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B. debuggers (e.g., gdb) implement the scientific method internally
C. both sometimes involve rubber ducks
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● Quality assurance is critical to software engineering
● We’ve discussed static (code review, dataflow analysis) and 

dynamic (testing) approaches to finding bugs
● Key question for today: what happens to all of the bugs those 

find? 
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Terminology: what is a bug?

● “bug” is an ambiguous term in common usage - it can refer to 
either static or dynamic problems

● we’ll use the following “standard” terms to disambiguate:

Definition: a fault is an exceptional situation at run time
● when you’re running a program and something goes wrong, a 

fault has occurred

Definition: a defect is any characteristic of a product which hinders 
its usability for its intended purpose
● cf. “design defect”. I’ll use “bug” to mean “a defect in source code”
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Definition: a bug report provides information about a defect
● Created by testers, users, tools, etc.
● Often contains multiple types of information 
● Often tracked in a database

Definition: A feature request is a potential change to the intended 
purpose (requirements) of software
● In CS: an issue is either a bug report or a feature request (cf. 

“issue tracking system”)
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● what is a bug and what is a 
feature is subjective

● good rule of thumb: in any 
system with a large 
number of users, someone 
relies on every behavior of 
the system (intended or 
not) as if it were a feature

This is often why “old” systems 
(e.g., Linux, Windows, etc.) have 
behaviors that are unintuitive or 
difficult to learn: someone relies 
on them, so changing them 
would be considered a bug!
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Definition: the defect report lifecycle consists of a number of possible 
stages and actions, including reporting, confirmation, triage, 
assignment, resolution, and verification.
● Not every defect report follows the same path 
● The overall process is not linear 

○ There are multiple entry points, some cycles, and multiple 
exit points (and some never leave …) 

Definition: the status of a defect report tracks its position in the 
lifecycle (“new”, “resolved”, etc.)
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● For example, Bugzilla (a 
widely-used open-source 
issue tracker) uses this 
flow for issues

● GitHub's built-in issue 
tracker is similar (less 
structured)
○ you should use an issue 

tracker for the group 
project (GitHub is okay)
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● two main sources:
○ internal bug reports, 

e.g., from testers/QA
○ external bug reports, 

e.g., from users
● internal reports are usually 

higher quality/more detailed

Defect report lifecycle: 
new bugs

Modern view of end-user bug 
reports: we cannot count on 
end users to describe bugs in 
a helpful manner



Quick demo: GitHub issue tracker

example: https://github.com/typetools/checker-framework/issues

https://github.com/typetools/checker-framework/issues
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○ what you expected the program to do instead
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Defect reports: conversations

● Defect reports are not static
● Instead, they are updated over time

○ Request more info
○ Assign to a dev
○ Discuss solutions

● The report is a log of all relevant activity
● e.g.:

○ https://github.com/typetools/checker-framework/issues/4838
○ https://github.com/typetools/checker-framework/issues/3001

 

https://github.com/typetools/checker-framework/issues/4838
https://github.com/typetools/checker-framework/issues/3001
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● “triage” is an analogy to 
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Definition: triage is the assignment of degrees of urgency to wounds 
or illnesses to decide the order of treatment of a large number of 
patients or casualties
● bug triage has the same definition, but with software defects 

instead of wounds/illnesses
● there are always more defect reports than resources available 

to address them
● we must do cost-benefit analysis:

○ How expensive is it to fix this bug?
○ How expensive is it to not fix this bug? 
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Definition: severity is the degree of impact that a defect has on the 
development or operation of a component or system
● intuition: severity = “cost of not fixing the bug”
● BugZilla severity levels (varies by company/tool, but these typical):
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Definition: priority indicates the importance or urgency of fixing a 
defect
● related to, but officially different from, severity

○ intuition: if you have lots of high severity bugs, you need to 
prioritize between them

● severity and priority are used together (along with complexity, 
risk, etc.) to evaluate, prioritize and assign the resolution of 
reports
○ note that this is a bit of an oversimplification: 

“severity + priority = triage” is like “supply + demand = price”
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Defect report lifecycle: 
assignment

● Key question: who should 
fix this bug?

