
Software Architecture (2/2)
Martin Kellogg

Software Architecture (Part 2 of 3 2)

Today’s agenda:

● Reading Quiz
● Strategies for good design
● Design patterns

○ Structural patterns
○ Creational patterns
○ Behavioural patterns

Software Architecture (Part 1 of 3 2)

Today’s agenda:

● Reading Quiz
● Strategies for good design
● Design patterns

○ Structural patterns
○ Creational patterns
○ Behavioural patterns

Announcements:
● I will accept optional

reading responses via
email until end of day
tomorrow for up to ½
credit

● Sprint 2 is over; you
should have your
sprint 2 mentor
meeting before EoD
Wednesday

Software Architecture (Part 2 of 3 2)

Today’s agenda:

● Reading Quiz
● Strategies for good design
● Design patterns

○ Structural patterns
○ Creational patterns
○ Behavioural patterns

Reading quiz: architecture 2

Q1: Which of the following does the author claim are important parts
of design patterns?
A. Patterns must have an “evocative” name
B. Patterns must be solutions to recurring problems
C. Both A and B
D. Neither A nor B

Q2: TRUE or FALSE: the author argues that an advantage of a
microservice architecture is that it organizes teams around projects
or technologies rather than products

Reading quiz: architecture 2

Q1: Which of the following does the author claim are important parts
of design patterns?
A. Patterns must have an “evocative” name
B. Patterns must be solutions to recurring problems
C. Both A and B
D. Neither A nor B

Q2: TRUE or FALSE: the author argues that an advantage of a
microservice architecture is that it organizes teams around projects
or technologies rather than products

Reading quiz: architecture 2

Q1: Which of the following does the author claim are important parts
of design patterns?
A. Patterns must have an “evocative” name
B. Patterns must be solutions to recurring problems
C. Both A and B
D. Neither A nor B

Q2: TRUE or FALSE: the author argues that an advantage of a
microservice architecture is that it organizes teams around projects
or technologies rather than products

Software Architecture (Part 2 of 3 2)

Today’s agenda:

● Reading Quiz
● Strategies for good design
● Design patterns

○ Structural patterns
○ Creational patterns
○ Behavioural patterns

Design

“Architecture” vs “Design”

Requirements

Architecture

Design

Source Code

Definition: software design is
the structure or organization of
a particular component of your
system

D
ev

el
o

p
m

en
t

p
ro

ce
ss Level o

f A
b

stractio
n

Design

Key goal: design for change and reuse

Design

Key goal: design for change and reuse
● In class, many programs are written once, to a fixed specification,

and then thrown away

Design

Key goal: design for change and reuse
● In class, many programs are written once, to a fixed specification,

and then thrown away
● In industry, many programs are written once and then modified

as requirements, customers, and developers change

Design

Key goal: design for change and reuse
● In class, many programs are written once, to a fixed specification,

and then thrown away
● In industry, many programs are written once and then modified

as requirements, customers, and developers change
● Many fundamental tenets of object-oriented design facilitate

subsequent change
○ You may have seen these before, but now you are in a

position to really appreciate the motivation!

Design: desiderata

Design: desiderata

● Classes are open to be modified/extended without invasive changes

Design: desiderata

● Classes are open to be modified/extended without invasive changes
● Subtype polymorphism enables changes behind interfaces

Design: desiderata

● Classes are open to be modified/extended without invasive changes
● Subtype polymorphism enables changes behind interfaces
● Classes encapsulate details likely to change behind (small) stable

interfaces

Design: desiderata

● Classes are open to be modified/extended without invasive changes
● Subtype polymorphism enables changes behind interfaces
● Classes encapsulate details likely to change behind (small) stable

interfaces
● Internal parts can be developed independently

Design: desiderata

● Classes are open to be modified/extended without invasive changes
● Subtype polymorphism enables changes behind interfaces
● Classes encapsulate details likely to change behind (small) stable

interfaces
● Internal parts can be developed independently
● Internal details of other classes do not need to be understood,

contract is sufficient

Design: desiderata

● Classes are open to be modified/extended without invasive changes
● Subtype polymorphism enables changes behind interfaces
● Classes encapsulate details likely to change behind (small) stable

interfaces
● Internal parts can be developed independently
● Internal details of other classes do not need to be understood,

contract is sufficient
● Class implementations and their contracts can be tested separately

(unit testing)

Design for reuse

Design for reuse: delegation

Definition: Delegation is when one object relies on another object for
some subset of its functionality

● e.g., in Java, Sort delegates functionality to some Comparator

Design for reuse: delegation

Definition: Delegation is when one object relies on another object for
some subset of its functionality

● e.g., in Java, Sort delegates functionality to some Comparator

Judicious delegation enables code reuse:

Design for reuse: delegation

Definition: Delegation is when one object relies on another object for
some subset of its functionality

● e.g., in Java, Sort delegates functionality to some Comparator

Judicious delegation enables code reuse:
● Sort can be reused with arbitrary sort orders

Design for reuse: delegation

Definition: Delegation is when one object relies on another object for
some subset of its functionality

● e.g., in Java, Sort delegates functionality to some Comparator

Judicious delegation enables code reuse:
● Sort can be reused with arbitrary sort orders
● Comparators can be reused with arbitrary client code that

needs to compare integers

Design for reuse: delegation

Definition: Delegation is when one object relies on another object for
some subset of its functionality

● e.g., in Java, Sort delegates functionality to some Comparator

Judicious delegation enables code reuse:
● Sort can be reused with arbitrary sort orders
● Comparators can be reused with arbitrary client code that

needs to compare integers
● Reduce “cut and paste” code and defects

Design for change: motivation

● Amazon.com processes millions of orders each year, selling in 75
countries, all 50 states, and thousands of cities worldwide.
○ These countries, states, and cities have hundreds of distinct

sales tax policies
○ For any order and destination, Amazon.com must be able to

compute the correct sales tax for the order and destination.

