
Debugging (1/2)
Martin Kellogg

Debugging (Part 1/2)

Today’s agenda:

● Reading Quiz
● What is a bug, anyway?
● Bug reports, triage, and the defect lifecycle
● Debugging

○ printf debugging and logging
○ debuggers
○ delta debugging

Debugging (Part 1/2)

Today’s agenda:

● Reading Quiz
● What is a bug, anyway?
● Bug reports, triage, and the defect lifecycle
● Debugging

○ printf debugging and logging
○ debuggers
○ delta debugging

Reading quiz (debugging part 1)

Q1: TRUE or FALSE: a hypothesis is a guess that can be tested to see
if it is true or not.

Q2: According to the author, the relationship between debugging
and science is:

A. good programmers are usually good scientists, too
B. debuggers (e.g., gdb) implement the scientific method internally
C. both sometimes involve rubber ducks
D. each step of debugging is a miniature science experiment

Reading quiz (debugging part 1)

Q1: TRUE or FALSE: a hypothesis is a guess that can be tested to see
if it is true or not.

Q2: According to the author, the relationship between debugging
and science is:

A. good programmers are usually good scientists, too
B. debuggers (e.g., gdb) implement the scientific method internally
C. both sometimes involve rubber ducks
D. each step of debugging is a miniature science experiment

Reading quiz (debugging part 1)

Q1: TRUE or FALSE: a hypothesis is a guess that can be tested to see
if it is true or not.

Q2: According to the author, the relationship between debugging
and science is:

A. good programmers are usually good scientists, too
B. debuggers (e.g., gdb) implement the scientific method internally
C. both sometimes involve rubber ducks
D. each step of debugging is a miniature science experiment

Debugging (Part 1/2)

Today’s agenda:

● Reading Quiz
● What is a bug, anyway?
● Bug reports, triage, and the defect lifecycle
● Debugging

○ printf debugging and logging
○ debuggers
○ delta debugging

Review: finding bugs

● Quality assurance is critical to software engineering

Review: finding bugs

● Quality assurance is critical to software engineering
● We’ve discussed static (code review, dataflow analysis) and

dynamic (testing) approaches to finding bugs

Review: finding bugs

● Quality assurance is critical to software engineering
● We’ve discussed static (code review, dataflow analysis) and

dynamic (testing) approaches to finding bugs
● Key question for today: what happens to all of the bugs those

find?

Terminology: what is a bug?

Terminology: what is a bug?

● “bug” is an ambiguous term in common usage - it can refer to
either static or dynamic problems

Terminology: what is a bug?

● “bug” is an ambiguous term in common usage - it can refer to
either static or dynamic problems

● we’ll use the following “standard” terms to disambiguate:

Terminology: what is a bug?

● “bug” is an ambiguous term in common usage - it can refer to
either static or dynamic problems

● we’ll use the following “standard” terms to disambiguate:

Definition: a fault is an exceptional situation at run time

Terminology: what is a bug?

● “bug” is an ambiguous term in common usage - it can refer to
either static or dynamic problems

● we’ll use the following “standard” terms to disambiguate:

Definition: a fault is an exceptional situation at run time
● when you’re running a program and something goes wrong, a

fault has occurred

Terminology: what is a bug?

● “bug” is an ambiguous term in common usage - it can refer to
either static or dynamic problems

● we’ll use the following “standard” terms to disambiguate:

Definition: a fault is an exceptional situation at run time
● when you’re running a program and something goes wrong, a

fault has occurred

Definition: a defect is any characteristic of a product which hinders
its usability for its intended purpose

Terminology: what is a bug?

● “bug” is an ambiguous term in common usage - it can refer to
either static or dynamic problems

● we’ll use the following “standard” terms to disambiguate:

Definition: a fault is an exceptional situation at run time
● when you’re running a program and something goes wrong, a

fault has occurred

Definition: a defect is any characteristic of a product which hinders
its usability for its intended purpose
● cf. “design defect”. I’ll use “bug” to mean “a defect in source code”

Terminology: bug reports

Terminology: bug reports

Definition: a bug report provides information about a defect

Terminology: bug reports

Definition: a bug report provides information about a defect
● Created by testers, users, tools, etc.
● Often contains multiple types of information
● Often tracked in a database

Terminology: bug reports

Definition: a bug report provides information about a defect
● Created by testers, users, tools, etc.
● Often contains multiple types of information
● Often tracked in a database

Definition: A feature request is a potential change to the intended
purpose (requirements) of software

Terminology: bug reports

Definition: a bug report provides information about a defect
● Created by testers, users, tools, etc.
● Often contains multiple types of information
● Often tracked in a database

Definition: A feature request is a potential change to the intended
purpose (requirements) of software
● In CS: an issue is either a bug report or a feature request (cf.

“issue tracking system”)

Terminology: bug vs. features

Terminology: bug vs. features

● what is a bug and what is a
feature is subjective

Terminology: bug vs. features

● what is a bug and what is a
feature is subjective

Terminology: bug vs. features

● what is a bug and what is a
feature is subjective

● good rule of thumb: in any
system with a large
number of users, someone
relies on every behavior of
the system (intended or
not) as if it were a feature

Terminology: bug vs. features

● what is a bug and what is a
feature is subjective

● good rule of thumb: in any
system with a large
number of users, someone
relies on every behavior of
the system (intended or
not) as if it were a feature

This is often why “old” systems
(e.g., Linux, Windows, etc.) have
behaviors that are unintuitive or
difficult to learn: someone relies
on them, so changing them
would be considered a bug!

Debugging (Part 1/2)

Today’s agenda:

● Reading Quiz
● What is a bug, anyway?
● Bug reports, triage, and the defect lifecycle
● Debugging

○ printf debugging and logging
○ debuggers
○ delta debugging

Defect report lifecycle

Defect report lifecycle

Definition: the defect report lifecycle consists of a number of possible
stages and actions, including reporting, confirmation, triage,
assignment, resolution, and verification.

Defect report lifecycle

Definition: the defect report lifecycle consists of a number of possible
stages and actions, including reporting, confirmation, triage,
assignment, resolution, and verification.
● Not every defect report follows the same path

Defect report lifecycle

Definition: the defect report lifecycle consists of a number of possible
stages and actions, including reporting, confirmation, triage,
assignment, resolution, and verification.
● Not every defect report follows the same path
● The overall process is not linear

○ There are multiple entry points, some cycles, and multiple
exit points (and some never leave …)

Defect report lifecycle

Definition: the defect report lifecycle consists of a number of possible
stages and actions, including reporting, confirmation, triage,
assignment, resolution, and verification.
● Not every defect report follows the same path
● The overall process is not linear

○ There are multiple entry points, some cycles, and multiple
exit points (and some never leave …)

Definition: the status of a defect report tracks its position in the
lifecycle (“new”, “resolved”, etc.)

Defect report lifecycle

Defect report lifecycle

● For example, Bugzilla (a
widely-used open-source
issue tracker) uses this
flow for issues

Defect report lifecycle

● For example, Bugzilla (a
widely-used open-source
issue tracker) uses this
flow for issues

● GitHub's built-in issue
tracker is similar (less
structured)

Defect report lifecycle

● For example, Bugzilla (a
widely-used open-source
issue tracker) uses this
flow for issues

● GitHub's built-in issue
tracker is similar (less
structured)
○ you should use an issue

tracker for the group
project (GitHub is okay)

● most new bugs enter the
system as “unconfirmed”

Defect report lifecycle:
new bugs

● most new bugs enter the
system as “unconfirmed”

● two main sources:

Defect report lifecycle:
new bugs

● most new bugs enter the
system as “unconfirmed”

● two main sources:
○ internal bug reports,

e.g., from testers/QA

Defect report lifecycle:
new bugs

● most new bugs enter the
system as “unconfirmed”

● two main sources:
○ internal bug reports,

e.g., from testers/QA
○ external bug reports,

e.g., from users

Defect report lifecycle:
new bugs

● most new bugs enter the
system as “unconfirmed”

● two main sources:
○ internal bug reports,

e.g., from testers/QA
○ external bug reports,

e.g., from users
● internal reports are usually

higher quality/more detailed

Defect report lifecycle:
new bugs

● most new bugs enter the
system as “unconfirmed”

● two main sources:
○ internal bug reports,

e.g., from testers/QA
○ external bug reports,

e.g., from users
● internal reports are usually

higher quality/more detailed

Defect report lifecycle:
new bugs

Modern view of end-user bug
reports: we cannot count on
end users to describe bugs in
a helpful manner

● most new bugs enter the
system as “unconfirmed”

● two main sources:
○ internal bug reports,

e.g., from testers/QA
○ external bug reports,

e.g., from users
● internal reports are usually

higher quality/more detailed

Defect report lifecycle:
new bugs

Modern view of end-user bug
reports: we cannot count on
end users to describe bugs in
a helpful manner

Quick demo: GitHub issue tracker

example: https://github.com/typetools/checker-framework/issues

https://github.com/typetools/checker-framework/issues

Writing a good defect report

● clearly explain:
○ what you did

■ ideally, by providing a set of commands that can be pasted
into a shell and reproduce the problem

○ what the program did
■ usually you should copy-paste output, but this could also

be screenshots, video, etc.
○ why you believe that what the program did is wrong
○ what you expected the program to do instead

Writing a good defect report

● clearly explain:

Writing a good defect report

● clearly explain:
○ what you did

■ ideally, by providing a set of commands that can be pasted
into a shell and reproduce the problem

Writing a good defect report

● clearly explain:
○ what you did

■ ideally, by providing a set of commands that can be pasted
into a shell and reproduce the problem

○ what the program did
■ usually you should copy-paste output, but this could also

be screenshots, video, etc.

