
50 CommuNiCAtioNs of the ACm | MAy 2012 | voL. 5 | no. 5

practice

IN 1 992, WArD CUNNINGHAM published a report
at OOPSLA2 in which he proposed the concept of
technical debt. He defines it in terms of immature
code: “Shipping first-time code is like going into
debt.” Technical debt is not limited to first-time code,
however. There are many ways and reasons (not all
bad) to take on technical debt.

Technical debt often results from the tension
between engineering “best practices” and other factors
(ship date, cost of tools, and the skills of engineers
that are available, among others). Roughly speaking,
technical debt is acquired when engineers take
shortcuts that fall short of best practices. This includes
sneaking around an abstraction because it is too hard
(or impossible) to figure how to “do it right,” skipping
or scrimping on documentation (both in the code
and external documentation), using an obscure or
incomplete error message because it is just too hard to
create something more informative, implementing

code using a simple but slow algorithm
even though they know that a better al-
gorithm will be needed in production,
using void* when you really should
have created an appropriate union*,
using build tools that do not quite
work for the system at hand, skimping
on good security practices, not writing
unit tests, and so forth. Admit it—you
have all done one or more (or maybe
all) of these things at some point or
another in your career. (Technical debt
may also be taken on intentionally as
a strategy to save time or money; more
about that later.)

Not all debt (whether technical or
financial) is bad. Few of us can afford
to pay cash for a house, and going into
debt to buy one is not financially irre-
sponsible, provided that we know how
to pay it back. In contrast, charging up
luxury items on a credit card, know-
ing very well that your paycheck will
not cover them, is usually a recipe for
disaster. Using a simple but slow algo-
rithm in a prototype can be exactly the
correct path, as long as you have a plan
for how you are going to update the
code before it ships. That means allow-
ing time in the schedule, making sure
the issue is tracked so it does not get
lost in the shuffle, knowing when you
implement the code that a good algo-
rithm actually does exist that will work
in this instance, and trusting that man-
agement will support you.

Understanding, communicating,
and managing technical debt can make
a huge difference in both the short- and
long-term success of a system. (Note
that although this article focuses on
technical debt in software engineering,
many of these principles can be applied
to other technical disciplines.)

Comparison with financial Debt
Going into financial debt usually has
three important properties. First, the
person making the loan wants it to be
repaid eventually. Second, you usually
have to pay it back with interest—that
is, you pay back more money than you
got in the first place. Third, if it turns
out you cannot pay it back, there is a

managing
technical
Debt

Doi:10.1145/2160718.2160733

 Article development led by
 queue.acm.org

Shortcuts that save money and time
today can cost you down the road.

By eRiC ALLmAN

http://crossmark.crossref.org/dialog/?doi=10.1145%2F2160718.2160733&domain=pdf&date_stamp=2012-05-01

MAy 2012 | voL. 5 | no. 5 | CommuNiCAtioNs of the ACm 51

i
l

l
U

S
t

r
a

t
i

o
n

 b
y

 g
a

r
y

 n
e

i
l

l

very high cost, be it declaring bank-
ruptcy, losing your house, or (if you
borrowed from the wrong person) a
long walk off a short pier wearing ce-
ment shoes.

Technical debt is similar in some
ways, but different in others. Although
you don’t have to pay back the debt on
any fixed schedule (and some debts
may never need to be paid back), you
generally do have to pay back (that is,
rewrite the code or otherwise fix the
problem) the parts that affect you or
your customers in a significant way.
The “interest” is accrued every time
you or anyone else (support-desk work-
ers, future programmers, customers,
and so on) working with your system is
delayed because of bugs, performance
problems, inexplicable misfeatures,

time spent researching what has gone
wrong when the system could have giv-
en a more explicit error message, and
so on. Failure to fix problems can result
in the utter collapse of a system—the
customer gives up and goes elsewhere,
the system becomes so slow and brittle
that it has to be rewritten from scratch,
or in extreme cases the company is
forced to close its doors.

There are some significant differ-
ences as well. Perhaps the most perni-
cious one is that the person who takes
on technical debt is not necessarily the
one who has to pay it off—in fact, most
of the time the one who takes on the
debt can shuffle the costs on to other
people, which encourages taking on
debt. Far too many developers do not
maintain their own code. Many compa-

nies have a policy that software moves
from a development mode that is
staffed by their best programmers to a
maintenance mode staffed by second-
tier engineers (who are paid less but
often have far more difficult jobs than
the premier team). Sometimes it isn’t
even anyone in your organization who
is paying the interest: it’s the users who
have to pay. Developers are rewarded
more on implementation speed than
long-term maintainability and may
have moved on to a different project or
company before the real cost is paid.
This gives the initial developer little in-
centive to do the job right the first time.

Unlike financial debt, technical
debt almost never has to be paid off
in its entirety. Most (probably all) pro-
duction systems have warts that do

52 CommuNiCAtioNs of the ACm | MAy 2012 | voL. 5 | no. 5

practice

not have significant impact on the us-
ability or long-term maintainability of
the final system. Very few systems have
no TODO or FIXME or XXX comments
somewhere in the source code. Note
that the cost of paying back techni-
cal debt comes in the form of the en-
gineering time it takes to rewrite or
refactor the code or otherwise fix the
problem. If the interest you ultimately
accrue is less than the cost of paying
back the debt, there is no point in pay-
ing it back in the first place. The prob-
lem is that it can be difficult to know
in advance which debts will ultimately
have the highest cost.