Design for change: motivation

● Amazon.com processes millions of orders each year, selling in 75
countries, all 50 states, and thousands of cities worldwide.
○ These countries, states, and cities have hundreds of distinct

sales tax policies
○ For any order and destination, Amazon.com must be able to

compute the correct sales tax for the order and destination.
● Over time:

○ Amazon moves into new markets
○ Laws and taxes in existing markets change

Our key goal for today:
learn about some of the
strategies that companies
like Amazon.com use to
manage this complexity

Design for Extensibility: Contracts + Subtyping

Design for Extensibility: Contracts + Subtyping

● Design by contract prescribes that software designers should
define formal, precise and verifiable interface specifications for
components, which extend the ordinary definition of abstract data
types with preconditions, postconditions and invariants

Design for Extensibility: Contracts + Subtyping

● Design by contract prescribes that software designers should
define formal, precise and verifiable interface specifications for
components, which extend the ordinary definition of abstract data
types with preconditions, postconditions and invariants

● A subclass can only have weaker preconditions
○ My super only works on positive numbers, but I work on all

numbers

Design for Extensibility: Contracts + Subtyping

● Design by contract prescribes that software designers should
define formal, precise and verifiable interface specifications for
components, which extend the ordinary definition of abstract data
types with preconditions, postconditions and invariants

● A subclass can only have weaker preconditions
○ My super only works on positive numbers, but I work on all

numbers
● A subclass can only have stronger postconditions

○ My super returns any shape, but I return squares

Design for Extensibility: Contracts + Subtyping

● Design by contract prescribes that software designers should
define formal, precise and verifiable interface specifications for
components, which extend the ordinary definition of abstract data
types with preconditions, postconditions and invariants

● A subclass can only have weaker preconditions
○ My super only works on positive numbers, but I work on all

numbers
● A subclass can only have stronger postconditions

○ My super returns any shape, but I return squares

This is called the Liskov
Substitution Principle: “any
subclass object should be safe
to use in place of a super class
opbject at run time”

Design for Testability

Design for Testability

● If the majority cost of software engineering is maintenance

Design for Testability

● If the majority cost of software engineering is maintenance
○ and the majority cost of maintenance is QA

Design for Testability

● If the majority cost of software engineering is maintenance
○ and the majority cost of maintenance is QA
○ and the majority cost of QA is testing

Design for Testability

● If the majority cost of software engineering is maintenance
○ and the majority cost of maintenance is QA
○ and the majority cost of QA is testing

● Then we should design our software so that testing is effective:

Design for Testability

● If the majority cost of software engineering is maintenance
○ and the majority cost of maintenance is QA
○ and the majority cost of QA is testing

● Then we should design our software so that testing is effective:
○ Design to admit testing
○ Design to admit fault injection
○ Design to admit coverage
○ Recognize “free test” opportunities

Design to Admit Testing

Design to Admit Testing

● Consider a library-oriented architecture, a variation of modular
programming or microservice architecture with a focus on
separation of concerns and interface design

Design to Admit Testing

● Consider a library-oriented architecture, a variation of modular
programming or microservice architecture with a focus on
separation of concerns and interface design
○ “Package logical components of your application independently

- literally as separate gems, eggs, RPMs, or whatever - and
maintain them as internal open-source projects … This approach
combats the tightly-coupled spaghetti so often lurking in big
codebases by giving everything the Right Place in which to
exist.”

Design to Admit Unit Testing

● Recall: it is hard to generate test inputs with high coverage for areas
“deep inside” the code
○ Must solve the constraints for main(), then for foo(), then for

bar(), etc., all at the same time!

Design to Admit Unit Testing

● Recall: it is hard to generate test inputs with high coverage for areas
“deep inside” the code
○ Must solve the constraints for main(), then for foo(), then for

bar(), etc., all at the same time!
● The farther code is from an entry point, the harder it is to test

○ This is one of the motivations behind unit testing

Design to Admit Unit Testing

● Recall: it is hard to generate test inputs with high coverage for areas
“deep inside” the code
○ Must solve the constraints for main(), then for foo(), then for

bar(), etc., all at the same time!
● The farther code is from an entry point, the harder it is to test

○ This is one of the motivations behind unit testing
● Solution: design with more entry points for self-contained

functionality (cf. AVL tree, priority queue, etc.)

Example: MVC + Angry Birds

● Suppose you are designing Angry Birds
● It's a game, and also a simulation, so MVC is a reasonable choice

Example: MVC + Angry Birds

● Suppose you are designing Angry Birds
● It's a game, and also a simulation, so MVC is a reasonable choice
● Design so that it can be tested without someone actually playing

the game!

Example: MVC + Angry Birds

● Suppose you are designing Angry Birds
● It's a game, and also a simulation, so MVC is a reasonable choice
● Design so that it can be tested without someone actually playing

the game!
○ e.g., have an interface where abstract commands can be

queued up: one way to get them is from the UI, but another is
programmatic

Example: MVC + Angry Birds

● Suppose you are designing Angry Birds
● It's a game, and also a simulation, so MVC is a reasonable choice
● Design so that it can be tested without someone actually playing

the game!
○ e.g., have an interface where abstract commands can be

queued up: one way to get them is from the UI, but another is
programmatic

○ “If I create a world with blocks X, Y and Z and then we launch
bird A at angle B, does C occur within five timesteps?”

Example: fault injection

● Microsoft's Driver Verifier sat between a driver and the
operating system and “pretended to fail (some of the time)” to
expose poor driver code

● The CHESS project sat between a program and the scheduler and
“forced strange schedules” to expose poor concurrency code

Example: fault injection

● Microsoft's Driver Verifier sat between a driver and the
operating system and “pretended to fail (some of the time)” to
expose poor driver code

● The CHESS project sat between a program and the scheduler and
“forced strange schedules” to expose poor concurrency code

● Problem for both: Hardware, OS and Networking errors can
occur infrequently, but you still want to test them

Example: fault injection

● Microsoft's Driver Verifier sat between a driver and the
operating system and “pretended to fail (some of the time)” to
expose poor driver code

● The CHESS project sat between a program and the scheduler and
“forced strange schedules” to expose poor concurrency code

● Problem for both: Hardware, OS and Networking errors can
occur infrequently, but you still want to test them
○ Must design for it! But how…?

Example: fault injection: add a level of indirection

● Old adage: the solution to everything in computer science is
either to add a level of indirection or to add a cache

Example: fault injection: add a level of indirection

● Old adage: the solution to everything in computer science is
either to add a level of indirection or to add a cache

● Don't have your code call fopen() or cout or whatever directly

Example: fault injection: add a level of indirection

● Old adage: the solution to everything in computer science is
either to add a level of indirection or to add a cache

● Don't have your code call fopen() or cout or whatever directly
● Instead, add a very thin level of indirection where you call

my_fopen which then calls fopen

Example: fault injection: add a level of indirection

● Old adage: the solution to everything in computer science is
either to add a level of indirection or to add a cache

● Don't have your code call fopen() or cout or whatever directly
● Instead, add a very thin level of indirection where you call

my_fopen which then calls fopen
● Later add “if coin_flip() then fail else ...” to that indirection layer to

inject faults while testing
○ let the compiler optimize it away for your production code

Designing for coverage-based testing

● Remind me: what’s coverage (in the context of testing)?

Designing for coverage-based testing

● Remind me: what’s coverage (in the context of testing)?
● Code coverage has many flaws

○ At a high level, simple coverage metrics do not align with
covering requirements (cf. traceability)

Designing for coverage-based testing

● Remind me: what’s coverage (in the context of testing)?
● Code coverage has many flaws

○ At a high level, simple coverage metrics do not align with
covering requirements (cf. traceability)

● Solutions:

Designing for coverage-based testing

● Remind me: what’s coverage (in the context of testing)?
● Code coverage has many flaws

○ At a high level, simple coverage metrics do not align with
covering requirements (cf. traceability)

● Solutions:
○ Better test suite adequacy metrics (mutation, etc.)