Writing a good defect report

● clearly explain:
○ what you did

■ ideally, by providing a set of commands that can be pasted
into a shell and reproduce the problem

○ what the program did
■ usually you should copy-paste output, but this could also

be screenshots, video, etc.
○ why you believe that what the program did is wrong

Writing a good defect report

● clearly explain:
○ what you did

■ ideally, by providing a set of commands that can be pasted
into a shell and reproduce the problem

○ what the program did
■ usually you should copy-paste output, but this could also

be screenshots, video, etc.
○ why you believe that what the program did is wrong
○ what you expected the program to do instead

Defect reports: conversations

Defect reports: conversations

● Defect reports are not static

Defect reports: conversations

● Defect reports are not static
● Instead, they are updated over time

○ Request more info
○ Assign to a dev
○ Discuss solutions

Defect reports: conversations

● Defect reports are not static
● Instead, they are updated over time

○ Request more info
○ Assign to a dev
○ Discuss solutions

● The report is a log of all relevant activity

Defect reports: conversations

● Defect reports are not static
● Instead, they are updated over time

○ Request more info
○ Assign to a dev
○ Discuss solutions

● The report is a log of all relevant activity
● e.g.:

○ https://github.com/typetools/checker-framework/issues/4838

https://github.com/typetools/checker-framework/issues/4838

Defect reports: conversations

● Defect reports are not static
● Instead, they are updated over time

○ Request more info
○ Assign to a dev
○ Discuss solutions

● The report is a log of all relevant activity
● e.g.:

○ https://github.com/typetools/checker-framework/issues/4838
○ https://github.com/typetools/checker-framework/issues/3001

https://github.com/typetools/checker-framework/issues/4838
https://github.com/typetools/checker-framework/issues/3001

Defect report lifecycle:
triage

● Key question: which bugs
should we address first?

Defect report lifecycle:
triage

● Key question: which bugs
should we address first?

● “triage” is an analogy to
medicine: which emergency
room patient should you
help first?

Defect report lifecycle:
triage

Defect report lifecycle: triage

Definition: triage is the assignment of degrees of urgency to wounds
or illnesses to decide the order of treatment of a large number of
patients or casualties

Defect report lifecycle: triage

Definition: triage is the assignment of degrees of urgency to wounds
or illnesses to decide the order of treatment of a large number of
patients or casualties
● bug triage has the same definition, but with software defects

instead of wounds/illnesses

Defect report lifecycle: triage

Definition: triage is the assignment of degrees of urgency to wounds
or illnesses to decide the order of treatment of a large number of
patients or casualties
● bug triage has the same definition, but with software defects

instead of wounds/illnesses
● there are always more defect reports than resources available

to address them

Defect report lifecycle: triage

Definition: triage is the assignment of degrees of urgency to wounds
or illnesses to decide the order of treatment of a large number of
patients or casualties
● bug triage has the same definition, but with software defects

instead of wounds/illnesses
● there are always more defect reports than resources available

to address them
● we must do cost-benefit analysis:

○ How expensive is it to fix this bug?
○ How expensive is it to not fix this bug?

Defect report lifecycle: severity

Definition: severity is the degree of impact that a defect has on the
development or operation of a component or system

Defect report lifecycle: severity

Definition: severity is the degree of impact that a defect has on the
development or operation of a component or system
● intuition: severity = “cost of not fixing the bug”

Defect report lifecycle: severity

Definition: severity is the degree of impact that a defect has on the
development or operation of a component or system
● intuition: severity = “cost of not fixing the bug”
● BugZilla severity levels (varies by company/tool, but these typical):

Defect report lifecycle: priority

Definition: priority indicates the importance or urgency of fixing a
defect

Defect report lifecycle: priority

Definition: priority indicates the importance or urgency of fixing a
defect
● related to, but officially different from, severity

○ intuition: if you have lots of high severity bugs, you need to
prioritize between them

Defect report lifecycle: priority

Definition: priority indicates the importance or urgency of fixing a
defect
● related to, but officially different from, severity

○ intuition: if you have lots of high severity bugs, you need to
prioritize between them

Usually, “high priority” = “a
developer will work on this
soon” (e.g., in the next sprint).

“As a rule of thumb, limit High
priority task assignments for a
single person to three, five in
exceptional times.”

Defect report lifecycle: priority

Definition: priority indicates the importance or urgency of fixing a
defect
● related to, but officially different from, severity

○ intuition: if you have lots of high severity bugs, you need to
prioritize between them

Usually, “high priority” = “a
developer will work on this
soon” (e.g., in the next sprint).

“As a rule of thumb, limit High
priority task assignments for a
single person to three, five in
exceptional times.”

Defect report lifecycle: priority

Definition: priority indicates the importance or urgency of fixing a
defect
● related to, but officially different from, severity

○ intuition: if you have lots of high severity bugs, you need to
prioritize between them

● severity and priority are used together (along with complexity,
risk, etc.) to evaluate, prioritize and assign the resolution of
reports

Defect report lifecycle: priority

Definition: priority indicates the importance or urgency of fixing a
defect
● related to, but officially different from, severity

○ intuition: if you have lots of high severity bugs, you need to
prioritize between them

● severity and priority are used together (along with complexity,
risk, etc.) to evaluate, prioritize and assign the resolution of
reports
○ note that this is a bit of an oversimplification:

“severity + priority = triage” is like “supply + demand = price”

Defect report lifecycle:
assignment

Defect report lifecycle:
assignment

● Key question: who should
fix this bug?

Defect report lifecycle:
assignment

● Key question: who should
fix this bug?

Definition: an assignment
associates a developer with the
responsibility of addressing a
defect report

Defect report lifecycle:
assignment

● Key question: who should
fix this bug?

Definition: an assignment
associates a developer with the
responsibility of addressing a
defect report
● state of the art is “manual”

Defect report lifecycle:
assignment

● Key question: who should
fix this bug?

Definition: an assignment
associates a developer with the
responsibility of addressing a
defect report
● state of the art is “manual”
● usually based on who “owns” the

relevant code

Defect report lifecycle:
resolution

● Key question: did we fix it?

Defect report lifecycle:
resolution

● Key question: did we fix it?

Definition: a defect report
resolution status indicates the
result of the most recent
attempt to address it

Defect report lifecycle:
resolution

● Key question: did we fix it?

Definition: a defect report
resolution status indicates the
result of the most recent
attempt to address it
● Important: resolved need

not mean “fixed”

Defect report lifecycle:
resolution

Defect report lifecycle: possible resolutions

BugZilla resolution options:
● FIXED (give commit #)

Defect report lifecycle: possible resolutions

BugZilla resolution options:
● FIXED (give commit #)
● INVALID (bug report is invalid)
● WONTFIX (we don't ever plan to fix it)
● DUPLICATE (link to other bug report #)
● WORKSFORME (cannot reproduce, a.k.a. “WFM”)
● MOVED (give link: filed with wrong project)
● NOTABUG (report describes expected behavior)
● NOTOURBUG (is a bug, but not with our software)
● INSUFFICIENTDATA (cannot triage/fix w/o more)

Defect report lifecycle: possible resolutions

BugZilla resolution options:
● FIXED (give commit #)
● INVALID (bug report is invalid)
● WONTFIX (we don't ever plan to fix it)
● DUPLICATE (link to other bug report #)
● WORKSFORME (cannot reproduce, a.k.a. “WFM”)
● MOVED (give link: filed with wrong project)
● NOTABUG (report describes expected behavior)
● NOTOURBUG (is a bug, but not with our software)
● INSUFFICIENTDATA (cannot triage/fix w/o more)

Thought question:
what fraction of bug
reports end up with
each resolution?

Defect report lifecycle: possible resolutions

[Jalbert et al. Automated Duplicate Detection for Bug Tracking Systems. DSN 2008.]

Defect report lifecycle:
reopening

● A defect report that was
previously resolved (e.g.
“FIXED”) may be reopened if
later evidence suggests the
old resolution is no longer
adequate

Defect report lifecycle:
reopening

● A defect report that was
previously resolved (e.g.
“FIXED”) may be reopened if
later evidence suggests the
old resolution is no longer
adequate

● Surely this only happens
rarely?

Defect report lifecycle:
reopening

Defect report lifecycle: reopening

● Many fixes are wrong,
even on mature, critical
software!

[Yin et al. How Do Fixes Become Bugs?
ESEC/FSE 2011.]

Defect report lifecycle: reopening

● Many fixes are wrong,
even on mature, critical
software!

● Implication: reopening
bugs is common

[Yin et al. How Do Fixes Become Bugs?
ESEC/FSE 2011.]

Defect report lifecycle: reopening

● Many fixes are wrong,
even on mature, critical
software!

● Implication: reopening
bugs is common
○ Importance of

regression testing!

[Yin et al. How Do Fixes Become Bugs?
ESEC/FSE 2011.]

Defect report lifecycle:
fixing

● Key question: once we have
a good defect report, how
do we figure out how to
resolve the defect?

Defect report lifecycle:
fixing

● Key question: once we have
a good defect report, how
do we figure out how to
resolve the defect?
○ This is debugging

Defect report lifecycle:
fixing

● Key question: once we have
a good defect report, how
do we figure out how to
resolve the defect?
○ This is debugging
○ Rest of today’s lecture +

all of Thursday’s lecture
on debugging

Defect report lifecycle:
fixing

Debugging (Part 1/2)

Today’s agenda:

● Reading Quiz
● What is a bug, anyway?
● Bug reports, triage, and the defect lifecycle
● Debugging

○ printf debugging and logging
○ debuggers
○ delta debugging

Debugging: what makes it difficult?

Debugging: what makes it difficult?

● modern software is unimaginably huge

Debugging: what makes it difficult?

● modern software is unimaginably huge
○ analogy: scale of space vs human scale

■ “Space is big. Really big. You just won't believe how vastly,
hugely, mind-bogglingly big it is. I mean, you may think it's
a long way down the road to the chemist, but that's just
peanuts to space.” – Douglas Adams

Debugging: what makes it difficult?

● modern software is unimaginably huge
○ analogy: scale of space vs human scale

■ “Space is big. Really big. You just won't believe how vastly,
hugely, mind-bogglingly big it is. I mean, you may think it's
a long way down the road to the chemist, but that's just
peanuts to space.” – Douglas Adams

○ you will be asked to fix bugs in very large software!

Debugging: what makes it difficult?

● modern software is unimaginably huge
○ analogy: scale of space vs human scale

■ “Space is big. Really big. You just won't believe how vastly,
hugely, mind-bogglingly big it is. I mean, you may think it's
a long way down the road to the chemist, but that's just
peanuts to space.” – Douglas Adams

○ you will be asked to fix bugs in very large software!
● Techniques developed based on smaller code bases simply do not

apply or scale to larger code bases

Debugging: what makes it difficult?