Definition: an assignment 
associates a developer with the 
responsibility of addressing a 
defect report
● state of the art is “manual”
● usually based on who “owns” the 

relevant code
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● Key question: did we fix it?

Definition: a defect report 
resolution status indicates the 
result of the most recent 
attempt to address it
● Important: resolved need 

not mean “fixed” 

Defect report lifecycle: 
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BugZilla resolution options:
● FIXED (give commit #)
● INVALID (bug report is invalid)
● WONTFIX (we don't ever plan to fix it)
● DUPLICATE (link to other bug report #)
● WORKSFORME (cannot reproduce, a.k.a. “WFM”) 
● MOVED (give link: filed with wrong project)
● NOTABUG (report describes expected behavior)
● NOTOURBUG (is a bug, but not with our software)
● INSUFFICIENTDATA (cannot triage/fix w/o more)

Thought question: 
what fraction of bug 
reports end up with 
each resolution?
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[ Jalbert et al. Automated Duplicate Detection for Bug Tracking Systems. DSN 2008. ]
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● A defect report that was 
previously resolved (e.g. 
“FIXED”) may be reopened if 
later evidence suggests the 
old resolution is no longer 
adequate

● Surely this only happens 
rarely?
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Defect report lifecycle: reopening

● Many fixes are wrong, 
even on mature, critical 
software!

● Implication: reopening 
bugs is common
○ Importance of 

regression testing!

[Yin et al. How Do Fixes Become Bugs? 
ESEC/FSE 2011. ]
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● Key question: once we have 
a good defect report, how 
do we figure out how to 
resolve the defect?
○ This is debugging
○ Rest of today’s lecture + 

all of Thursday’s lecture 
on debugging

Defect report lifecycle: 
fixing
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● modern software is unimaginably huge
○ analogy: scale of space vs human scale

■ “Space is big. Really big. You just won't believe how vastly, 
hugely, mind-bogglingly big it is. I mean, you may think it's 
a long way down the road to the chemist, but that's just 
peanuts to space.” – Douglas Adams

○ you will be asked to fix bugs in very large software!
● Techniques developed based on smaller code bases simply do not 

apply or scale to larger code bases
○ Techniques from the 1980s or your habits from classes
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How big are programs, really?

https://www.informationisbeautiful.net/visualizations/million-lines-of-code/

all of 
covey.town: 
~16,000 lines
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https://www.informationisbeautiful.net/visualizations/million-lines-of-code/

Chrome at ~7M LoC is ~400x 
bigger than covey.town
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How big are programs, really?

https://www.informationisbeautiful.net/visualizations/million-lines-of-code/

Chrome is small compared to 
even old versions of Windows!
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Humans are poor at comprehending large scales

● covey.town                    16  000
● google 2  000  000  000
● Imagine that there is a bug somewhere, anywhere, in covey.town

○ Imagine further that you can find that bug in one minute
● At the same rate, it would take you more than a month to find it 

in all of google
○ a one-hour bug on covey.town would take years on google!
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Steps of debugging

● When working with very large systems, it is important to think of 
debugging systematically

● To effectively debug a problem, you should do the following:
○ reproduce the issue yourself
○ minimize the reproduction so that you can reason about it
○ localize the fault to a particular part of the program
○ test possible fixes to find the right one
○ confirm that your fix actually resolves the issue
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Reproducing a bug

Definition: a bug can be reproduced if a developer can elicit the 
reported symptoms themself
● “reported symptoms” = “the problem described in the defect 

report”
● reproducing bugs is a test input generation problem:

○ find the inputs that cause the fault to occur
● lots of bugs are resolved at this stage:

○ WORKSFORME is the BugZilla resolution for this
○ especially bugs reported by users often do not get past this 

stage: not enough information to reproduce the fault
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Minimizing the reproduction