Designing for coverage-based testing

● Remind me: what’s coverage (in the context of testing)?
● Code coverage has many flaws

○ At a high level, simple coverage metrics do not align with
covering requirements (cf. traceability)

● Solutions:
○ Better test suite adequacy metrics (mutation, etc.)
○ Design and write the code so that high code coverage

correlates with high requirements coverage!

Designing for coverage-based testing

● Line coverage is often inadequate because “visit line 5 when
ptr==null” could be very different from “visit line 5 when ptr !=null”

Designing for coverage-based testing

● Line coverage is often inadequate because “visit line 5 when
ptr==null” could be very different from “visit line 5 when ptr !=null”
○ Because “*ptr = 9” is really “if (ptr == null) abort(); else *ptr = 9;”

Designing for coverage-based testing

● Line coverage is often inadequate because “visit line 5 when
ptr==null” could be very different from “visit line 5 when ptr !=null”
○ Because “*ptr = 9” is really “if (ptr == null) abort(); else *ptr = 9;”

● Consider explicit conditionals that check requirements adherence

Designing for coverage-based testing

● Line coverage is often inadequate because “visit line 5 when
ptr==null” could be very different from “visit line 5 when ptr !=null”
○ Because “*ptr = 9” is really “if (ptr == null) abort(); else *ptr = 9;”

● Consider explicit conditionals that check requirements adherence
○ To get coverage points for reaching the true branch, the test will

have to satisfy the requirement

Designing for coverage-based testing

● Line coverage is often inadequate because “visit line 5 when
ptr==null” could be very different from “visit line 5 when ptr !=null”
○ Because “*ptr = 9” is really “if (ptr == null) abort(); else *ptr = 9;”

● Consider explicit conditionals that check requirements adherence
○ To get coverage points for reaching the true branch, the test will

have to satisfy the requirement
● For example, consider a quality requirement: “finish X within Y time”

Designing for coverage-based testing

● Line coverage is often inadequate because “visit line 5 when
ptr==null” could be very different from “visit line 5 when ptr !=null”
○ Because “*ptr = 9” is really “if (ptr == null) abort(); else *ptr = 9;”

● Consider explicit conditionals that check requirements adherence
○ To get coverage points for reaching the true branch, the test will

have to satisfy the requirement
● For example, consider a quality requirement: “finish X within Y time”

○ Add in “get the time”, “do X”, “get the time”, “subtract”, “if t2 – t1 <
Y then ...”

Designing for coverage-based testing

● Line coverage is often inadequate because “visit line 5 when
ptr==null” could be very different from “visit line 5 when ptr !=null”
○ Because “*ptr = 9” is really “if (ptr == null) abort(); else *ptr = 9;”

● Consider explicit conditionals that check requirements adherence
○ To get coverage points for reaching the true branch, the test will

have to satisfy the requirement
● For example, consider a quality requirement: “finish X within Y time”

○ Add in “get the time”, “do X”, “get the time”, “subtract”, “if t2 – t1 <
Y then ...”

Explicit Conditional Pros:
● Testing tools can help you

reason about partial progress
● Testing tools can try to falsify

claims
Explicit Conditional Cons:
● Muddies meaning of

coverage (100% not desired)

Designing for coverage-based testing

● Line coverage is often inadequate because “visit line 5 when
ptr==null” could be very different from “visit line 5 when ptr !=null”
○ Because “*ptr = 9” is really “if (ptr == null) abort(); else *ptr = 9;”

● Consider explicit conditionals that check requirements adherence
○ To get coverage points for reaching the true branch, the test will

have to satisfy the requirement
● For example, consider a quality requirement: “finish X within Y time”

○ Add in “get the time”, “do X”, “get the time”, “subtract”, “if t2 – t1 <
Y then ...”

Explicit Conditional Pros:
● Testing tools can help you

reason about partial progress
● Testing tools can try to falsify

claims
Explicit Conditional Cons:
● Muddies meaning of

coverage (100% not desired)

Designing for coverage-based testing

● Line coverage is often inadequate because “visit line 5 when
ptr==null” could be very different from “visit line 5 when ptr !=null”
○ Because “*ptr = 9” is really “if (ptr == null) abort(); else *ptr = 9;”

● Consider explicit conditionals that check requirements adherence
○ To get coverage points for reaching the true branch, the test will

have to satisfy the requirement
● For example, consider a quality requirement: “finish X within Y time”

○ Add in “get the time”, “do X”, “get the time”, “subtract”, “if t2 – t1 <
Y then ...”

Explicit Conditional Pros:
● Testing tools can help you

reason about partial progress
● Testing tools can try to falsify

claims
Explicit Conditional Cons:
● Muddies meaning of

coverage (100% not desired)

Designing for coverage-based testing

● Line coverage is often inadequate because “visit line 5 when
ptr==null” could be very different from “visit line 5 when ptr !=null”
○ Because “*ptr = 9” is really “if (ptr == null) abort(); else *ptr = 9;”

● Consider explicit conditionals that check requirements adherence
○ To get coverage points for reaching the true branch, the test will

have to satisfy the requirement
● For example, consider a quality requirement: “finish X within Y time”

○ Add in “get the time”, “do X”, “get the time”, “subtract”, “if t2 – t1 <
Y then ...”

Explicit Conditional Pros:
● Testing tools can help you

reason about partial progress
● Testing tools can try to falsify

claims
Explicit Conditional Cons:
● Muddies meaning of

coverage (100% not desired)

Designing for testing: tests for free

Designing for testing: tests for free

● Many programs transform data from one format to another (cf.
adapter pattern)

Designing for testing: tests for free

● Many programs transform data from one format to another (cf.
adapter pattern)

● If the program is implementing a function with similar domain and
range, you can often get high-coverage tests “for free” by composing
the program with itself

Designing for testing: tests for free

● Many programs transform data from one format to another (cf.
adapter pattern)

● If the program is implementing a function with similar domain and
range, you can often get high-coverage tests “for free” by composing
the program with itself
○ If possible, design your program so that this is possible

Designing for testing: tests for free

● Many programs transform data from one format to another (cf.
adapter pattern)

● If the program is implementing a function with similar domain and
range, you can often get high-coverage tests “for free” by composing
the program with itself
○ If possible, design your program so that this is possible

● Examples:

Designing for testing: tests for free

● Many programs transform data from one format to another (cf.
adapter pattern)

● If the program is implementing a function with similar domain and
range, you can often get high-coverage tests “for free” by composing
the program with itself
○ If possible, design your program so that this is possible

● Examples:
○ Inversion: forall X. unzip(zip(X)) = X

Designing for testing: tests for free

● Many programs transform data from one format to another (cf.
adapter pattern)

● If the program is implementing a function with similar domain and
range, you can often get high-coverage tests “for free” by composing
the program with itself
○ If possible, design your program so that this is possible

● Examples:
○ Inversion: forall X. unzip(zip(X)) = X
○ Convergence: forall X. sort(sort(X)) = sort(X)

Software Architecture (Part 2 of 3 2)

Today’s agenda:

● Reading Quiz
● Strategies for good design
● Design patterns

○ Structural patterns
○ Creational patterns
○ Behavioural patterns

Design patterns

Design patterns

Definition: A software design pattern is a general, reusable solution to a
commonly occurring problem within a given context in software design.