● modern software is unimaginably huge
○ analogy: scale of space vs human scale

■ “Space is big. Really big. You just won't believe how vastly,
hugely, mind-bogglingly big it is. I mean, you may think it's
a long way down the road to the chemist, but that's just
peanuts to space.” – Douglas Adams

○ you will be asked to fix bugs in very large software!
● Techniques developed based on smaller code bases simply do not

apply or scale to larger code bases
○ Techniques from the 1980s or your habits from classes

How big are programs, really?

https://www.informationisbeautiful.net/visualizations/million-lines-of-code/

https://www.informationisbeautiful.net/visualizations/million-lines-of-code/

How big are programs, really?

https://www.informationisbeautiful.net/visualizations/million-lines-of-code/

IP1 starter code:
~2,000 lines

https://www.informationisbeautiful.net/visualizations/million-lines-of-code/

How big are programs, really?

https://www.informationisbeautiful.net/visualizations/million-lines-of-code/

all of
covey.town:
~16,000 lines

https://www.informationisbeautiful.net/visualizations/million-lines-of-code/

How big are programs, really?

https://www.informationisbeautiful.net/visualizations/million-lines-of-code/

https://www.informationisbeautiful.net/visualizations/million-lines-of-code/

How big are programs, really?

https://www.informationisbeautiful.net/visualizations/million-lines-of-code/

Chrome at ~7M LoC is ~400x
bigger than covey.town

https://www.informationisbeautiful.net/visualizations/million-lines-of-code/

How big are programs, really?

https://www.informationisbeautiful.net/visualizations/million-lines-of-code/

https://www.informationisbeautiful.net/visualizations/million-lines-of-code/

How big are programs, really?

https://www.informationisbeautiful.net/visualizations/million-lines-of-code/

Chrome is small compared to
even old versions of Windows!

https://www.informationisbeautiful.net/visualizations/million-lines-of-code/

How big are programs, really?

https://www.informationisbeautiful.net/visualizations/million-lines-of-code/

https://www.informationisbeautiful.net/visualizations/million-lines-of-code/

How big are programs, really?

https://www.wired.com/2015/09/google-2-billion-lines-codeand-one-place/

https://www.wired.com/2015/09/google-2-billion-lines-codeand-one-place/

Humans are poor at comprehending large scales

● covey.town 16 000
● google 2 000 000 000

Humans are poor at comprehending large scales

● covey.town 16 000
● google 2 000 000 000
● Imagine that there is a bug somewhere, anywhere, in covey.town

Humans are poor at comprehending large scales

● covey.town 16 000
● google 2 000 000 000
● Imagine that there is a bug somewhere, anywhere, in covey.town

○ Imagine further that you can find that bug in one minute

Humans are poor at comprehending large scales

● covey.town 16 000
● google 2 000 000 000
● Imagine that there is a bug somewhere, anywhere, in covey.town

○ Imagine further that you can find that bug in one minute
● At the same rate, it would take you more than a month to find it

in all of google

Humans are poor at comprehending large scales

● covey.town 16 000
● google 2 000 000 000
● Imagine that there is a bug somewhere, anywhere, in covey.town

○ Imagine further that you can find that bug in one minute
● At the same rate, it would take you more than a month to find it

in all of google
○ a one-hour bug on covey.town would take years on google!

Steps of debugging

● When working with very large systems, it is important to think of
debugging systematically

Steps of debugging

● When working with very large systems, it is important to think of
debugging systematically

● To effectively debug a problem, you should do the following:

Steps of debugging

● When working with very large systems, it is important to think of
debugging systematically

● To effectively debug a problem, you should do the following:
○ reproduce the issue yourself

Steps of debugging

● When working with very large systems, it is important to think of
debugging systematically

● To effectively debug a problem, you should do the following:
○ reproduce the issue yourself
○ minimize the reproduction so that you can reason about it

Steps of debugging

● When working with very large systems, it is important to think of
debugging systematically

● To effectively debug a problem, you should do the following:
○ reproduce the issue yourself
○ minimize the reproduction so that you can reason about it
○ localize the fault to a particular part of the program

Steps of debugging

● When working with very large systems, it is important to think of
debugging systematically

● To effectively debug a problem, you should do the following:
○ reproduce the issue yourself
○ minimize the reproduction so that you can reason about it
○ localize the fault to a particular part of the program
○ test possible fixes to find the right one

Steps of debugging

● When working with very large systems, it is important to think of
debugging systematically

● To effectively debug a problem, you should do the following:
○ reproduce the issue yourself
○ minimize the reproduction so that you can reason about it
○ localize the fault to a particular part of the program
○ test possible fixes to find the right one
○ confirm that your fix actually resolves the issue

Reproducing a bug

Definition: a bug can be reproduced if a developer can elicit the
reported symptoms themself

Reproducing a bug

Definition: a bug can be reproduced if a developer can elicit the
reported symptoms themself
● “reported symptoms” = “the problem described in the defect

report”

Reproducing a bug

Definition: a bug can be reproduced if a developer can elicit the
reported symptoms themself
● “reported symptoms” = “the problem described in the defect

report”
● reproducing bugs is a test input generation problem:

○ find the inputs that cause the fault to occur

Reproducing a bug

Definition: a bug can be reproduced if a developer can elicit the
reported symptoms themself
● “reported symptoms” = “the problem described in the defect

report”
● reproducing bugs is a test input generation problem:

○ find the inputs that cause the fault to occur
● lots of bugs are resolved at this stage:

Reproducing a bug

Definition: a bug can be reproduced if a developer can elicit the
reported symptoms themself
● “reported symptoms” = “the problem described in the defect

report”
● reproducing bugs is a test input generation problem:

○ find the inputs that cause the fault to occur
● lots of bugs are resolved at this stage:

○ WORKSFORME is the BugZilla resolution for this

Reproducing a bug

Definition: a bug can be reproduced if a developer can elicit the
reported symptoms themself
● “reported symptoms” = “the problem described in the defect

report”
● reproducing bugs is a test input generation problem:

○ find the inputs that cause the fault to occur
● lots of bugs are resolved at this stage:

○ WORKSFORME is the BugZilla resolution for this
○ especially bugs reported by users often do not get past this

stage: not enough information to reproduce the fault

Minimizing the reproduction

Definition: a minimal reproduction of a bug is the smallest input that
elicits the bug’s reported symptoms

Minimizing the reproduction

Definition: a minimal reproduction of a bug is the smallest input that
elicits the bug’s reported symptoms
● defect reports containing minimal failing examples are the gold

standard (but rare in practice)

Minimizing the reproduction

Definition: a minimal reproduction of a bug is the smallest input that
elicits the bug’s reported symptoms
● defect reports containing minimal failing examples are the gold

standard (but rare in practice)
● commonly, even reproducible bugs come with a complex test input

○ e.g., including the entire environment in which the software was
running

Minimizing the reproduction

Definition: a minimal reproduction of a bug is the smallest input that
elicits the bug’s reported symptoms
● defect reports containing minimal failing examples are the gold

standard (but rare in practice)
● commonly, even reproducible bugs come with a complex test input

○ e.g., including the entire environment in which the software was
running

● minimizing the reproduction helps the developer reason about
which part of the software might be responsible for the bug

Minimizing the reproduction

Definition: a minimal reproduction of a bug is the smallest input that
elicits the bug’s reported symptoms
● defect reports containing minimal failing examples are the gold

standard (but rare in practice)
● commonly, even reproducible bugs come with a complex test input

○ e.g., including the entire environment in which the software was
running

● minimizing the reproduction helps the developer reason about
which part of the software might be responsible for the bug
○ also useful for assignment

Minimizing the reproduction

Definition: a minimal reproduction of a bug is the smallest input that
elicits the bug’s reported symptoms
● defect reports containing minimal failing examples are the gold

standard (but rare in practice)
● commonly, even reproducible bugs come with a complex test input

○ e.g., including the entire environment in which the software was
running

● minimizing the reproduction helps the developer reason about
which part of the software might be responsible for the bug
○ also useful for assignment

Minimizing the reproduction
is sometimes unnecessary: a
small (but not minimal) input
is often good enough

Fault localization

Definition: fault localization is the task of identifying source code
regions implicated in a bug

Fault localization

Definition: fault localization is the task of identifying source code
regions implicated in a bug
● “This regression test is failing. Which lines should we change to fix

things?”

Fault localization

Definition: fault localization is the task of identifying source code
regions implicated in a bug
● “This regression test is failing. Which lines should we change to fix

things?”
● Answer is not unique: there are often many places to fix a bug

Fault localization

Definition: fault localization is the task of identifying source code
regions implicated in a bug
● “This regression test is failing. Which lines should we change to fix

things?”
● Answer is not unique: there are often many places to fix a bug

○ Example: check for null at caller or callee?