Definition: a minimal reproduction of a bug is the smallest input that 
elicits the bug’s reported symptoms
● defect reports containing minimal failing examples are the gold 

standard (but rare in practice)
● commonly, even reproducible bugs come with a complex test input

○ e.g., including the entire environment in which the software was 
running

● minimizing the reproduction helps the developer reason about 
which part of the software might be responsible for the bug
○ also useful for assignment

Minimizing the reproduction 
is sometimes unnecessary: a 
small (but not minimal) input 
is often good enough
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Fault localization

Definition: fault localization is the task of identifying source code 
regions implicated in a bug
● “This regression test is failing. Which lines should we change to fix 

things?”
● Answer is not unique: there are often many places to fix a bug

○ Example: check for null at caller or callee?
● While some tool support is available, state of the practice is manual

○ automated tools rank parts of the program by “suspiciousness”
○ suspiciousness computed by how often each part of the 

program is covered by passing vs. failing tests
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Testing and confirming your fix

● rule of thumb: every bug fix should be accompanied by a new 
regression test
○ often more than one: many fixes are possible, but some are 

better than others, so you want tests that rule out “wrong” fixes 
that you tried

● another rule of thumb: each new regression test should fail before 
applying your fix (and pass after, of course)
○ easy mistake to make: write or modify a test in such a way that 

you end up no longer reproducing the bug while “fixing” the bug
○ best practice: commit tests separately
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Review: steps of debugging

● When working with very large systems, it is important to think of 
debugging systematically

● To effectively debug a problem, you should do the following:
○ reproduce the issue yourself
○ minimize the reproduction so that you can reason about it
○ localize the fault to a particular part of the program
○ test possible fixes to find the right one
○ confirm that your fix actually resolves the issue
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● the remainder of our lectures on debugging will be devoted to 
discussing different strategies for debugging

● all of these strategies have one key idea in common: treat 
debugging as a series of hypothesis tests
○ hypothesis testing is one of the key components of the 

scientific method:
1. guess why something happens, devise an experiment to 

test if your guess is correct, then run the experiment
2. repeat step 1 until you’ve figured it out
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Debugging as hypothesis testing

● the key to treating debugging as hypothesis testing is to make 
falsifiable guesses about why the program is behaving a 
particular way
○ “falsifiable” = “can be true or false”
○ ideally, you’d also like your guesses to be easy to test

● each time you make such a guess, you need to design an 
experiment to check if the guess is correct
○ most of the debugging strategies we’ll talk about are ways to 

check if a particular guess is correct

Big difference between you 
(“computer scientist”) and 
anyone who knows how to 
program: the ability to apply the 
scientific method to coding



Debugging strategies

● “printf” debugging: using print statements to find a bug
○ and its larger-scale cousin: logging

● debuggers: inspecting program state while it is running
○ we’ll talk a little about how they work

● delta debugging
○ a formalization of the scientific approach to debugging
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“printf” debugging

● probably your most common debugging strategy already!
● key idea: instrument the program so that it prints the values of 

key variables at a particular point
● advantages:

○ easy and natural
● disadvantages:

○ must recompile, rerun program each time you want to test 
something else

○ sometimes considered “unprofessional”

This is a misconception: professional 
engineers commonly use printf 
debugging. But printf debugging 
should be just one tool in your toolbox 
of debugging strategies!
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Definition: logging is the process of recording information about the 
program’s internal state as it runs via a printf-like interface

● logging is a key technology for monitoring modern systems
○ e.g., via tools like Log4j, slf4j, etc.