Design patterns

Definition: A software design pattern is a general, reusable solution to a
commonly occurring problem within a given context in software design.
● patterns reduce surprise for code readers

Design patterns

Definition: A software design pattern is a general, reusable solution to a
commonly occurring problem within a given context in software design.
● patterns reduce surprise for code readers
● patterns separate the structure of a system from the

implementation details

Design patterns

Definition: A software design pattern is a general, reusable solution to a
commonly occurring problem within a given context in software design.
● patterns reduce surprise for code readers
● patterns separate the structure of a system from the

implementation details
● patterns apply in almost all OO languages

Design patterns

Definition: A software design pattern is a general, reusable solution to a
commonly occurring problem within a given context in software design.
● patterns reduce surprise for code readers
● patterns separate the structure of a system from the

implementation details
● patterns apply in almost all OO languages
● all patterns have tradeoffs. In OO languages, design patterns often

trade verbosity or efficiency for extensibility

Design patterns

Definition: A software design pattern is a general, reusable solution to a
commonly occurring problem within a given context in software design.
● patterns reduce surprise for code readers
● patterns separate the structure of a system from the

implementation details
● patterns apply in almost all OO languages
● all patterns have tradeoffs. In OO languages, design patterns often

trade verbosity or efficiency for extensibility
● we'll consider structural, creational and behavioral design patterns

Design patterns: non-software

● Design patterns are common in almost every field (not just SE)

Design patterns: non-software

● Design patterns are common in almost every field (not just SE)
○ e.g., “multiple choice question” is a design pattern for exam

making, “verse-chorus-verse-chorus-bridge-chorus” is a design
pattern for songs

Design patterns: non-software

● Design patterns are common in almost every field (not just SE)
○ e.g., “multiple choice question” is a design pattern for exam

making, “verse-chorus-verse-chorus-bridge-chorus” is a design
pattern for songs

● The Design of Everyday Things (famous book): design serves as the
communication between object and user

Design patterns: non-software

● Design patterns are common in almost every field (not just SE)
○ e.g., “multiple choice question” is a design pattern for exam

making, “verse-chorus-verse-chorus-bridge-chorus” is a design
pattern for songs

● The Design of Everyday Things (famous book): design serves as the
communication between object and user
○ although people often blame themselves when objects appear

to malfunction, it is not the fault of the user but rather the lack
of intuitive guidance that should be present in the design

Design patterns: non-software

● Design patterns are common in almost every field (not just SE)
○ e.g., “multiple choice question” is a design pattern for exam

making, “verse-chorus-verse-chorus-bridge-chorus” is a design
pattern for songs

● The Design of Everyday Things (famous book): design serves as the
communication between object and user
○ although people often blame themselves when objects appear

to malfunction, it is not the fault of the user but rather the lack
of intuitive guidance that should be present in the design

Same ideas apply to software:
● design GUIs that people

intuitively know how to use
● design code that other

developers intuitively know
how to read

Design patterns: “gang of four”

● The book popularizing
software design patterns is
often called the “Gang of Four”
book after its four authors

● I don’t care if you remember
this, but it’ll be handy to know
about (e.g., for interviews)

Design patterns: high-level advice

Design patterns: high-level advice

● Consider code change as a certainty
○ Redesign is expensive. Choosing the right pattern helps

avoid it.

Design patterns: high-level advice

● Consider code change as a certainty
○ Redesign is expensive. Choosing the right pattern helps

avoid it.
● Consider your requirements and their changes

○ Use patterns that fit your current or anticipated needs.

Design patterns: high-level advice

● Consider code change as a certainty
○ Redesign is expensive. Choosing the right pattern helps

avoid it.
● Consider your requirements and their changes

○ Use patterns that fit your current or anticipated needs.
● Consider multiple designs

○ Diagram your designs before writing code.

Design patterns: categories

● We’re going to talk about three categories of design patterns:
○ Structural
○ Creational
○ Behavioural

Design patterns: categories

● We’re going to talk about three categories of design patterns:
○ Structural
○ Creational
○ Behavioural

● These are rough categories: some patterns don’t fit neatly
into any of them, and some might fit into two or more
○ but, they’re a useful way to structure a lecture :)

Design patterns: categories

● We’re going to talk about three categories of design patterns:
○ Structural
○ Creational
○ Behavioural

● These are rough categories: some patterns don’t fit neatly
into any of them, and some might fit into two or more
○ but, they’re a useful way to structure a lecture :)

Design patterns: structural

● Structural design patterns ease design by identifying simple
ways to realize relationships among entities.

Design patterns: structural

● Structural design patterns ease design by identifying simple
ways to realize relationships among entities.

● In software, they usually:

Design patterns: structural

● Structural design patterns ease design by identifying simple
ways to realize relationships among entities.

● In software, they usually:
○ Build new classes or interfaces from existing ones

Design patterns: structural

● Structural design patterns ease design by identifying simple
ways to realize relationships among entities.

● In software, they usually:
○ Build new classes or interfaces from existing ones
○ Hide implementation details

Design patterns: structural

● Structural design patterns ease design by identifying simple
ways to realize relationships among entities.

● In software, they usually:
○ Build new classes or interfaces from existing ones
○ Hide implementation details
○ Provide cleaner or more specialized interfaces

Design patterns: structural: adapter

● The adapter design pattern is a structural design pattern that
converts the interface of a class into another interface clients
expect.

Design patterns: structural: adapter

● The adapter design pattern is a structural design pattern that
converts the interface of a class into another interface clients
expect.
○ analogy: dongles that convert HDMI to USB-C

Design patterns: structural: adapter

● The adapter design pattern is a structural design pattern that
converts the interface of a class into another interface clients
expect.
○ analogy: dongles that convert HDMI to USB-C

● Examples:

Design patterns: structural: adapter

● The adapter design pattern is a structural design pattern that
converts the interface of a class into another interface clients
expect.
○ analogy: dongles that convert HDMI to USB-C

● Examples:
○ Implementing a Stack interface using a LinkedList interface

Design patterns: structural: adapter

● The adapter design pattern is a structural design pattern that
converts the interface of a class into another interface clients
expect.
○ analogy: dongles that convert HDMI to USB-C

● Examples:
○ Implementing a Stack interface using a LinkedList interface
○ Early implementations of fstream in C++

■ … were simply adapters around the C FILE macro

Design patterns: other structural patterns

Design patterns: other structural patterns

● The composite design pattern allows clients to treat individual
objects and groups of objects uniformly