Fault localization

Definition: fault localization is the task of identifying source code
regions implicated in a bug
● “This regression test is failing. Which lines should we change to fix

things?”
● Answer is not unique: there are often many places to fix a bug

○ Example: check for null at caller or callee?
● While some tool support is available, state of the practice is manual

Fault localization

Definition: fault localization is the task of identifying source code
regions implicated in a bug
● “This regression test is failing. Which lines should we change to fix

things?”
● Answer is not unique: there are often many places to fix a bug

○ Example: check for null at caller or callee?
● While some tool support is available, state of the practice is manual

○ automated tools rank parts of the program by “suspiciousness”

Fault localization

Definition: fault localization is the task of identifying source code
regions implicated in a bug
● “This regression test is failing. Which lines should we change to fix

things?”
● Answer is not unique: there are often many places to fix a bug

○ Example: check for null at caller or callee?
● While some tool support is available, state of the practice is manual

○ automated tools rank parts of the program by “suspiciousness”
○ suspiciousness computed by how often each part of the

program is covered by passing vs. failing tests

Testing and confirming your fix

Testing and confirming your fix

● rule of thumb: every bug fix should be accompanied by a new
regression test

Testing and confirming your fix

● rule of thumb: every bug fix should be accompanied by a new
regression test
○ often more than one: many fixes are possible, but some are

better than others, so you want tests that rule out “wrong” fixes
that you tried

Testing and confirming your fix

● rule of thumb: every bug fix should be accompanied by a new
regression test
○ often more than one: many fixes are possible, but some are

better than others, so you want tests that rule out “wrong” fixes
that you tried

● another rule of thumb: each new regression test should fail before
applying your fix (and pass after, of course)

Testing and confirming your fix

● rule of thumb: every bug fix should be accompanied by a new
regression test
○ often more than one: many fixes are possible, but some are

better than others, so you want tests that rule out “wrong” fixes
that you tried

● another rule of thumb: each new regression test should fail before
applying your fix (and pass after, of course)
○ easy mistake to make: write or modify a test in such a way that

you end up no longer reproducing the bug while “fixing” the bug

Testing and confirming your fix

● rule of thumb: every bug fix should be accompanied by a new
regression test
○ often more than one: many fixes are possible, but some are

better than others, so you want tests that rule out “wrong” fixes
that you tried

● another rule of thumb: each new regression test should fail before
applying your fix (and pass after, of course)
○ easy mistake to make: write or modify a test in such a way that

you end up no longer reproducing the bug while “fixing” the bug
○ best practice: commit tests separately

Debugging (Part 2/2)

Two-lecture agenda:

● What is a bug, anyway?
● Bug reports, triage, and the defect lifecycle
● Debugging

○ printf debugging and logging
○ debuggers
○ delta debugging

Debugging (Part 2/2)

Today’s agenda:

● Reading quiz
● Debugging

○ printf debugging and logging
○ debuggers
○ delta debugging

Reading quiz: debugging (part 2)

Q1: TRUE or FALSE: delta debugging requires a test to prove that
each circumstance is really failure inducing

Q2: Which of the following tasks did the article’s authors use delta
debugging to improve:

A. isolating differences
B. finding failure-inducing code changes
C. simplifying user interactions
D. all of the above

Reading quiz: debugging (part 2)

Q1: TRUE or FALSE: delta debugging requires a test to prove that
each circumstance is really failure inducing

Q2: Which of the following tasks did the article’s authors use delta
debugging to improve:

A. isolating differences
B. finding failure-inducing code changes
C. simplifying user interactions
D. all of the above

Reading quiz: debugging (part 2)

Q1: TRUE or FALSE: delta debugging requires a test to prove that
each circumstance is really failure inducing

Q2: Which of the following tasks did the article’s authors use delta
debugging to improve:

A. isolating differences
B. finding failure-inducing code changes
C. simplifying user interactions
D. all of the above

Debugging (Part 2/2)

Today’s agenda:

● Reading quiz
● Debugging

○ printf debugging and logging
○ debuggers
○ delta debugging

Review: steps of debugging

● When working with very large systems, it is important to think of
debugging systematically

● To effectively debug a problem, you should do the following:
○ reproduce the issue yourself
○ minimize the reproduction so that you can reason about it
○ localize the fault to a particular part of the program
○ test possible fixes to find the right one
○ confirm that your fix actually resolves the issue

Debugging strategies

● the remainder of our lectures on debugging will be devoted to
discussing different strategies for debugging

Debugging strategies

● the remainder of our lectures on debugging will be devoted to
discussing different strategies for debugging

● all of these strategies have one key idea in common: treat
debugging as a series of hypothesis tests

Debugging strategies

● the remainder of our lectures on debugging will be devoted to
discussing different strategies for debugging

● all of these strategies have one key idea in common: treat
debugging as a series of hypothesis tests
○ hypothesis testing is one of the key components of the

scientific method:

Debugging strategies

● the remainder of our lectures on debugging will be devoted to
discussing different strategies for debugging

● all of these strategies have one key idea in common: treat
debugging as a series of hypothesis tests
○ hypothesis testing is one of the key components of the

scientific method:
1. guess why something happens, devise an experiment to

test if your guess is correct, then run the experiment
2. repeat step 1 until you’ve figured it out

Debugging as hypothesis testing

● the key to treating debugging as hypothesis testing is to make
falsifiable guesses about why the program is behaving a
particular way

Debugging as hypothesis testing

● the key to treating debugging as hypothesis testing is to make
falsifiable guesses about why the program is behaving a
particular way
○ “falsifiable” = “can be true or false”

Debugging as hypothesis testing

● the key to treating debugging as hypothesis testing is to make
falsifiable guesses about why the program is behaving a
particular way
○ “falsifiable” = “can be true or false”
○ ideally, you’d also like your guesses to be easy to test

Debugging as hypothesis testing

● the key to treating debugging as hypothesis testing is to make
falsifiable guesses about why the program is behaving a
particular way
○ “falsifiable” = “can be true or false”
○ ideally, you’d also like your guesses to be easy to test

● each time you make such a guess, you need to design an
experiment to check if the guess is correct

Debugging as hypothesis testing

● the key to treating debugging as hypothesis testing is to make
falsifiable guesses about why the program is behaving a
particular way
○ “falsifiable” = “can be true or false”
○ ideally, you’d also like your guesses to be easy to test

● each time you make such a guess, you need to design an
experiment to check if the guess is correct
○ most of the debugging strategies we’ll talk about are ways to

check if a particular guess is correct

Debugging as hypothesis testing

● the key to treating debugging as hypothesis testing is to make
falsifiable guesses about why the program is behaving a
particular way
○ “falsifiable” = “can be true or false”
○ ideally, you’d also like your guesses to be easy to test

● each time you make such a guess, you need to design an
experiment to check if the guess is correct
○ most of the debugging strategies we’ll talk about are ways to

check if a particular guess is correct

Big difference between you
(“computer scientist”) and
anyone who knows how to
program: the ability to apply the
scientific method to coding

Debugging strategies

● “printf” debugging: using print statements to find a bug
○ and its larger-scale cousin: logging

● debuggers: inspecting program state while it is running
○ we’ll talk a little about how they work

● delta debugging
○ a formalization of the scientific approach to debugging

Debugging (Part 2/2)

Today’s agenda:

● Reading quiz
● Debugging

○ printf debugging and logging
○ debuggers
○ delta debugging

“printf” debugging

● probably your most common debugging strategy already!

“printf” debugging

● probably your most common debugging strategy already!
● key idea: instrument the program so that it prints the values of

key variables at a particular point

“printf” debugging

● probably your most common debugging strategy already!
● key idea: instrument the program so that it prints the values of

key variables at a particular point
● advantages:

○ easy and natural

“printf” debugging

● probably your most common debugging strategy already!
● key idea: instrument the program so that it prints the values of

key variables at a particular point
● advantages:

○ easy and natural
● disadvantages:

○ must recompile, rerun program each time you want to test
something else

○ sometimes considered “unprofessional”

“printf” debugging

● probably your most common debugging strategy already!
● key idea: instrument the program so that it prints the values of

key variables at a particular point
● advantages:

○ easy and natural
● disadvantages:

○ must recompile, rerun program each time you want to test
something else

○ sometimes considered “unprofessional”

This is a misconception: professional
engineers commonly use printf
debugging. But printf debugging
should be just one tool in your toolbox
of debugging strategies!

Logging

Definition: logging is the process of recording information about the
program’s internal state as it runs via a printf-like interface

Logging

Definition: logging is the process of recording information about the
program’s internal state as it runs via a printf-like interface

● logging is a key technology for monitoring modern systems
○ e.g., via tools like Log4j, slf4j, etc.

Logging

Definition: logging is the process of recording information about the
program’s internal state as it runs via a printf-like interface

● logging is a key technology for monitoring modern systems
○ e.g., via tools like Log4j, slf4j, etc.

● logs also play a major role in debugging large-scale failures of
important distributed systems

Logging

Definition: logging is the process of recording information about the
program’s internal state as it runs via a printf-like interface

● logging is a key technology for monitoring modern systems
○ e.g., via tools like Log4j, slf4j, etc.

● logs also play a major role in debugging large-scale failures of
important distributed systems
○ we’ll discuss this more when we talk about post-mortems in

our DevOps lectures, near the end of the semester

Logging: levels

Typical example of a (Java) logging statement:

log.debug(“myVariable=%s”, myVariable);

Logging: levels

Typical example of a (Java) logging statement:

log.debug(“myVariable=%s”, myVariable);

the log itself is usually a static
field; the logging framework
instantiates it, etc.

Logging: levels

Typical example of a (Java) logging statement:

log.debug(“myVariable=%s”, myVariable);

“debug” means if debug-level
logging isn’t enabled in the
framework, this becomes a
no-op

Logging: levels

Typical example of a (Java) logging statement:

log.debug(“myVariable=%s”, myVariable);

“debug” means if debug-level
logging isn’t enabled in the
framework, this becomes a
no-op

levels:
error ⊆ warning ⊆ info ⊆ debug

developer chooses one level, all
lower level messages are also logged

Logging: levels

Typical example of a (Java) logging statement:

log.debug(“myVariable=%s”, myVariable);

printf-like syntax isn’t just for show: goal
here is lazy evaluation, so that if debug
logging isn’t enabled, this string is never
constructed

Logging: levels

Typical example of a (Java) logging statement:

log.debug(“myVariable=%s”, myVariable);

arguments to printf passed by reference, so
if debug-level logging is off, this argument’s
toString() method is never called

Logging: advice

Logging: advice

● Do log lots of information at debug or info level, so that if
something is wrong with your service you can quickly get lots of
information that you can use to debug it.

Logging: advice

● Do log lots of information at debug or info level, so that if
something is wrong with your service you can quickly get lots of
information that you can use to debug it.

● Don’t log sensitive data (e.g., credit card numbers in plaintext!)
○ this is a surprisingly common and important problem -

developers have a tendency to log anything that might be
useful when debugging a failure later!