● logs also play a major role in debugging large-scale failures of 
important distributed systems
○ we’ll discuss this more when we talk about post-mortems in 

our DevOps lectures, near the end of the semester
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Logging: levels

Typical example of a (Java) logging statement:

log.debug(“myVariable=%s”, myVariable);

“debug” means if debug-level 
logging isn’t enabled in the 
framework, this becomes a 
no-op

levels:
error ⊆ warning ⊆ info ⊆ debug

developer chooses one level, all 
lower level messages are also logged



Logging: levels

Typical example of a (Java) logging statement:

log.debug(“myVariable=%s”, myVariable);

printf-like syntax isn’t just for show: goal 
here is lazy evaluation, so that if debug 
logging isn’t enabled, this string is never 
constructed



Logging: levels

Typical example of a (Java) logging statement:

log.debug(“myVariable=%s”, myVariable);

arguments to printf passed by reference, so 
if debug-level logging is off, this argument’s 
toString() method is never called
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Logging: advice

● Do log lots of information at debug or info level, so that if 
something is wrong with your service you can quickly get lots of 
information that you can use to debug it.

● Don’t log sensitive data (e.g., credit card numbers in plaintext!)
○ this is a surprisingly common and important problem - 

developers have a tendency to log anything that might be 
useful when debugging a failure later!
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Debuggers

Definition: a debugger  is “a software tool that is used to detect the 
source of program or script errors, by performing step-by-step 
execution of application code and viewing the content of code 
variables.” [definition from Microsoft Developer Network]

● Can operate on source code or assembly code
● Inspect the values of registers, memory
● Key Features (we’ll explain all of them): attach to process, 

single-stepping, breakpoints, conditional breakpoints, 
watchpoints
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Debuggers: how do they work: signals

● A signal is an asynchronous notification sent to a process about 
an event:
○ User pressed Ctrl-C (or did kill %pid)

■ Or asked the Windows Task Manager to terminate it
○ Exceptions (divide by zero, null pointer) 
○ From the OS (SIGPIPE)

● You can install a signal handler – a procedure that will be 
executed when the signal occurs.
○ Signal handlers are vulnerable to race conditions. Why?
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Debuggers: how do they work: attaching

● Attaching a debugger to a process requires operating system 
support

● There is a special system call that allows one process to act as a 
debugger for a target
○ What are the security concerns?

● Once this is done, the debugger can basically “catch signals” 
delivered to the target
○ this isn’t exactly what happens, but it’s a good explanation …
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● We now have all the ingredients for a “classic” debugger (like 
gdb): breakpoints and interactive debugging. How it works:

A breakpoint is a user-specified 
program statement on which 
the debugger should stop the 
program and begin an 
interactive debugging session
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Debuggers: how do they work: breakpoints

● We now have all the ingredients for a “classic” debugger (like 
gdb): breakpoints and interactive debugging. How it works:
○ Attach to target
○ Set up signal handler
○ Add in exception causing instructions at desired breakpoints
○ Inspect globals, do other debugger things, etc.
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#define BREAKPOINT *(0)=0 
int global = 11; 
int debugger_signal_handler() { 
  printf(“debugger prompt: \n”); 
  // debugger code goes here!
} 
void main() { 
  signal(SIGSEGV, debugger_signal_handler) ; 
  global = 33; 
  BREAKPOINT; 
  global = 55; 
  printf("Outside, global = %d\n", global);
 } 

All code added 
by the debugger 
in purple
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void main() { 
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  global = 33; 
  BREAKPOINT; 
  global = 55; 
  printf("Outside, global = %d\n", global);
 } 

“BREAKPOINT” 
macro is 
guaranteed to 
cause SIGSEGV
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Debuggers: how do they work: breakpoints

#define BREAKPOINT *(0)=0 
int global = 11; 
int debugger_signal_handler() { 
  printf(“debugger prompt: \n”); 
  // debugger code goes here!
} 
void main() { 
  signal(SIGSEGV, debugger_signal_handler) ; 
  global = 33; 
  BREAKPOINT; 
  global = 55; 
  printf("Outside, global = %d\n", global);
 } 

at the user-specified 
breakpoint, the 
debugger forces a 
SIGSEGV (which its 
handler will intercept)
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Debuggers: single-stepping

● Debuggers also allow you to advance through code one 
instruction at a time (this is called single-stepping)

● To implement this, put a breakpoint at the first instruction (= at 
program start)