Design patterns: other structural patterns

● The composite design pattern allows clients to treat individual
objects and groups of objects uniformly
○ e.g., selecting and moving objects in PowerPoint

Design patterns: other structural patterns

● The composite design pattern allows clients to treat individual
objects and groups of objects uniformly
○ e.g., selecting and moving objects in PowerPoint

● The proxy design pattern provides a surrogate or placeholder for
another object to control access to it

Design patterns: other structural patterns

● The composite design pattern allows clients to treat individual
objects and groups of objects uniformly
○ e.g., selecting and moving objects in PowerPoint

● The proxy design pattern provides a surrogate or placeholder for
another object to control access to it
○ e.g., std::vector exposes std::vector::reference as a method of

accessing individual bits. In particular, objects of this class are
returned by operator[] by value.
(https://en.cppreference.com/w/cpp/container/vector_bool)

https://en.cppreference.com/w/cpp/container/vector_bool

Design patterns: creational patterns

Design patterns: creational patterns

● Creational design patterns avoid complexity by controlling object
creation so that objects are created in a manner suitable for the
situation. They make a system independent of how its objects
are created.

Design patterns: creational patterns

● Creational design patterns avoid complexity by controlling object
creation so that objects are created in a manner suitable for the
situation. They make a system independent of how its objects
are created.

● A plain constructor may not allow you to:

Design patterns: creational patterns

● Creational design patterns avoid complexity by controlling object
creation so that objects are created in a manner suitable for the
situation. They make a system independent of how its objects
are created.

● A plain constructor may not allow you to:
○ Control how and when an object is used
○ Overcome language limitations (e.g., no default arguments)
○ Hide polymorphic types
○ Specify different combinations of optional arguments

Design patterns: creational patterns

● Creational design patterns avoid complexity by controlling object
creation so that objects are created in a manner suitable for the
situation. They make a system independent of how its objects
are created.

● A plain constructor may not allow you to:
○ Control how and when an object is used
○ Overcome language limitations (e.g., no default arguments)
○ Hide polymorphic types
○ Specify different combinations of optional arguments

Different creational patterns
allow you to overcome these
limiations of simple construtors

Creational patterns: named constructor

● In the Named Constructor Pattern, you declare the class's normal
constructors to be private or protected and make a public static
creation method.

Creational patterns: named constructor

● In the Named Constructor Pattern, you declare the class's normal
constructors to be private or protected and make a public static
creation method.

class Llama {
public:
 static Llama* create_llama(string name) {
 return new Llama(name);
 }
private: // Making ctor private
 Llama(string name_in): name(name_in) {}
 string name;
};

Creational patterns: named constructor

● In the Named Constructor Pattern, you declare the class's normal
constructors to be private or protected and make a public static
creation method.

class Llama {
public:
 static Llama* create_llama(string name) {
 return new Llama(name);
 }
private: // Making ctor private
 Llama(string name_in): name(name_in) {}
 string name;
};

Why might you do this?
● might want to change to

Llama subclass later
● want to validate arguments

from clients, but make
construction fast internally

● etc.

Creational patterns: factories

● Suppose we need to create and use polymorphic objects without
exposing their types to the client

Creational patterns: factories

● Suppose we need to create and use polymorphic objects without
exposing their types to the client
○ Recall: design for maintainability and extensibility. We don't

want the client to depend on (and thus “lock in”) the actual
subtypes.

Creational patterns: factories

● Suppose we need to create and use polymorphic objects without
exposing their types to the client
○ Recall: design for maintainability and extensibility. We don't

want the client to depend on (and thus “lock in”) the actual
subtypes.

● The typical solution is to write a function that creates objects of
the type we want but returns that object so that it appears to be
(“cast to”) a member of the base class

Creational patterns: factories

● Suppose we need to create and use polymorphic objects without
exposing their types to the client
○ Recall: design for maintainability and extensibility. We don't

want the client to depend on (and thus “lock in”) the actual
subtypes.

● The typical solution is to write a function that creates objects of
the type we want but returns that object so that it appears to be
(“cast to”) a member of the base class
○ this is a specific variant of the named constructor pattern

Creational patterns: factories

● The factory method pattern (or just factory pattern) is a creational
design pattern that uses factory methods to create objects
without having the return type reveal the exact subclass created.

Creational patterns: factories

● The factory method pattern (or just factory pattern) is a creational
design pattern that uses factory methods to create objects
without having the return type reveal the exact subclass created.

Payment * payment_factory(string name, string type) {
 if (type == “credit_card”)
 return new CreditCardPayment(name);
 else if (type == “bitcoin”)
 return new BitcoinPayment(name);
 … }

Payment * webapp_session_payment =
 payment_factory(customer_name, “credit_card”);

Creational patterns: factories

● The factory method pattern (or just factory pattern) is a creational
design pattern that uses factory methods to create objects
without having the return type reveal the exact subclass created.

Payment * payment_factory(string name, string type) {
 if (type == “credit_card”)
 return new CreditCardPayment(name);
 else if (type == “bitcoin”)
 return new BitcoinPayment(name);
 … }

Payment * webapp_session_payment =
 payment_factory(customer_name, “credit_card”);

Note how the implementation
details are hidden from the
client, and they can only treat
the result as a generic payment

Creational patterns: factories

● You may also encounter implementations in which special
methods create the right type:

Creational patterns: factories

● You may also encounter implementations in which special
methods create the right type:

class PaymentFactory {
public:
 static Payment* make_credit_payment(string name){
 return new CreditCardPayment(name);
 }
 static Payment* make_bc_payment(string name){
 return new BitcoinPayment(name);
 }};
Payment * webapp_session_payment =
PaymentFactory::make_credit_payment(customer_name);

Creational patterns: example

● Suppose we're implementing a computer game with a
polymorphic Enemy class hierarchy, and we want to spawn
different versions of enemies based on the difficulty level.

● e.g., normal difficulty = regular Goomba

● hard difficulty = spiked Goomba

Creational patterns: example: anti-patterns

● An anti-pattern is a common response to a recurring problem that
is usually ineffective and risks being counterproductive.

Creational patterns: example: anti-patterns

● An anti-pattern is a common response to a recurring problem that
is usually ineffective and risks being counterproductive.

● A bad solution (i.e., anti-pattern) would be to check the difficulty
at each of the many places in the code related to spawning
enemies:

Enemy* goomba = nullptr;
if (difficulty == “normal”)
 goomba = new Goomba();
else if (difficulty == “hard”)
 goomba = new SpikedGoomba();

Creational patterns: example: anti-patterns

● An anti-pattern is a common response to a recurring problem that
is usually ineffective and risks being counterproductive.

● A bad solution (i.e., anti-pattern) would be to check the difficulty
at each of the many places in the code related to spawning
enemies:

Enemy* goomba = nullptr;
if (difficulty == “normal”)
 goomba = new Goomba();
else if (difficulty == “hard”)
 goomba = new SpikedGoomba();

Why is this bad?
● code duplication
● consider how you’d add a

new difficulty level…

Creational patterns: example: anti-patterns

● An anti-pattern is a common response to a recurring problem that
is usually ineffective and risks being counterproductive.