Debugging (Part 2/2)

Today’s agenda:

● Reading quiz
● Debugging

○ printf debugging and logging
○ debuggers
○ delta debugging

Debuggers

Debuggers

Definition: a debugger is “a software tool that is used to detect the
source of program or script errors, by performing step-by-step
execution of application code and viewing the content of code
variables.” [definition from Microsoft Developer Network]

Debuggers

Definition: a debugger is “a software tool that is used to detect the
source of program or script errors, by performing step-by-step
execution of application code and viewing the content of code
variables.” [definition from Microsoft Developer Network]

● Can operate on source code or assembly code

Debuggers

Definition: a debugger is “a software tool that is used to detect the
source of program or script errors, by performing step-by-step
execution of application code and viewing the content of code
variables.” [definition from Microsoft Developer Network]

● Can operate on source code or assembly code
● Inspect the values of registers, memory

Debuggers

Definition: a debugger is “a software tool that is used to detect the
source of program or script errors, by performing step-by-step
execution of application code and viewing the content of code
variables.” [definition from Microsoft Developer Network]

● Can operate on source code or assembly code
● Inspect the values of registers, memory
● Key Features (we’ll explain all of them): attach to process,

single-stepping, breakpoints, conditional breakpoints,
watchpoints

Debuggers: how do they work

Debuggers: how do they work: signals

Debuggers: how do they work: signals

● A signal is an asynchronous notification sent to a process about
an event:
○ User pressed Ctrl-C (or did kill %pid)

■ Or asked the Windows Task Manager to terminate it
○ Exceptions (divide by zero, null pointer)
○ From the OS (SIGPIPE)

Debuggers: how do they work: signals

● A signal is an asynchronous notification sent to a process about
an event:
○ User pressed Ctrl-C (or did kill %pid)

■ Or asked the Windows Task Manager to terminate it
○ Exceptions (divide by zero, null pointer)
○ From the OS (SIGPIPE)

● You can install a signal handler – a procedure that will be
executed when the signal occurs.

Debuggers: how do they work: signals

● A signal is an asynchronous notification sent to a process about
an event:
○ User pressed Ctrl-C (or did kill %pid)

■ Or asked the Windows Task Manager to terminate it
○ Exceptions (divide by zero, null pointer)
○ From the OS (SIGPIPE)

● You can install a signal handler – a procedure that will be
executed when the signal occurs.
○ Signal handlers are vulnerable to race conditions. Why?

Debuggers: how do they work: attaching

● Attaching a debugger to a process requires operating system
support

Debuggers: how do they work: attaching

● Attaching a debugger to a process requires operating system
support

● There is a special system call that allows one process to act as a
debugger for a target

Debuggers: how do they work: attaching

● Attaching a debugger to a process requires operating system
support

● There is a special system call that allows one process to act as a
debugger for a target
○ What are the security concerns?

Debuggers: how do they work: attaching

● Attaching a debugger to a process requires operating system
support

● There is a special system call that allows one process to act as a
debugger for a target
○ What are the security concerns?

● Once this is done, the debugger can basically “catch signals”
delivered to the target
○ this isn’t exactly what happens, but it’s a good explanation …

Debuggers: how do they work: breakpoints

● We now have all the ingredients for a “classic” debugger (like
gdb): breakpoints and interactive debugging. How it works:

Debuggers: how do they work: breakpoints

● We now have all the ingredients for a “classic” debugger (like
gdb): breakpoints and interactive debugging. How it works:

A breakpoint is a user-specified
program statement on which
the debugger should stop the
program and begin an
interactive debugging session

Debuggers: how do they work: breakpoints

● We now have all the ingredients for a “classic” debugger (like
gdb): breakpoints and interactive debugging. How it works:
○ Attach to target

Debuggers: how do they work: breakpoints

● We now have all the ingredients for a “classic” debugger (like
gdb): breakpoints and interactive debugging. How it works:
○ Attach to target
○ Set up signal handler

Debuggers: how do they work: breakpoints

● We now have all the ingredients for a “classic” debugger (like
gdb): breakpoints and interactive debugging. How it works:
○ Attach to target
○ Set up signal handler
○ Add in exception causing instructions at desired breakpoints

Debuggers: how do they work: breakpoints

● We now have all the ingredients for a “classic” debugger (like
gdb): breakpoints and interactive debugging. How it works:
○ Attach to target
○ Set up signal handler
○ Add in exception causing instructions at desired breakpoints
○ Inspect globals, do other debugger things, etc.

Debuggers: how do they work: breakpoints

#define BREAKPOINT *(0)=0
int global = 11;
int debugger_signal_handler() {
 printf(“debugger prompt: \n”);
 // debugger code goes here!
}
void main() {
 signal(SIGSEGV, debugger_signal_handler) ;
 global = 33;
 BREAKPOINT;
 global = 55;
 printf("Outside, global = %d\n", global);
 }

All code added
by the debugger
in purple

Debuggers: how do they work: breakpoints

#define BREAKPOINT *(0)=0
int global = 11;
int debugger_signal_handler() {
 printf(“debugger prompt: \n”);
 // debugger code goes here!
}
void main() {
 signal(SIGSEGV, debugger_signal_handler) ;
 global = 33;
 BREAKPOINT;
 global = 55;
 printf("Outside, global = %d\n", global);
 }

“BREAKPOINT”
macro is
guaranteed to
cause SIGSEGV

Debuggers: how do they work: breakpoints

#define BREAKPOINT *(0)=0
int global = 11;
int debugger_signal_handler() {
 printf(“debugger prompt: \n”);
 // debugger code goes here!
}
void main() {
 signal(SIGSEGV, debugger_signal_handler) ;
 global = 33;
 BREAKPOINT;
 global = 55;
 printf("Outside, global = %d\n", global);
 }

debugger registers
a SIGSEGV handler

Debuggers: how do they work: breakpoints

#define BREAKPOINT *(0)=0
int global = 11;
int debugger_signal_handler() {
 printf(“debugger prompt: \n”);
 // debugger code goes here!
}
void main() {
 signal(SIGSEGV, debugger_signal_handler) ;
 global = 33;
 BREAKPOINT;
 global = 55;
 printf("Outside, global = %d\n", global);
 }

debugger registers
a SIGSEGV handler

Debuggers: how do they work: breakpoints

#define BREAKPOINT *(0)=0
int global = 11;
int debugger_signal_handler() {
 printf(“debugger prompt: \n”);
 // debugger code goes here!
}
void main() {
 signal(SIGSEGV, debugger_signal_handler) ;
 global = 33;
 BREAKPOINT;
 global = 55;
 printf("Outside, global = %d\n", global);
 }

at the user-specified
breakpoint, the
debugger forces a
SIGSEGV (which its
handler will intercept)

Debuggers: advanced breakpoints

Debuggers: advanced breakpoints

● Optimization: hardware breakpoints

Debuggers: advanced breakpoints

● Optimization: hardware breakpoints
○ Special register: if PC value = HBP register value, signal

Debuggers: advanced breakpoints

● Optimization: hardware breakpoints
○ Special register: if PC value = HBP register value, signal
○ Faster than software, works on ROMs, only limited number

of breakpoints, etc.

Debuggers: advanced breakpoints

● Optimization: hardware breakpoints
○ Special register: if PC value = HBP register value, signal
○ Faster than software, works on ROMs, only limited number

of breakpoints, etc.
● Feature: conditional breakpoint: “break at instruction X if

some_var = some_value”

Debuggers: advanced breakpoints

● Optimization: hardware breakpoints
○ Special register: if PC value = HBP register value, signal
○ Faster than software, works on ROMs, only limited number

of breakpoints, etc.
● Feature: conditional breakpoint: “break at instruction X if

some_var = some_value”
● As before, but signal handler checks if some_var = some_value

Debuggers: advanced breakpoints

● Optimization: hardware breakpoints
○ Special register: if PC value = HBP register value, signal
○ Faster than software, works on ROMs, only limited number

of breakpoints, etc.
● Feature: conditional breakpoint: “break at instruction X if

some_var = some_value”
● As before, but signal handler checks if some_var = some_value

○ If so, present interactive debugging prompt

Debuggers: advanced breakpoints

● Optimization: hardware breakpoints
○ Special register: if PC value = HBP register value, signal
○ Faster than software, works on ROMs, only limited number

of breakpoints, etc.
● Feature: conditional breakpoint: “break at instruction X if

some_var = some_value”
● As before, but signal handler checks if some_var = some_value

○ If so, present interactive debugging prompt
○ If not, return to program immediately

Debuggers: advanced breakpoints

● Optimization: hardware breakpoints
○ Special register: if PC value = HBP register value, signal
○ Faster than software, works on ROMs, only limited number

of breakpoints, etc.
● Feature: conditional breakpoint: “break at instruction X if

some_var = some_value”
● As before, but signal handler checks if some_var = some_value

○ If so, present interactive debugging prompt
○ If not, return to program immediately
○ Is this fast or slow?

Debuggers: advanced breakpoints

● Optimization: hardware breakpoints
○ Special register: if PC value = HBP register value, signal
○ Faster than software, works on ROMs, only limited number

of breakpoints, etc.
● Feature: conditional breakpoint: “break at instruction X if

some_var = some_value”
● As before, but signal handler checks if some_var = some_value

○ If so, present interactive debugging prompt
○ If not, return to program immediately
○ Is this fast or slow?

Debuggers: single-stepping

Debuggers: single-stepping

● Debuggers also allow you to advance through code one
instruction at a time (this is called single-stepping)

Debuggers: single-stepping

● Debuggers also allow you to advance through code one
instruction at a time (this is called single-stepping)

● To implement this, put a breakpoint at the first instruction (= at
program start)

Debuggers: single-stepping

● Debuggers also allow you to advance through code one
instruction at a time (this is called single-stepping)

● To implement this, put a breakpoint at the first instruction (= at
program start)

● The “single step” or “next” interactive command is equal to:

Debuggers: single-stepping

● Debuggers also allow you to advance through code one
instruction at a time (this is called single-stepping)

● To implement this, put a breakpoint at the first instruction (= at
program start)

● The “single step” or “next” interactive command is equal to:
○ Put a breakpoint at the next instruction
○ Resume execution
○ (No, really.)

Debuggers: watchpoints

● You want to know when a variable changes

Debuggers: watchpoints

● You want to know when a variable changes
● A watchpoint is like a breakpoint, but it stops execution after any

instruction changes the value at location L

Debuggers: watchpoints

● You want to know when a variable changes
● A watchpoint is like a breakpoint, but it stops execution after any

instruction changes the value at location L
● How could we implement this?

Debuggers: watchpoints

A watchpoint is like a
breakpoint, but it stops
execution after any instruction
changes the value at location L

Debuggers: watchpoints

Software Watchpoints:

A watchpoint is like a
breakpoint, but it stops
execution after any instruction
changes the value at location L

Debuggers: watchpoints

Software Watchpoints:
● Put a breakpoint at every instruction (ouch!)