● The “single step” or “next” interactive command is equal to:
○ Put a breakpoint at the next instruction
○ Resume execution
○ (No, really.)
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Debuggers: watchpoints

● You want to know when a variable changes
● A watchpoint is like a breakpoint, but it stops execution after any 

instruction changes the value at location L
● How could we implement this?
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Debuggers: watchpoints

Software Watchpoints:
● Put a breakpoint at every instruction (ouch!) 
● Check the current value of L against a stored value 
● If different, give interactive debugging prompt
● If not, set next breakpoint and continue (single-step)

Hardware Watchpoints: 
● Special register holds L: if the value at address L ever changes, 

the CPU raises an exception

A watchpoint is like a 
breakpoint, but it stops 
execution after any instruction 
changes the value at location L



Related tool: profilers



Related tool: profilers
Definition: A profiler is a performance analysis tool that measures the 
frequency and duration of function calls as a program runs.



Related tool: profilers
Definition: A profiler is a performance analysis tool that measures the 
frequency and duration of function calls as a program runs.
● Interpreted languages provide special hooks for profiling



Related tool: profilers
Definition: A profiler is a performance analysis tool that measures the 
frequency and duration of function calls as a program runs.
● Interpreted languages provide special hooks for profiling

○ You register a function that will get called whenever the target 
program calls a method, loads a class, allocates an object, etc. 
(cf. signal handlers)



Related tool: profilers
Definition: A profiler is a performance analysis tool that measures the 
frequency and duration of function calls as a program runs.
● Interpreted languages provide special hooks for profiling

○ You register a function that will get called whenever the target 
program calls a method, loads a class, allocates an object, etc. 
(cf. signal handlers)

● Alternative: use signals directly (called sampling)



Related tool: profilers
Definition: A profiler is a performance analysis tool that measures the 
frequency and duration of function calls as a program runs.
● Interpreted languages provide special hooks for profiling

○ You register a function that will get called whenever the target 
program calls a method, loads a class, allocates an object, etc. 
(cf. signal handlers)

● Alternative: use signals directly (called sampling)
○ Ask the OS to send you a signal every X seconds (see alarm(2))



Related tool: profilers
Definition: A profiler is a performance analysis tool that measures the 
frequency and duration of function calls as a program runs.
● Interpreted languages provide special hooks for profiling

○ You register a function that will get called whenever the target 
program calls a method, loads a class, allocates an object, etc. 
(cf. signal handlers)

● Alternative: use signals directly (called sampling)
○ Ask the OS to send you a signal every X seconds (see alarm(2))
○ In the signal handler you determine the value of the target 

program counter and append it to a growing list file



Related tool: profilers
Definition: A profiler is a performance analysis tool that measures the 
frequency and duration of function calls as a program runs.
● Interpreted languages provide special hooks for profiling

○ You register a function that will get called whenever the target 
program calls a method, loads a class, allocates an object, etc. 
(cf. signal handlers)

● Alternative: use signals directly (called sampling)
○ Ask the OS to send you a signal every X seconds (see alarm(2))
○ In the signal handler you determine the value of the target 

program counter and append it to a growing list file

This explanation of sampling 
leaves out some things:
● need to map PC values back 

to procedure names
● need to sum up map results
● sampling is cheap but can 

miss periodic behavior



Debugging (Part 2/2)

Today’s agenda:

● Reading quiz
● Debugging

○ printf debugging and logging
○ debuggers
○ delta debugging
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● Delta debugging is an automated debugging approach that finds a 
minimal “interesting” subset of a given set.

● Delta debugging is based on divide-and-conquer and relies heavily 
on critical assumptions (monotonicity, unambiguity, and 
consistency).

● It can be used to find which code changes cause a bug, to minimize 
failure-inducing inputs, and even to find harmful thread schedules.



Delta debugging: motivation

● Three Problems: One Common Approach
○ Simplifying Failure-Inducing Input
○ Isolating Failure-Inducing Thread Schedules
○ Identifying Failure-Inducing Code Changes
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Delta debugging: motivation: inputs

● Having a test input may not be enough
○ Even if you know the suspicious code, the input may be too 

large to step through
● This HTML input makes a version of Mozilla crash. Which portion is 

relevant?