● A bad solution (i.e., anti-pattern) would be to check the difficulty
at each of the many places in the code related to spawning
enemies:

Enemy* goomba = nullptr;
if (difficulty == “normal”)
 goomba = new Goomba();
else if (difficulty == “hard”)
 goomba = new SpikedGoomba();

Why is this bad?
● code duplication
● consider how you’d add a

new difficulty level…

● The abstract factory pattern encapsulates a group of factories
that have a common theme without specifying their concrete
classes.

Creational patterns: abstract factories

● The abstract factory pattern encapsulates a group of factories
that have a common theme without specifying their concrete
classes.

Creational patterns: abstract factories

● The abstract factory pattern encapsulates a group of factories
that have a common theme without specifying their concrete
classes.

Creational patterns: abstract factories

// Only have to do this once!
AbstractEnemyFactory* factory = nullptr;
if (difficulty == “normal”)
 factory = new NormalEnemyFactory();
else if (difficulty == “hard”)
 factory = new HardEnemyFactory();
Enemy* goomba = factory->create_goomba();

Scenario: global application state

● Suppose we have some application state that needs to be
globally accessible. However, we need to control how that data is
accessed and updated.

Scenario: global application state

● Suppose we have some application state that needs to be
globally accessible. However, we need to control how that data is
accessed and updated.

● The anti-pattern (bad) solution is to have an unprotected global
variable (e.g., a public static field).

Scenario: global application state

● Suppose we have some application state that needs to be
globally accessible. However, we need to control how that data is
accessed and updated.

● The anti-pattern (bad) solution is to have an unprotected global
variable (e.g., a public static field).
○ fails to control access or updates!

Scenario: global application state

● Suppose we have some application state that needs to be
globally accessible. However, we need to control how that data is
accessed and updated.

● The anti-pattern (bad) solution is to have an unprotected global
variable (e.g., a public static field).
○ fails to control access or updates!

● A “less bad” solution is to put all of the state in one class and have
a global instance of that class.

Scenario: global application state

● Global variables are usually a poor design choice. However:

Scenario: global application state

● Global variables are usually a poor design choice. However:
○ If you must access some state everywhere, passing it as a

parameter to every function clutters the code (readability vs. …)

Scenario: global application state

● Global variables are usually a poor design choice. However:
○ If you must access some state everywhere, passing it as a

parameter to every function clutters the code (readability vs. …)
■ This is not an argument for using global variables to avoid

passing a few parameters.

Scenario: global application state

● Global variables are usually a poor design choice. However:
○ If you must access some state everywhere, passing it as a

parameter to every function clutters the code (readability vs. …)
■ This is not an argument for using global variables to avoid

passing a few parameters.
○ Or if you need to access state stored outside your program (e.g.,

database, web API)

Scenario: global application state

● Global variables are usually a poor design choice. However:
○ If you must access some state everywhere, passing it as a

parameter to every function clutters the code (readability vs. …)
■ This is not an argument for using global variables to avoid

passing a few parameters.
○ Or if you need to access state stored outside your program (e.g.,

database, web API)
○ Then global variables may be acceptable

Scenario: global application state

● The singleton pattern restricts the instantiation of a class to exactly
one logical instance. It ensures that a class has only one logical
instance at runtime and provides a global point of access to it.

Singleton design pattern

class Singleton {
 // public way to get “the one logical instance”
 public static Singleton get_instance() {
 if (Singleton.instance == null) Singleton.instance = new Singleton();
 return Singleton.instance;
 }
 private static Singleton instance = null;
 private Singleton() { // only runs once
 billing_database = 0;
 System.out.println("Singleton DB created");
 }
 // Our global state
 private int billing_database;
 public int get_billing_count() { return billing_database; }
 public void increment_billing_count() { billing_database += 1; }
}

Singleton design pattern: example

class Singleton {
 // public way to get “the one logical instance”
 public static Singleton get_instance() {
 if (Singleton.instance == null) Singleton.instance = new Singleton();
 return Singleton.instance;
 }
 private static Singleton instance = null;
 private Singleton() { // only runs once
 billing_database = 0;
 System.out.println("Singleton DB created");
 }
 // Our global state
 private int billing_database;
 public int get_billing_count() { return billing_database; }
 public void increment_billing_count() { billing_database += 1; }
}

Singleton design pattern: example

lazy initializaton
of single object

class Singleton {
 // public way to get “the one logical instance”
 public static Singleton get_instance() {
 if (Singleton.instance == null) Singleton.instance = new Singleton();
 return Singleton.instance;
 }
 private static Singleton instance = null;
 private Singleton() { // only runs once
 billing_database = 0;
 System.out.println("Singleton DB created");
 }
 // Our global state
 private int billing_database;
 public int get_billing_count() { return billing_database; }
 public void increment_billing_count() { billing_database += 1; }
}

Singleton design pattern: example

this constructor
can’t be called any
other way

class Singleton {
 // public way to get “the one logical instance”
 public static Singleton get_instance() {
 if (Singleton.instance == null) Singleton.instance = new Singleton();
 return Singleton.instance;
 }
 private static Singleton instance = null;
 private Singleton() { // only runs once
 billing_database = 0;
 System.out.println("Singleton DB created");
 }
 // Our global state
 private int billing_database;
 public int get_billing_count() { return billing_database; }
 public void increment_billing_count() { billing_database += 1; }
}

Singleton design pattern: example

all clients share
this global state

What is the output of this code?

class Main {
 public static void main(String[] args) {
 int bills = Singleton.get_instance().get_billing_count();
 System.out.println(bills);

 Singleton.get_instance().increment_billing_count();
 bills = Singleton.get_instance().get_billing_count();
 System.out.println(bills);
 }
}

Singleton design pattern:
example

What is the output of this code?

class Main {
 public static void main(String[] args) {
 int bills = Singleton.get_instance().get_billing_count();
 System.out.println(bills);

 Singleton.get_instance().increment_billing_count();
 bills = Singleton.get_instance().get_billing_count();
 System.out.println(bills);
 }
}

Singleton design pattern:
example

Output:
Singleton DB created
0
1

● Could we avoid typing Single.get_instance() so many times by doing
this at all of the points in our program that use the singleton?

Single s = Singleton.get_instance();
System.out.println(s.get_billing_count());
… // later
System.out.println(s.get_billing_count());

Singleton design pattern: get_instance()

● Could we avoid typing Single.get_instance() so many times by doing
this at all of the points in our program that use the singleton?

Single s = Singleton.get_instance();
System.out.println(s.get_billing_count());
… // later
System.out.println(s.get_billing_count());

● Is this a good idea or not?

Singleton design pattern: get_instance()

● Could we avoid typing Single.get_instance() so many times by doing
this at all of the points in our program that use the singleton?