A watchpoint is like a
breakpoint, but it stops
execution after any instruction
changes the value at location L

Debuggers: watchpoints

Software Watchpoints:
● Put a breakpoint at every instruction (ouch!)
● Check the current value of L against a stored value

A watchpoint is like a
breakpoint, but it stops
execution after any instruction
changes the value at location L

Debuggers: watchpoints

Software Watchpoints:
● Put a breakpoint at every instruction (ouch!)
● Check the current value of L against a stored value
● If different, give interactive debugging prompt

A watchpoint is like a
breakpoint, but it stops
execution after any instruction
changes the value at location L

Debuggers: watchpoints

Software Watchpoints:
● Put a breakpoint at every instruction (ouch!)
● Check the current value of L against a stored value
● If different, give interactive debugging prompt
● If not, set next breakpoint and continue (single-step)

A watchpoint is like a
breakpoint, but it stops
execution after any instruction
changes the value at location L

Debuggers: watchpoints

Software Watchpoints:
● Put a breakpoint at every instruction (ouch!)
● Check the current value of L against a stored value
● If different, give interactive debugging prompt
● If not, set next breakpoint and continue (single-step)

Hardware Watchpoints:

A watchpoint is like a
breakpoint, but it stops
execution after any instruction
changes the value at location L

Debuggers: watchpoints

Software Watchpoints:
● Put a breakpoint at every instruction (ouch!)
● Check the current value of L against a stored value
● If different, give interactive debugging prompt
● If not, set next breakpoint and continue (single-step)

Hardware Watchpoints:
● Special register holds L: if the value at address L ever changes,

the CPU raises an exception

A watchpoint is like a
breakpoint, but it stops
execution after any instruction
changes the value at location L

Related tool: profilers

Related tool: profilers
Definition: A profiler is a performance analysis tool that measures the
frequency and duration of function calls as a program runs.

Related tool: profilers
Definition: A profiler is a performance analysis tool that measures the
frequency and duration of function calls as a program runs.
● Interpreted languages provide special hooks for profiling

Related tool: profilers
Definition: A profiler is a performance analysis tool that measures the
frequency and duration of function calls as a program runs.
● Interpreted languages provide special hooks for profiling

○ You register a function that will get called whenever the target
program calls a method, loads a class, allocates an object, etc.
(cf. signal handlers)

Related tool: profilers
Definition: A profiler is a performance analysis tool that measures the
frequency and duration of function calls as a program runs.
● Interpreted languages provide special hooks for profiling

○ You register a function that will get called whenever the target
program calls a method, loads a class, allocates an object, etc.
(cf. signal handlers)

● Alternative: use signals directly (called sampling)

Related tool: profilers
Definition: A profiler is a performance analysis tool that measures the
frequency and duration of function calls as a program runs.
● Interpreted languages provide special hooks for profiling

○ You register a function that will get called whenever the target
program calls a method, loads a class, allocates an object, etc.
(cf. signal handlers)

● Alternative: use signals directly (called sampling)
○ Ask the OS to send you a signal every X seconds (see alarm(2))

Related tool: profilers
Definition: A profiler is a performance analysis tool that measures the
frequency and duration of function calls as a program runs.
● Interpreted languages provide special hooks for profiling

○ You register a function that will get called whenever the target
program calls a method, loads a class, allocates an object, etc.
(cf. signal handlers)

● Alternative: use signals directly (called sampling)
○ Ask the OS to send you a signal every X seconds (see alarm(2))
○ In the signal handler you determine the value of the target

program counter and append it to a growing list file

Related tool: profilers
Definition: A profiler is a performance analysis tool that measures the
frequency and duration of function calls as a program runs.
● Interpreted languages provide special hooks for profiling

○ You register a function that will get called whenever the target
program calls a method, loads a class, allocates an object, etc.
(cf. signal handlers)

● Alternative: use signals directly (called sampling)
○ Ask the OS to send you a signal every X seconds (see alarm(2))
○ In the signal handler you determine the value of the target

program counter and append it to a growing list file

This explanation of sampling
leaves out some things:
● need to map PC values back

to procedure names
● need to sum up map results
● sampling is cheap but can

miss periodic behavior

Debugging (Part 2/2)

Today’s agenda:

● Reading quiz
● Debugging

○ printf debugging and logging
○ debuggers
○ delta debugging

Delta debugging: summary

Delta debugging: summary

● Delta debugging is an automated debugging approach that finds a
minimal “interesting” subset of a given set.

Delta debugging: summary

● Delta debugging is an automated debugging approach that finds a
minimal “interesting” subset of a given set.

● Delta debugging is based on divide-and-conquer and relies heavily
on critical assumptions (monotonicity, unambiguity, and
consistency).

Delta debugging: summary

● Delta debugging is an automated debugging approach that finds a
minimal “interesting” subset of a given set.

● Delta debugging is based on divide-and-conquer and relies heavily
on critical assumptions (monotonicity, unambiguity, and
consistency).

● It can be used to find which code changes cause a bug, to minimize
failure-inducing inputs, and even to find harmful thread schedules.

Delta debugging: motivation

● Three Problems: One Common Approach
○ Simplifying Failure-Inducing Input
○ Isolating Failure-Inducing Thread Schedules
○ Identifying Failure-Inducing Code Changes

Delta debugging: motivation: inputs

● Having a test input may not be enough

Delta debugging: motivation: inputs

● Having a test input may not be enough
○ Even if you know the suspicious code, the input may be too

large to step through

Delta debugging: motivation: inputs

● Having a test input may not be enough
○ Even if you know the suspicious code, the input may be too

large to step through
● This HTML input makes a version of Mozilla crash. Which portion is

relevant?

Implication: delta debugging
will be useful for test input
minimization

Delta debugging: motivation: thread schedules

Delta debugging: motivation: thread schedules

● Multithreaded programs can be nondeterministic

Delta debugging: motivation: thread schedules

● Multithreaded programs can be nondeterministic
○ Can we find simple, bug-inducing thread schedules?

Delta debugging: motivation: code changes

Delta debugging: motivation: code changes

● A new version of GDB has a UI bug

Delta debugging: motivation: code changes

● A new version of GDB has a UI bug
○ The old version does not have that bug (it is a regression)

Delta debugging: motivation: code changes

● A new version of GDB has a UI bug
○ The old version does not have that bug (it is a regression)

● 178,000 lines of code have been modified between the two
versions

Delta debugging: motivation: code changes

● A new version of GDB has a UI bug
○ The old version does not have that bug (it is a regression)

● 178,000 lines of code have been modified between the two
versions
○ Where is the bug?

■ … and which commit is responsible for introducing it?

Delta debugging: motivation: code changes

● A new version of GDB has a UI bug
○ The old version does not have that bug (it is a regression)

● 178,000 lines of code have been modified between the two
versions
○ Where is the bug?

■ … and which commit is responsible for introducing it?
○ These days: continuous integration testing helps

■ … but does not totally solve this. Why?

Delta debugging: differences

Definition: With respect to debugging, a difference is a change in the
program configuration or state that may lead to alternate observations

● Difference in the input: different character or bit in the input
stream

● Difference in thread schedule: difference in the time before a
given thread preemption is performed

● Difference in code: different statements or expressions in two
versions of a program

● Difference in program state: different values of internal variables

Delta debugging: differences

Definition: With respect to debugging, a difference is a change in the
program configuration or state that may lead to alternate observations

Delta debugging: differences

Definition: With respect to debugging, a difference is a change in the
program configuration or state that may lead to alternate observations

● Difference in the input: different character or bit in the input
stream

Delta debugging: differences

Definition: With respect to debugging, a difference is a change in the
program configuration or state that may lead to alternate observations

● Difference in the input: different character or bit in the input
stream

● Difference in thread schedule: difference in the time before a
given thread preemption is performed

Delta debugging: differences

Definition: With respect to debugging, a difference is a change in the
program configuration or state that may lead to alternate observations

● Difference in the input: different character or bit in the input
stream

● Difference in thread schedule: difference in the time before a
given thread preemption is performed

● Difference in code: different statements or expressions in two
versions of a program

Delta debugging: differences

Definition: With respect to debugging, a difference is a change in the
program configuration or state that may lead to alternate observations

● Difference in the input: different character or bit in the input
stream

● Difference in thread schedule: difference in the time before a
given thread preemption is performed

● Difference in code: different statements or expressions in two
versions of a program

● Difference in program state: different values of internal variables

Delta debugging: unified solution

● Define the Abstract Debugging Problem as:

Delta debugging: unified solution

● Define the Abstract Debugging Problem as:
○ Find which part of something (= which difference, which input,

which change) determines the failure

Delta debugging: unified solution

● Define the Abstract Debugging Problem as:
○ Find which part of something (= which difference, which input,

which change) determines the failure
○ “Find the smallest subset of a given set that is still interesting”

Delta debugging: unified solution

● Define the Abstract Debugging Problem as:
○ Find which part of something (= which difference, which input,

which change) determines the failure
○ “Find the smallest subset of a given set that is still interesting”

● Abstract solution: divide-and-conquer

Delta debugging: unified solution

● Define the Abstract Debugging Problem as:
○ Find which part of something (= which difference, which input,

which change) determines the failure
○ “Find the smallest subset of a given set that is still interesting”

● Abstract solution: divide-and-conquer
○ key idea: split up the set into two subsets, check which of the

two is still “interesting”

Delta debugging: unified solution

● Define the Abstract Debugging Problem as:
○ Find which part of something (= which difference, which input,

which change) determines the failure
○ “Find the smallest subset of a given set that is still interesting”

● Abstract solution: divide-and-conquer
○ key idea: split up the set into two subsets, check which of the

two is still “interesting”
○ can be applied to working and failing inputs, code versions,

thread schedules, program states, etc.

Delta debugging: unified solution

“Yesterday, my program worked. Today, it does not.”

Delta debugging: unified solution

“Yesterday, my program worked. Today, it does not.”

● We will iteratively:

Delta debugging: unified solution

“Yesterday, my program worked. Today, it does not.”

● We will iteratively:
○ hypothesize that a small subset is interesting

Delta debugging: unified solution

“Yesterday, my program worked. Today, it does not.”