Implication: delta debugging 
will be useful for test input 
minimization
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● Multithreaded programs can be nondeterministic
○ Can we find simple, bug-inducing thread schedules?
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● A new version of GDB has a UI bug
○ The old version does not have that bug (it is a regression)

● 178,000 lines of code have been modified between the two 
versions
○ Where is the bug?

■ … and which commit is responsible for introducing it?
○ These days: continuous integration testing helps 

■ … but does not totally solve this. Why?
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● Difference in the input: different character or bit in the input 
stream
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versions of a program 
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Delta debugging: unified solution

● Define the Abstract Debugging Problem as:
○ Find which part of something (= which difference, which input, 

which change) determines the failure
○ “Find the smallest subset of a given set that is still interesting”

● Abstract solution: divide-and-conquer
○ key idea: split up the set into two subsets, check which of the 

two is still “interesting”
○ can be applied to working and failing inputs, code versions, 

thread schedules, program states, etc.
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Delta debugging: unified solution

“Yesterday, my program worked. Today, it does not.”

● We will iteratively:
○ hypothesize that a small subset is interesting

■ e.g., the subset of changes {1, 3, 8} causes the bug
○ run tests to falsify our hypothesis
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Delta debugging: algorithm

● Given:
○ a set C = {c

1
 , … , c

n
 } (of changes)

○ a function Interesting : C → {True, False} 
○ Interesting(C) = Yes , Interesting( {} ) = No
○ Interesting is monotonic, unambiguous and consistent (more 

on these later)
● The delta debugging algorithm returns a minimal Interesting 

subset M of C:
○ Interesting(M) = Yes
○ Forall m ⊂ M, Interesting(M - m) = No 
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Delta debugging: example

● C = set of n changes
● Interesting(X) = apply the changes in in X to Yesterday’s version 

and compile. Run the tests on the result. 
○ If the tests fail, Interesting(X) = True. 
○ If the tests pass, Interesting(X) = False.
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Delta debugging: algorithm: naive

● We could just try all subsets of C to find the smallest one that is 
Interesting
○ Problem: if |C| = N, this takes 2N time 
○ Recall: real-world software is unimaginably huge

● We want a polynomial-time solution
○ Ideally one that is more like log(N)
○ Or we'll loop for what feels like forever
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# Precondition: Interesting({c
1

 … c
n
 }) = True

DD({c, , …, c
n
 }) = 

  if n = 1 then return {c
1

 } 
  let P

1
 = {c

1
 , … c

n/2
} 

  let P
2

 = {c
n/2+1

, …, c
n
 } 

  if Interesting(P
1

) is True:
    then return DD(P

1
) 

    else return DD(P
2

)

This is just binary search! It 
won’t work if you need a big 
subset to be Interesting
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● Any subset of changes may be Interesting
○ Not just singleton subsets of size 1 (cf. binary search)

● Interesting is Monotonic
○ Interesting(X)→ Interesting(X ∪ {c}) 

● Interesting is Unambiguous
○ Interesting(X) & Interesting(Y) → Interesting(X ∩ Y) 

● Interesting is Consistent
○ Interesting(X) = True xor Interesting(X) = False
○ (Some formulations also allow: Interesting(X) = Unknown)
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● Basic Binary Search:
○ Divide C into P

1
 and P

2
 

○ If Interesting(P
1

) = True then recurse on P
1

○ If Interesting(P
2

) = True then recurse on P
2

● At most one case can apply (by Unambiguous)
● By Consistency, the only other possibility is:

○ (Interesting(P1) = False) and (Interesting(P2) = False)



Delta debugging: algorithm: insights

● Basic Binary Search:
○ Divide C into P

1
 and P

2
 

○ If Interesting(P
1

) = True then recurse on P
1

○ If Interesting(P
2

) = True then recurse on P
2

● At most one case can apply (by Unambiguous)
● By Consistency, the only other possibility is:

○ (Interesting(P1) = False) and (Interesting(P2) = False)
○ What happens in such a case?
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● By Monotonicity
○ If Interesting(P

1
) = False and Interesting(P

2
) = False

○ Then no subset of P
1

 alone or subset of P
2

 alone is Interesting
● So the Interesting subset must use a combination of elements from 

P
1

 and P
2

● In Delta Debugging, this is called interference
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● Why is this true?
○ Consider P

1

■ Find a minimal subset D
2

 of P
2

■ Such that Interesting(P
1

 ∪ D
2

) = True
○ Consider P

2

■ Find a minimal subset D
1

 of P
1

■ Such that Interesting(P
2

 ∪ D
1

) = True
○ Then by Unambiguous

■ Interesting((P
1

 ∪ D
2

) ∩ (P
2

 ∪ D
1

)) = Interesting(D
1

 ∪ D
2

) is 
also minimal

Key point: 
combination of 
elements from both
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● Suppose {3,6} Is Smallest Interesting Subset of {1, …, 8}
● Let’s use DD to find it

1 2 3 4 5 6 7 8      = Interesting
1 2 3 4

5 6 7 8

First step: partition C = {1, …, 8} 
into P

1
 = {1, …, 4} and P

2
 = {5, …, 8}
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● Let’s use DD to find it
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1 2 3 4 5 6 7 8      = Interesting
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1

 such that 
Interesting(D

1
 + P

2
)



Delta debugging: algorithm: example

● Suppose {3,6} Is Smallest Interesting Subset of {1, …, 8}
● Let’s use DD to find it

1 2 3 4 5 6 7 8      = Interesting
1 2 3 4    = False

5 6 7 8     = False
                1 2           5 6 7 8     = False
                         3 4  5 6 7 8     = True
                         3      5 6 7 8     = True

D
1 

= { 3 }

Now we need to find D
2



Delta debugging: algorithm: example

● Suppose {3,6} Is Smallest Interesting Subset of {1, …, 8}
● Let’s use DD to find it

1 2 3 4 5 6 7 8      = Interesting
1 2 3 4    = False

5 6 7 8     = False
                1 2           5 6 7 8     = False
                         3 4  5 6 7 8     = True
                         3      5 6 7 8     = True

1 2 3 4 5 6    = True

D
1 

= { 3 }

Now we need to find D
2



Delta debugging: algorithm: example

● Suppose {3,6} Is Smallest Interesting Subset of {1, …, 8}
● Let’s use DD to find it

1 2 3 4 5 6 7 8      = Interesting
1 2 3 4    = False

5 6 7 8     = False
                1 2           5 6 7 8     = False
                         3 4  5 6 7 8     = True
                         3      5 6 7 8     = True

1 2 3 4 5    = False

D
1 

= { 3 }

Now we need to find D
2



Delta debugging: algorithm: example

● Suppose {3,6} Is Smallest Interesting Subset of {1, …, 8}
● Let’s use DD to find it

1 2 3 4 5 6 7 8      = Interesting
1 2 3 4    = False

5 6 7 8     = False
                1 2           5 6 7 8     = False
                         3 4  5 6 7 8     = True
                         3      5 6 7 8     = True

1 2 3 4     6    = True

D
1 

= { 3 }

D
2 

= { 6 }



Delta debugging: algorithm: example

● Suppose {3,6} Is Smallest Interesting Subset of {1, …, 8}
● Let’s use DD to find it

1 2 3 4 5 6 7 8      = Interesting
1 2 3 4    = False

5 6 7 8     = False
                1 2           5 6 7 8     = False
                         3 4  5 6 7 8     = True
                         3      5 6 7 8     = True