Single s = Singleton.get_instance();
System.out.println(s.get_billing_count());
… // later
System.out.println(s.get_billing_count());

● Is this a good idea or not?

Singleton design pattern: get_instance()

This is a bad idea. There is no
guarantee that get_instance() will
return the same pointer (same
object) every time it is called. (It
may return different concrete
copies of the same logical item.)

● Suppose we are implementing a computer version of the card game
Euchre. In addition to a few abstract datatypes, we have a Game
class that stores the state needed for a game of Euchre. When
started, our application prototype plays one game of Euchre and
then exits.

● Design question: should we make Game a singleton?

Singleton design pattern: another example

● Making Game a Singleton is tempting
○ There is only one Game instance in our application

Singleton design pattern: another example

● Making Game a Singleton is tempting
○ There is only one Game instance in our application

● However, there only happens to be one instance of Game. There's no
requirement that we only have one instance.

Singleton design pattern: another example

● Making Game a Singleton is tempting
○ There is only one Game instance in our application

● However, there only happens to be one instance of Game. There's no
requirement that we only have one instance.

● We should only use the Singleton pattern when current or future
requirements dictate that only one instance should exist.

Singleton design pattern: another example

● Making Game a Singleton is tempting
○ There is only one Game instance in our application

● However, there only happens to be one instance of Game. There's no
requirement that we only have one instance.

● We should only use the Singleton pattern when current or future
requirements dictate that only one instance should exist.
○ Singleton is not a license to make everything global.

Singleton design pattern: another example

Behavioural Design Patterns

● Behavioral design patterns support common communication
patterns among objects. They are concerned with algorithms and
the assignment of responsibilities between objects.

Behavioural Design Patterns

● Behavioral design patterns support common communication
patterns among objects. They are concerned with algorithms and
the assignment of responsibilities between objects.
○ Commonly used to enable limited sharing

Behavioural Design Patterns

● Behavioral design patterns support common communication
patterns among objects. They are concerned with algorithms and
the assignment of responsibilities between objects.
○ Commonly used to enable limited sharing

■ e.g., same underlying algorithm, different interfaces or
same interface, different underlying algorithms

Behavioural Design Patterns

● Behavioral design patterns support common communication
patterns among objects. They are concerned with algorithms and
the assignment of responsibilities between objects.
○ Commonly used to enable limited sharing

■ e.g., same underlying algorithm, different interfaces or
same interface, different underlying algorithms

○ Examples: strategy pattern, template method pattern,
iterator pattern, observer pattern, etc.

Behavioural Design Patterns

Iterator Pattern

● The iterator pattern is a common behavioral design pattern. It
provides a uniform interface for traversing containers regardless of
how they are implemented.

Iterator Pattern

● The iterator pattern is a common behavioral design pattern. It
provides a uniform interface for traversing containers regardless of
how they are implemented.
○ e.g., Java’s List interface doesn’t care whether it’s backed by an

array or a linked list

Iterator Pattern

● The iterator pattern is a common behavioral design pattern. It
provides a uniform interface for traversing containers regardless of
how they are implemented.
○ e.g., Java’s List interface doesn’t care whether it’s backed by an

array or a linked list
● Similar patterns exist for other kinds of data structures

○ e.g., visitor pattern for tree-like structures

Strategy Design Pattern

Strategy Design Pattern

● Problem: Clients need different variants of an

algorithm

Strategy Design Pattern

● Problem: Clients need different variants of an

algorithm

● Solution: Create an interface for the algorithm,

with an implementing class for each variant of the algorithm

Strategy Design Pattern

● Problem: Clients need different variants of an

algorithm

● Solution: Create an interface for the algorithm,

with an implementing class for each variant of the algorithm

Strategy Design Pattern

● Consequences:

● Problem: Clients need different variants of an

algorithm

● Solution: Create an interface for the algorithm,

with an implementing class for each variant of the algorithm

Strategy Design Pattern

● Consequences:
○ Easily extensible for new algorithm implementations

● Problem: Clients need different variants of an

algorithm

● Solution: Create an interface for the algorithm,

with an implementing class for each variant of the algorithm

Strategy Design Pattern

● Consequences:
○ Easily extensible for new algorithm implementations
○ Separates algorithm from client context

● Problem: Clients need different variants of an

algorithm

● Solution: Create an interface for the algorithm,

with an implementing class for each variant of the algorithm

Strategy Design Pattern

● Consequences:
○ Easily extensible for new algorithm implementations
○ Separates algorithm from client context
○ Introduces extra interfaces and classes: code can be harder to

understand; adds overhead if the strategies are simple

● Problem: Clients need different variants of an

algorithm

● Solution: Create an interface for the algorithm,

with an implementing class for each variant of the algorithm

Template Method Design Pattern

Template Method Design Pattern

● Problem: An algorithm has customizable and invariant parts

Template Method Design Pattern

● Problem: An algorithm has customizable and invariant parts

● Solution: Implement the invariant parts of the algorithm in an abstract

class, with abstract primitive operations representing the customizable

parts of the algorithm. Subclasses customize the primitive operations.

Template Method Design Pattern

● Problem: An algorithm has customizable and invariant parts

● Solution: Implement the invariant parts of the algorithm in an abstract

class, with abstract primitive operations representing the customizable

parts of the algorithm. Subclasses customize the primitive operations.

Template Method Design Pattern

● Problem: An algorithm has customizable and invariant parts

● Solution: Implement the invariant parts of the algorithm in an abstract

class, with abstract primitive operations representing the customizable

parts of the algorithm. Subclasses customize the primitive operations.

● Consequences:

Template Method Design Pattern

● Problem: An algorithm has customizable and invariant parts

● Solution: Implement the invariant parts of the algorithm in an abstract

class, with abstract primitive operations representing the customizable

parts of the algorithm. Subclasses customize the primitive operations.

● Consequences:

○ Code reuse for the invariant parts of algorithm

Template Method Design Pattern

● Problem: An algorithm has customizable and invariant parts

● Solution: Implement the invariant parts of the algorithm in an abstract

class, with abstract primitive operations representing the customizable

parts of the algorithm. Subclasses customize the primitive operations.

● Consequences:

○ Code reuse for the invariant parts of algorithm

○ Customization is restricted to the primitive operations

Template Method Design Pattern

● Problem: An algorithm has customizable and invariant parts

● Solution: Implement the invariant parts of the algorithm in an abstract

class, with abstract primitive operations representing the customizable

parts of the algorithm. Subclasses customize the primitive operations.

● Consequences:

○ Code reuse for the invariant parts of algorithm

○ Customization is restricted to the primitive operations

○ Inverted (“Hollywood-style”) control for customization: “don’t call us,

we’ll call you” (cf. comparison function in sorting)

Template Method Design Pattern

● Problem: An algorithm has customizable and invariant parts

● Solution: Implement the invariant parts of the algorithm in an abstract

class, with abstract primitive operations representing the customizable

parts of the algorithm. Subclasses customize the primitive operations.

