runtimes to be tested for compatibility, prohibiting
them from using the term “Java”

● 2007: Sun releases OpenJDK under GPL; third party projects
abandoned mostly uncompleted

Why did Sun release
OpenJDK?
They feared losing
control of Java.

Another example: Android

Another example: Android

● Model: “Product” is the ecosystem (app store, ads, etc) and the
hardware (made by competing manufacturers), not Android itself

Another example: Android

● Model: “Product” is the ecosystem (app store, ads, etc) and the
hardware (made by competing manufacturers), not Android itself

● Android is entirely open source, built on Linux; applications are
written in Java, executed using a custom-built runtime

Another example: Android

● Model: “Product” is the ecosystem (app store, ads, etc) and the
hardware (made by competing manufacturers), not Android itself

● Android is entirely open source, built on Linux; applications are
written in Java, executed using a custom-built runtime

● To provide implementations of core Java APIs (e.g. java.util.X),
Android used the open source Apache Harmony implementations

Another example: Android

● Model: “Product” is the ecosystem (app store, ads, etc) and the
hardware (made by competing manufacturers), not Android itself

● Android is entirely open source, built on Linux; applications are
written in Java, executed using a custom-built runtime

● To provide implementations of core Java APIs (e.g. java.util.X),
Android used the open source Apache Harmony implementations

● Oracle v Google: Oracle asserted that Java APIs were their
property (copyright) and Google misused that; judge ruled that
APIs specifications cannot be copyrighted

Risks of using Open Source in Industry

Risks of using Open Source in Industry

● Are licenses compatible? A significant concern for licenses with
copyleft:

Risks of using Open Source in Industry

● Are licenses compatible? A significant concern for licenses with
copyleft:
○ Adopting libraries with copyleft clause generally means what

you distribute linked against that library must also have same
copyleft clause (and be open source)

Risks of using Open Source in Industry

● Are licenses compatible? A significant concern for licenses with
copyleft:
○ Adopting libraries with copyleft clause generally means what

you distribute linked against that library must also have same
copyleft clause (and be open source)

○ Including permissive-licensed software in copyleft-licensed
software is generally compatible

Risks of using Open Source in Industry

● Are licenses compatible? A significant concern for licenses with
copyleft:
○ Adopting libraries with copyleft clause generally means what

you distribute linked against that library must also have same
copyleft clause (and be open source)

○ Including permissive-licensed software in copyleft-licensed
software is generally compatible

● Are you certain that the software truly is released under the license
that is stated? Did all contributors agree to that license?

Risks of using Open Source in Industry

● Are licenses compatible? A significant concern for licenses with
copyleft:
○ Adopting libraries with copyleft clause generally means what

you distribute linked against that library must also have same
copyleft clause (and be open source)

○ Including permissive-licensed software in copyleft-licensed
software is generally compatible

● Are you certain that the software truly is released under the license
that is stated? Did all contributors agree to that license?

Industry must balance
these risks against the
clear benefit of OSS:
reusing existing code

Licensing and Large Language Models (LLMs)

● Recent development: large language models trained on all code in
public repositories on GitHub (e.g., Codex model)

Licensing and Large Language Models (LLMs)

● Recent development: large language models trained on all code in
public repositories on GitHub (e.g., Codex model)

● Tools like GitHub Copilot suggest lines of code as you program,
based on the Codex model

Licensing and Large Language Models (LLMs)

● Recent development: large language models trained on all code in
public repositories on GitHub (e.g., Codex model)

● Tools like GitHub Copilot suggest lines of code as you program,
based on the Codex model
○ Copilot has been observed to output entire snippets of code

from public GitHub repositories

Licensing and Large Language Models (LLMs)

● Recent development: large language models trained on all code in
public repositories on GitHub (e.g., Codex model)

● Tools like GitHub Copilot suggest lines of code as you program,
based on the Codex model
○ Copilot has been observed to output entire snippets of code

from public GitHub repositories
● Ongoing legal battles over:

Licensing and Large Language Models (LLMs)

● Recent development: large language models trained on all code in
public repositories on GitHub (e.g., Codex model)

● Tools like GitHub Copilot suggest lines of code as you program,
based on the Codex model
○ Copilot has been observed to output entire snippets of code

from public GitHub repositories
● Ongoing legal battles over:

○ Does training Codex on public code violate copyleft licenses?

Licensing and Large Language Models (LLMs)

● Recent development: large language models trained on all code in
public repositories on GitHub (e.g., Codex model)

● Tools like GitHub Copilot suggest lines of code as you program,
based on the Codex model
○ Copilot has been observed to output entire snippets of code

from public GitHub repositories
● Ongoing legal battles over:

○ Does training Codex on public code violate copyleft licenses?
○ Who is the owner of Copilot’s output, especially when it is

similar to public code that has an owner?

Licensing and Large Language Models (LLMs)

● Recent development: large language models trained on all code in
public repositories on GitHub (e.g., Codex model)

● Tools like GitHub Copilot suggest lines of code as you program,
based on the Codex model
○ Copilot has been observed to output entire snippets of code

from public GitHub repositories
● Ongoing legal battles over:

○ Does training Codex on public code violate copyleft licenses?
○ Who is the owner of Copilot’s output, especially when it is

similar to public code that has an owner?

Many companies forbid
their developers from using
Copilot or similar tools
because of the risks from
these legal battles!

Takeaways: free and open-source software

● Free software and open-source software represent different
philosophies about how code should be shared:
○ Free software: if I share with you, you need to share with me
○ Open source software: I share with you, you do what you want

● Because software is copyrightable, licenses enforce philosophy
○ copyleft licenses enforce free software principles

● Many viable open source business models, but all have risks
● Licensing concerns are the main reason to avoid open-source code

in industry (industry loves permissive licenses)

Free and Open-source Software

Today’s agenda:

● Finish static analysis slides
● Reading Quiz
● History + the “free software” philosophy
● Open-source: licenses and business models
● Mid-semester survey: how am I doing?

Mid-semester survey: anonymous

https://tinyurl.com/3r9j873j

https://tinyurl.com/3r9j873j