1 2 3 4     6    = True

D
1 

= { 3 }

D
2 

= { 6 }

So, final answer =
D

1
 ∪ D

2
 = { 3, 6 }



Delta debugging: final algorithm 

# Precondition: Interesting({c
1

 … c
n
 }) = True

DD(P, {c, , …, c
n
 }) = 

  if n = 1 then return {c
1

 } 
  let P

1
 = {c

1
 , … c

n/2
} 

  let P
2

 = {c
n/2+1

, …, c
n
 } 

  if Interesting(P
1

 ∪ P) is True then return DD(P, P
1

)
  else if Interesting(P

2
 ∪ P) is True then return DD(P, P

2
)

  else return DD(P ∪ P
2

, P
1

) ∪ DD(P ∪ P
1

, P
2

)
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Delta debugging: algorithmic complexity 

● If a single change induces the failure:
○ DD is logarithmic: 2 * log |C|
○ Why?

● Otherwise, DD is linear
○ Assuming constant time per Interesting() check
○  Is this realistic? ● 

● If Interesting can return “Unknown”
○ DD is quadratic: |C|2 + 3|C|
○ If all tests are Unknown except last one (unlikely)



Delta debugging: questioning assumptions

● All three assumptions are questionable
● Interesting is Monotonic

○ Interesting(X)→ Interesting(X ∪ {c}) 
● Interesting is Unambiguous

○ Interesting(X) & Interesting(Y) → Interesting(X ∩ Y) 
● Interesting is Consistent

○ Interesting(X) = True xor Interesting(X) = False
○ (Some formulations also allow: Interesting(X) = Unknown)

Assumptions restated on this slide for convenience



Delta debugging: questioning assumptions

● All three assumptions are questionable
● Interesting is Monotonic

○ Interesting(X)→ Interesting(X ∪ {c}) 
● Interesting is Unambiguous

○ Interesting(X) & Interesting(Y) → Interesting(X ∩ Y) 
● Interesting is Consistent

○ Interesting(X) = True xor Interesting(X) = False
○ (Some formulations also allow: Interesting(X) = Unknown)

Assumptions restated on this slide for convenience

Monotonicity is rare in the real 
world. But DD still finds an 
interesting subset if Interesting is 
not monotonic (migh tnot be 
minimal)
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● All three assumptions are questionable
● Interesting is Monotonic

○ Interesting(X)→ Interesting(X ∪ {c}) 
● Interesting is Unambiguous

○ Interesting(X) & Interesting(Y) → Interesting(X ∩ Y) 
● Interesting is Consistent

○ Interesting(X) = True xor Interesting(X) = False
○ (Some formulations also allow: Interesting(X) = Unknown)

Assumptions restated on this slide for convenience

Ambiguity will cause DD to fail. Hint: 
try tracing DD on Interesting ({2, 8}) 
= True, but Interesting( {2, 8} 
intersect {3, 6}) = False



Delta debugging: questioning assumptions

● All three assumptions are questionable
● Interesting is Monotonic

○ Interesting(X)→ Interesting(X ∪ {c}) 
● Interesting is Unambiguous

○ Interesting(X) & Interesting(Y) → Interesting(X ∩ Y) 
● Interesting is Consistent

○ Interesting(X) = True xor Interesting(X) = False
○ (Some formulations also allow: Interesting(X) = Unknown)

Assumptions restated on this slide for convenience

The world is often inconsistent.
Example: we are minimizing changes 
to a program to find patches that 
makes it crash. Some subsets may 
not build or run!



Delta debugging: in the real world

● git bisect implements a DD-like algorithm (look it up!)
● for thread schedules: DejaVu tool by IBM, CHESS by Microsoft, etc.
● Eclipse plugins for code changes (“DDinput”, “DDchange”)
● you can also do delta debugging by hand (I do this often for 

programs that cause compiler bugs!)



Debugging: takeaways

● Debugging is a lot easier when you treat it as a science, rather than 
an art

● printf debugging and logging are good for determining what causes 
failures after the fact

● debuggers are fantastic when you want to understand a program’s 
internal state

● delta debugging is a semi-automated approach to formalizing the 
abstract debugging problem
○ useful way of thinking about how to debug anything
○ try git bisect