● Consequences:

○ Code reuse for the invariant parts of algorithm

○ Customization is restricted to the primitive operations

○ Inverted (“Hollywood-style”) control for customization: “don’t call us,

we’ll call you” (cf. comparison function in sorting)

○ Invariant parts of the algorithm are not changed by subclasses

Template vs. Strategy Design Pattern

Template vs. Strategy Design Pattern

● Both support variation in a larger context

Template vs. Strategy Design Pattern

● Both support variation in a larger context
● Template method uses inheritance + an overridable method

Template vs. Strategy Design Pattern

● Both support variation in a larger context
● Template method uses inheritance + an overridable method
● Strategy uses an interface and polymorphism (via composition)

○ Strategy objects are reusable across multiple classes
○ Multiple strategy objects are possible per class

Scenario: binge-watching

● Suppose we're implementing a video streaming website in which
users can “binge-watch” (or “lock on”) to one channel. The user will
then see that channel's videos in sequence. When the last such
video is watched, the user should stop binge-watching that channel.

Scenario: binge-watching

● Idea: when the last video is watched, call release_binge_watch() on
the user.

Scenario: binge-watching

● Idea: when the last video is watched, call release_binge_watch() on
the user.

class User {
 public void release_binge_watch(Channel c) {
 if (c == binge_channel) {
 binge_channel = null;
 }
 }
 private Channel binge_channel;
}

Scenario: binge-watching

● Idea: when the last video is watched, call release_binge_watch() on
the user.

class User {
 public void release_binge_watch(Channel c) {
 if (c == binge_channel) {
 binge_channel = null;
 }
 }
 private Channel binge_channel;
}

class Channel {
 // Called when the last video is shown
 public void on_last_video_shown() {
 // Global accessor for the user
 get_user().release_binge_watch(this);
 }
}

Scenario: binge-watching

● Idea: when the last video is watched, call release_binge_watch() on
the user.

● What are some problems with this approach?

class User {
 public void release_binge_watch(Channel c) {
 if (c == binge_channel) {
 binge_channel = null;
 }
 }
 private Channel binge_channel;
}

class Channel {
 // Called when the last video is shown
 public void on_last_video_shown() {
 // Global accessor for the user
 get_user().release_binge_watch(this);
 }
}

Scenario: binge-watching: anti-patterns

● With this design, User and Channel are tightly coupled
○ Changing one likely requires a change to the other

Scenario: binge-watching: anti-patterns

● With this design, User and Channel are tightly coupled
○ Changing one likely requires a change to the other

● The design does not support multiple users

Scenario: binge-watching: anti-patterns

● With this design, User and Channel are tightly coupled
○ Changing one likely requires a change to the other

● The design does not support multiple users
● What if we later want to update a user's “recommendation queue”

when they finish binge-watching a channel?

Scenario: binge-watching: anti-patterns

● With this design, User and Channel are tightly coupled
○ Changing one likely requires a change to the other

● The design does not support multiple users
● What if we later want to update a user's “recommendation queue”

when they finish binge-watching a channel?
● Whenever requirements change and we want to do something else

when a video finishes (e.g., update advertising) we must update the
Channel class and couple it to the new feature

Scenario: binge-watching: anti-patterns

● With this design, User and Channel are tightly coupled
○ Changing one likely requires a change to the other

● The design does not support multiple users
● What if we later want to update a user's “recommendation queue”

when they finish binge-watching a channel?
● Whenever requirements change and we want to do something else

when a video finishes (e.g., update advertising) we must update the
Channel class and couple it to the new feature

What can we do instead?

Observer Pattern

● The observer pattern (also called “publish-subscribe”) allows
dependent objects to be notified automatically when the state of a
subject changes. It defines a one-to-many dependency between
objects so that when one object changes state, all of it dependents
are notified.

Observer Pattern

● The observer pattern (also called “publish-subscribe”) allows
dependent objects to be notified automatically when the state of a
subject changes. It defines a one-to-many dependency between
objects so that when one object changes state, all of it dependents
are notified.

Observer Pattern: bing-watch scenario

Observer Pattern: bing-watch scenario

class Channel {
 public static void subscribe(ChannelObserver obs) {
 subscribers.Add(obs);
 }
 public static void unsubscribe(ChannelObserver obs) {
 subscribers.Remove(obs);
 }
 public void on_last_video_shown() {
 foreach (ChannelObserver obs in subscribers) {
 observer.update_video_shown(this);
 }
 }
 private static List<ChannelObserver> subscribers =

new List<ChannelObserver>();
}

Observer Pattern: bing-watch scenario

class Channel {
 public static void subscribe(ChannelObserver obs) {
 subscribers.Add(obs);
 }
 public static void unsubscribe(ChannelObserver obs) {
 subscribers.Remove(obs);
 }
 public void on_last_video_shown() {
 foreach (ChannelObserver obs in subscribers) {
 observer.update_video_shown(this);
 }
 }
 private static List<ChannelObserver> subscribers =

new List<ChannelObserver>();
}

interface ChannelObserver {
 void update_video_shown(Channel channel);
}

Observer Pattern: bing-watch scenario

class Channel {
 public static void subscribe(ChannelObserver obs) {
 subscribers.Add(obs);
 }
 public static void unsubscribe(ChannelObserver obs) {
 subscribers.Remove(obs);
 }
 public void on_last_video_shown() {
 foreach (ChannelObserver obs in subscribers) {
 observer.update_video_shown(this);
 }
 }
 private static List<ChannelObserver> subscribers =

new List<ChannelObserver>();
}

interface ChannelObserver {
 void update_video_shown(Channel channel);
}

class User: ChannelObserver {
 public void update_video_shown(Channel c) {
 if (c == binged_channel)
 binged_channel = null;
 }
 public void binge_watch(Channel c) {
 binged_channel = c;
 }
 private Channel binged_channel;
}

Observer Pattern: update functions

● Having multiple “update_” functions, one for each type of state
change, keeps messages granular

Observer Pattern: update functions

● Having multiple “update_” functions, one for each type of state
change, keeps messages granular
○ Observers that do not care about a particular type of update

can ignore it (via an empty implementation of the update
function)

Observer Pattern: update functions

● Having multiple “update_” functions, one for each type of state
change, keeps messages granular
○ Observers that do not care about a particular type of update

can ignore it (via an empty implementation of the update
function)

● Generally it is better to pass the newly-updated data as a parameter
to the update function (push) as opposed to making observers fetch
it each time (pull)

Design patterns: takeaways

● Thinking about design before you start coding is usually worthwhile
for large projects
○ Design around the most expensive parts of the software

engineering process (usually maintainence!)
● Design patterns are re-usable solutions to common problems
● Be familiar with them enough to recognize when they’re being used

○ and to know when to use them yourself
○ you can look up details of a pattern if you remember its name!

● Be mindful of and avoid common anti-patterns