● We will iteratively:
○ hypothesize that a small subset is interesting

■ e.g., the subset of changes {1, 3, 8} causes the bug

Delta debugging: unified solution

“Yesterday, my program worked. Today, it does not.”

● We will iteratively:
○ hypothesize that a small subset is interesting

■ e.g., the subset of changes {1, 3, 8} causes the bug
○ run tests to falsify our hypothesis

Delta debugging: algorithm

Delta debugging: algorithm

● Given:

Delta debugging: algorithm

● Given:
○ a set C = {c

1
 , … , c

n
 } (of changes)

Delta debugging: algorithm

● Given:
○ a set C = {c

1
 , … , c

n
 } (of changes)

○ a function Interesting : C → {True, False}

Delta debugging: algorithm

● Given:
○ a set C = {c

1
 , … , c

n
 } (of changes)

○ a function Interesting : C → {True, False}
○ Interesting(C) = Yes , Interesting({}) = No

Delta debugging: algorithm

● Given:
○ a set C = {c

1
 , … , c

n
 } (of changes)

○ a function Interesting : C → {True, False}
○ Interesting(C) = Yes , Interesting({}) = No
○ Interesting is monotonic, unambiguous and consistent (more

on these later)

Delta debugging: algorithm

● Given:
○ a set C = {c

1
 , … , c

n
 } (of changes)

○ a function Interesting : C → {True, False}
○ Interesting(C) = Yes , Interesting({}) = No
○ Interesting is monotonic, unambiguous and consistent (more

on these later)
● The delta debugging algorithm returns a minimal Interesting

subset M of C:

Delta debugging: algorithm

● Given:
○ a set C = {c

1
 , … , c

n
 } (of changes)

○ a function Interesting : C → {True, False}
○ Interesting(C) = Yes , Interesting({}) = No
○ Interesting is monotonic, unambiguous and consistent (more

on these later)
● The delta debugging algorithm returns a minimal Interesting

subset M of C:
○ Interesting(M) = Yes

Delta debugging: algorithm

● Given:
○ a set C = {c

1
 , … , c

n
 } (of changes)

○ a function Interesting : C → {True, False}
○ Interesting(C) = Yes , Interesting({}) = No
○ Interesting is monotonic, unambiguous and consistent (more

on these later)
● The delta debugging algorithm returns a minimal Interesting

subset M of C:
○ Interesting(M) = Yes
○ Forall m ⊂ M, Interesting(M - m) = No

Delta debugging: example

● C =
● Interesting(X) =

Delta debugging: example

● C = set of n changes
● Interesting(X) =

Delta debugging: example

● C = set of n changes
● Interesting(X) = apply the changes in in X to Yesterday’s version

and compile. Run the tests on the result.

Delta debugging: example

● C = set of n changes
● Interesting(X) = apply the changes in in X to Yesterday’s version

and compile. Run the tests on the result.
○ If the tests fail, Interesting(X) = True.

Delta debugging: example

● C = set of n changes
● Interesting(X) = apply the changes in in X to Yesterday’s version

and compile. Run the tests on the result.
○ If the tests fail, Interesting(X) = True.
○ If the tests pass, Interesting(X) = False.

Delta debugging: algorithm: naive

● We could just try all subsets of C to find the smallest one that is
Interesting

Delta debugging: algorithm: naive

● We could just try all subsets of C to find the smallest one that is
Interesting
○ Problem: if |C| = N, this takes 2N time

Delta debugging: algorithm: naive

● We could just try all subsets of C to find the smallest one that is
Interesting
○ Problem: if |C| = N, this takes 2N time
○ Recall: real-world software is unimaginably huge

Delta debugging: algorithm: naive

● We could just try all subsets of C to find the smallest one that is
Interesting
○ Problem: if |C| = N, this takes 2N time
○ Recall: real-world software is unimaginably huge

● We want a polynomial-time solution
○ Ideally one that is more like log(N)
○ Or we'll loop for what feels like forever

Delta debugging: algorithm candidate

Precondition: Interesting({c
1

 … c
n
 }) = True

DD({c, , …, c
n
 }) =

 if n = 1 then return {c
1

 }
 let P

1
 = {c

1
 , … c

n/2
}

 let P
2

 = {c
n/2+1

, …, c
n
 }

 if Interesting(P
1

) is True:
 then return DD(P

1
)

 else return DD(P
2

)

Delta debugging: algorithm candidate

Precondition: Interesting({c
1

 … c
n
 }) = True

DD({c, , …, c
n
 }) =

 if n = 1 then return {c
1

 }
 let P

1
 = {c

1
 , … c

n/2
}

 let P
2

 = {c
n/2+1

, …, c
n
 }

 if Interesting(P
1

) is True:
 then return DD(P

1
)

 else return DD(P
2

)

This is just binary search! It
won’t work if you need a big
subset to be Interesting

Delta debugging: algorithm: assumptions

Delta debugging: algorithm: assumptions

● Any subset of changes may be Interesting
○ Not just singleton subsets of size 1 (cf. binary search)

Delta debugging: algorithm: assumptions

● Any subset of changes may be Interesting
○ Not just singleton subsets of size 1 (cf. binary search)

● Interesting is Monotonic
○ Interesting(X)→ Interesting(X ∪ {c})

Delta debugging: algorithm: assumptions

● Any subset of changes may be Interesting
○ Not just singleton subsets of size 1 (cf. binary search)

● Interesting is Monotonic
○ Interesting(X)→ Interesting(X ∪ {c})

● Interesting is Unambiguous
○ Interesting(X) & Interesting(Y) → Interesting(X ∩ Y)

Delta debugging: algorithm: assumptions

● Any subset of changes may be Interesting
○ Not just singleton subsets of size 1 (cf. binary search)

● Interesting is Monotonic
○ Interesting(X)→ Interesting(X ∪ {c})

● Interesting is Unambiguous
○ Interesting(X) & Interesting(Y) → Interesting(X ∩ Y)

● Interesting is Consistent
○ Interesting(X) = True xor Interesting(X) = False
○ (Some formulations also allow: Interesting(X) = Unknown)

Delta debugging: algorithm: insights

● Basic Binary Search:
○ Divide C into P

1
 and P

2

○ If Interesting(P
1

) = True then recurse on P
1

○ If Interesting(P
2

) = True then recurse on P
2

Delta debugging: algorithm: insights

● Basic Binary Search:
○ Divide C into P

1
 and P

2

○ If Interesting(P
1

) = True then recurse on P
1

○ If Interesting(P
2

) = True then recurse on P
2

● At most one case can apply (by Unambiguous)

Delta debugging: algorithm: insights

● Basic Binary Search:
○ Divide C into P

1
 and P

2

○ If Interesting(P
1

) = True then recurse on P
1

○ If Interesting(P
2

) = True then recurse on P
2

● At most one case can apply (by Unambiguous)

Unambiguous =
Interesting(X) & Interesting(Y) →
Interesting(X ∩ Y)

Delta debugging: algorithm: insights

● Basic Binary Search:
○ Divide C into P

1
 and P

2

○ If Interesting(P
1

) = True then recurse on P
1

○ If Interesting(P
2

) = True then recurse on P
2

● At most one case can apply (by Unambiguous)
● By Consistency, the only other possibility is:

Delta debugging: algorithm: insights

● Basic Binary Search:
○ Divide C into P

1
 and P

2

○ If Interesting(P
1

) = True then recurse on P
1

○ If Interesting(P
2

) = True then recurse on P
2

● At most one case can apply (by Unambiguous)
● By Consistency, the only other possibility is:

Consistency =
Interesting(X) = True xor
Interesting(X) = False

Delta debugging: algorithm: insights

● Basic Binary Search:
○ Divide C into P

1
 and P

2

○ If Interesting(P
1

) = True then recurse on P
1

○ If Interesting(P
2

) = True then recurse on P
2

● At most one case can apply (by Unambiguous)
● By Consistency, the only other possibility is:

○ (Interesting(P1) = False) and (Interesting(P2) = False)

Delta debugging: algorithm: insights

● Basic Binary Search:
○ Divide C into P

1
 and P

2

○ If Interesting(P
1

) = True then recurse on P
1

○ If Interesting(P
2

) = True then recurse on P
2

● At most one case can apply (by Unambiguous)
● By Consistency, the only other possibility is:

○ (Interesting(P1) = False) and (Interesting(P2) = False)
○ What happens in such a case?

Delta debugging: algorithm: interference

● By Monotonicity
○ If Interesting(P

1
) = False and Interesting(P

2
) = False

Delta debugging: algorithm: interference

● By Monotonicity
○ If Interesting(P

1
) = False and Interesting(P

2
) = False

Monotonicity =
Interesting(X)→
Interesting(X ∪ {c})

Delta debugging: algorithm: interference

● By Monotonicity
○ If Interesting(P

1
) = False and Interesting(P

2
) = False

○ Then no subset of P
1

 alone or subset of P
2

 alone is Interesting

Delta debugging: algorithm: interference

● By Monotonicity
○ If Interesting(P

1
) = False and Interesting(P

2
) = False

○ Then no subset of P
1

 alone or subset of P
2

 alone is Interesting
● So the Interesting subset must use a combination of elements from

P
1

 and P
2

Delta debugging: algorithm: interference

● By Monotonicity
○ If Interesting(P

1
) = False and Interesting(P

2
) = False

○ Then no subset of P
1

 alone or subset of P
2

 alone is Interesting
● So the Interesting subset must use a combination of elements from

P
1

 and P
2

● In Delta Debugging, this is called interference

Delta debugging: algorithm: interference

● Why is this true?

Delta debugging: algorithm: interference

● Why is this true?
○ Consider P

1

■ Find a minimal subset D
2

 of P
2

■ Such that Interesting(P
1

 ∪ D
2

) = True

Delta debugging: algorithm: interference

● Why is this true?
○ Consider P

1

■ Find a minimal subset D
2

 of P
2

■ Such that Interesting(P
1

 ∪ D
2

) = True
○ Consider P

2

■ Find a minimal subset D
1

 of P
1

■ Such that Interesting(P
2

 ∪ D
1

) = True

Delta debugging: algorithm: interference

● Why is this true?
○ Consider P

1

■ Find a minimal subset D
2

 of P
2

■ Such that Interesting(P
1

 ∪ D
2

) = True
○ Consider P

2

■ Find a minimal subset D
1

 of P
1

■ Such that Interesting(P
2

 ∪ D
1

) = True
○ Then by Unambiguous

■ Interesting((P
1

 ∪ D
2

) ∩ (P
2

 ∪ D
1

)) = Interesting(D
1

 ∪ D
2

) is
also minimal

Delta debugging: algorithm: interference

● Why is this true?
○ Consider P

1

■ Find a minimal subset D
2

 of P
2

■ Such that Interesting(P
1

 ∪ D
2

) = True
○ Consider P

2

■ Find a minimal subset D
1

 of P
1

■ Such that Interesting(P
2

 ∪ D
1

) = True
○ Then by Unambiguous

■ Interesting((P
1

 ∪ D
2

) ∩ (P
2

 ∪ D
1

)) = Interesting(D
1

 ∪ D
2

) is
also minimal

Key point:
combination of
elements from both

Delta debugging: algorithm: example

● Suppose {3,6} Is Smallest Interesting Subset of {1, …, 8}

Delta debugging: algorithm: example

● Suppose {3,6} Is Smallest Interesting Subset of {1, …, 8}
● Let’s use DD to find it

1 2 3 4 5 6 7 8 = Interesting

Delta debugging: algorithm: example

● Suppose {3,6} Is Smallest Interesting Subset of {1, …, 8}
● Let’s use DD to find it

1 2 3 4 5 6 7 8 = Interesting
1 2 3 4

5 6 7 8

First step: partition C = {1, …, 8}
into P

1
 = {1, …, 4} and P

2
 = {5, …, 8}

Delta debugging: algorithm: example

● Suppose {3,6} Is Smallest Interesting Subset of {1, …, 8}
● Let’s use DD to find it

1 2 3 4 5 6 7 8 = Interesting
1 2 3 4 = ???

5 6 7 8 = ???

Next step: test P
1

 and P
2

Delta debugging: algorithm: example

● Suppose {3,6} Is Smallest Interesting Subset of {1, …, 8}
● Let’s use DD to find it

1 2 3 4 5 6 7 8 = Interesting
1 2 3 4 = False

5 6 7 8 = False

Interference! Sub-step: find
minimal subset D

1
 of P

1
 such that

Interesting(D
1

 + P
2

)

Delta debugging: algorithm: example

● Suppose {3,6} Is Smallest Interesting Subset of {1, …, 8}
● Let’s use DD to find it

1 2 3 4 5 6 7 8 = Interesting
1 2 3 4 = False

5 6 7 8 = False
 1 2 5 6 7 8 = ???

Interference! Sub-step: find
minimal subset D

1
 of P

1
 such that

Interesting(D
1

 + P
2

)

Delta debugging: algorithm: example

● Suppose {3,6} Is Smallest Interesting Subset of {1, …, 8}
● Let’s use DD to find it

1 2 3 4 5 6 7 8 = Interesting
1 2 3 4 = False

5 6 7 8 = False
 1 2 5 6 7 8 = False

Interference! Sub-step: find
minimal subset D

1
 of P

1
 such that

Interesting(D
1

 + P
2

)

Delta debugging: algorithm: example

● Suppose {3,6} Is Smallest Interesting Subset of {1, …, 8}
● Let’s use DD to find it

1 2 3 4 5 6 7 8 = Interesting
1 2 3 4 = False

5 6 7 8 = False
 1 2 5 6 7 8 = False
 3 4 5 6 7 8 = ??? Interference! Sub-step: find

minimal subset D
1

 of P
1

 such that
Interesting(D

1
 + P

2
)

Delta debugging: algorithm: example

● Suppose {3,6} Is Smallest Interesting Subset of {1, …, 8}
● Let’s use DD to find it

1 2 3 4 5 6 7 8 = Interesting
1 2 3 4 = False

5 6 7 8 = False
 1 2 5 6 7 8 = False
 3 4 5 6 7 8 = True
 3 5 6 7 8 = True

D
1

= { 3 }

Now we need to find D
2

Delta debugging: algorithm: example

● Suppose {3,6} Is Smallest Interesting Subset of {1, …, 8}
● Let’s use DD to find it

1 2 3 4 5 6 7 8 = Interesting
1 2 3 4 = False

5 6 7 8 = False
 1 2 5 6 7 8 = False
 3 4 5 6 7 8 = True
 3 5 6 7 8 = True

1 2 3 4 5 6 = True

D
1

= { 3 }

Now we need to find D
2

Delta debugging: algorithm: example

● Suppose {3,6} Is Smallest Interesting Subset of {1, …, 8}
● Let’s use DD to find it

1 2 3 4 5 6 7 8 = Interesting
1 2 3 4 = False

5 6 7 8 = False
 1 2 5 6 7 8 = False
 3 4 5 6 7 8 = True
 3 5 6 7 8 = True

1 2 3 4 5 = False

D
1

= { 3 }

Now we need to find D
2

Delta debugging: algorithm: example

● Suppose {3,6} Is Smallest Interesting Subset of {1, …, 8}
● Let’s use DD to find it

1 2 3 4 5 6 7 8 = Interesting
1 2 3 4 = False

5 6 7 8 = False
 1 2 5 6 7 8 = False
 3 4 5 6 7 8 = True
 3 5 6 7 8 = True

1 2 3 4 6 = True

D
1

= { 3 }

D
2

= { 6 }

Delta debugging: algorithm: example

● Suppose {3,6} Is Smallest Interesting Subset of {1, …, 8}
● Let’s use DD to find it

1 2 3 4 5 6 7 8 = Interesting
1 2 3 4 = False

5 6 7 8 = False
 1 2 5 6 7 8 = False
 3 4 5 6 7 8 = True
 3 5 6 7 8 = True

1 2 3 4 6 = True

D
1

= { 3 }

D
2

= { 6 }

So, final answer =
D

1
 ∪ D

2
 = { 3, 6 }

Delta debugging: final algorithm

Precondition: Interesting({c
1

 … c
n
 }) = True

DD(P, {c, , …, c
n
 }) =

 if n = 1 then return {c
1

 }
 let P

1
 = {c

1
 , … c

n/2
}

 let P
2

 = {c
n/2+1

, …, c
n
 }

 if Interesting(P
1

 ∪ P) is True then return DD(P, P
1

)
 else if Interesting(P

2
 ∪ P) is True then return DD(P, P

2
)

 else return DD(P ∪ P
2

, P
1

) ∪ DD(P ∪ P
1

, P
2

)

Delta debugging: algorithmic complexity

Delta debugging: algorithmic complexity

● If a single change induces the failure:
○ DD is logarithmic: 2 * log |C|
○ Why?

Delta debugging: algorithmic complexity

● If a single change induces the failure:
○ DD is logarithmic: 2 * log |C|
○ Why?

● Otherwise, DD is linear
○ Assuming constant time per Interesting() check
○ Is this realistic? ●

Delta debugging: algorithmic complexity

● If a single change induces the failure:
○ DD is logarithmic: 2 * log |C|
○ Why?

● Otherwise, DD is linear
○ Assuming constant time per Interesting() check
○ Is this realistic? ●

● If Interesting can return “Unknown”
○ DD is quadratic: |C|2 + 3|C|
○ If all tests are Unknown except last one (unlikely)

Delta debugging: questioning assumptions

● All three assumptions are questionable
● Interesting is Monotonic

○ Interesting(X)→ Interesting(X ∪ {c})
● Interesting is Unambiguous

○ Interesting(X) & Interesting(Y) → Interesting(X ∩ Y)
● Interesting is Consistent

○ Interesting(X) = True xor Interesting(X) = False
○ (Some formulations also allow: Interesting(X) = Unknown)

Assumptions restated on this slide for convenience

Delta debugging: questioning assumptions

● All three assumptions are questionable
● Interesting is Monotonic

○ Interesting(X)→ Interesting(X ∪ {c})
● Interesting is Unambiguous

○ Interesting(X) & Interesting(Y) → Interesting(X ∩ Y)
● Interesting is Consistent

○ Interesting(X) = True xor Interesting(X) = False
○ (Some formulations also allow: Interesting(X) = Unknown)

Assumptions restated on this slide for convenience

Monotonicity is rare in the real
world. But DD still finds an
interesting subset if Interesting is
not monotonic (migh tnot be
minimal)

Delta debugging: questioning assumptions

● All three assumptions are questionable
● Interesting is Monotonic

○ Interesting(X)→ Interesting(X ∪ {c})
● Interesting is Unambiguous

○ Interesting(X) & Interesting(Y) → Interesting(X ∩ Y)
● Interesting is Consistent

○ Interesting(X) = True xor Interesting(X) = False
○ (Some formulations also allow: Interesting(X) = Unknown)

Assumptions restated on this slide for convenience

Ambiguity will cause DD to fail. Hint:
try tracing DD on Interesting ({2, 8})
= True, but Interesting({2, 8}
intersect {3, 6}) = False

Delta debugging: questioning assumptions

● All three assumptions are questionable
● Interesting is Monotonic

○ Interesting(X)→ Interesting(X ∪ {c})
● Interesting is Unambiguous

○ Interesting(X) & Interesting(Y) → Interesting(X ∩ Y)
● Interesting is Consistent

○ Interesting(X) = True xor Interesting(X) = False
○ (Some formulations also allow: Interesting(X) = Unknown)

Assumptions restated on this slide for convenience

The world is often inconsistent.
Example: we are minimizing changes
to a program to find patches that
makes it crash. Some subsets may
not build or run!

Delta debugging: in the real world

● git bisect implements a DD-like algorithm (look it up!)
● for thread schedules: DejaVu tool by IBM, CHESS by Microsoft, etc.
● Eclipse plugins for code changes (“DDinput”, “DDchange”)
● you can also do delta debugging by hand (I do this often for

programs that cause compiler bugs!)

Debugging: takeaways

● Debugging is a lot easier when you treat it as a science, rather than
an art

● printf debugging and logging are good for determining what causes
failures after the fact

● debuggers are fantastic when you want to understand a program’s
internal state

● delta debugging is a semi-automated approach to formalizing the
abstract debugging problem
○ useful way of thinking about how to debug anything
○ try git bisect