For example, when U.C. Berkeley’s
CalMail system went down in Novem-
ber 2011, the problem was traced to
deferred maintenance—in particular,
the decision to postpone updating the
system even though it was known to
be near capacity.5 One disk in a RAID
died, shortly followed by a second,
and the cost of rebuilding the array re-
duced capacity sufficiently to create a
crisis. Murphy’s law needs to be taken
into consideration when deciding how
much technical debt to accept. In the
CalMail case, individual hardware fail-
ures were expected in the base design,
but multiple failures, happening dur-
ing a historically high usage spike, cre-
ated a condition that was not quickly
resolvable. According to Berkeley’s as-
sociate vice chancellor for information
technology and chief information offi-
cer, Shelton Waggener, “I made the de-
cision not to spend the million dollars
to upgrade CalMail software for only
12 months of use given our plan to mi-
grate to new technology. We were try-
ing to be prudent given the budget situ-
ation, (but) in retrospect it would have
been good to have invested in the stor-
age upgrade so we might have avoided
this crisis.” This is a case where techni-
cal debt was taken on intentionally but
turned out to be a bad gamble. Had the
system survived that 12-month win-
dow, the school likely would have saved
$1 million during a budget crunch.

There is a saying to the effect that
there are three variables in engineer-
ing: time, functionality, and resourc-
es—pick two. In fact, there is a fourth
variable: debt. Of these four variables,
you can set any three of them, but you
can never set all four; something just
has to give, and very commonly debt is

the free variable in the equation. Debt
can seem “free” at first, but technical
debt tends to build on itself. If the ac-
quisition of debt involves interest in
the form of increased effort to main-
tain and extend the system, then as you
take on debt it gets harder and takes
longer to do maintenance and exten-
sion. This is one form of collapse un-
der debt: if all of your “income” (in the
form of effort) is spent paying off in-
terest and nothing is left over to move
the system forward, then that system
is stuck. This is especially obvious if
productivity is measured in lines of
code produced per day, a measure that
should be relegated to the fires of hell.
You do not have many choices left: add
effort (hire more engineers), abandon
the system and move on, or go bank-
rupt. In this sense, the interest on tech-
nical debt is actually compound inter-
est, or put another way: if you don’t stay
on top of the debt, then the payments
go up over time.

Consider these other interesting
comparisons. Steve McConnell, CEO
and chief software engineer at Con-
strux Software, distinguishes between
unintentional and intentional debt,
which in turn is broken up as short-
term (tactical) versus long-term (stra-
tegic) debt.6 He also notes that when a
system is nearing end of life, incurring
debt becomes more attractive, since all
debt is retired when a system is decom-
missioned. He also makes some inter-
esting observations on how to commu-
nicate the concept of technical debt to
nontechnical people, in part by main-
taining the “debt backlog” in a track-
ing system and exposing it in terms of
dollars rather than something more
tech oriented.

In a slightly different analysis, soft-
ware designer Martin Fowler breaks
down technical debt on two axes: reck-
less/prudent and deliberate/inadver-
tent.3 He describes reckless-deliberate
debt as “we don’t have time for de-
sign,” reckless-inadvertent as “what’s
layering?” and prudent-deliberate as
“we must ship now and deal with con-
sequences.” This exposes a fourth class
of technical debt that doesn’t map eas-
ily to the financial model: prudent-in-
advertent, which he describes as “now
we know how we should have done it.”

Another analysis of technical debt
that resonates with some people is that

managing technical debt is a way of
managing risk in the technical realm.
Software consultant Steve Freeman
discusses this by comparing technical
debt with an unhedged (or “naked”)
call option.4 Either case (risk or un-
hedged calls) allows for the possibility
that debt may never need to be paid
back; indeed, big money can be made
by taking appropriate risks. Naked
calls, however, can also lose all of their
value—essentially, the risk is unlim-
ited. This doesn’t often happen (most
of the time when you lose, you lose only
some of your money, not all of it), but it
can happen, much as the wrong choice
of technical debt can result in disaster.

So far we have spoken of technical
debt as though it were unique to cod-
ers. This is far from true. For example,
the operations department incurs its
own kind of debt. Avoiding a disk-array
upgrade is a trade-off between techni-
cal debt and financial costs. Failure to
consider power and cooling require-
ments when adding new, hotter equip-
ment to a machine room is a debt. Fail-
ure to automate a simple-but-tedious
manual process is a debt. Systems
administrators who have neither (for
lack of desire, inspiration, or time)
documented the systems they support
nor trained co-workers before going
on vacation are another example. The
comparison of technical debt to risk
management is often starker in these
noncode-related situations: you are
betting that you will not run out of disk
space or bandwidth, that you will not
have a super-hot day, that your system
will not become so successful that the
manual process becomes a bottleneck,
or that nothing will go wrong while you
are in Machu Picchu.

Certain staffing issues can lead to
another form of technical debt: having
parts of systems that are understood by
only one person. Sometimes this hap-
pens because the staff is spread too
thin, but it can also be caused by inse-
cure individuals who think that if they
keep everyone else in the dark, then
they will be indispensable. The prob-
lem, of course, is that everyone moves
on eventually.

managing your Debt
Technical debt is inevitable. The is-
sue is not eliminating debt, but rather
managing it. When a project starts, the

practice

MAy 2012 | voL. 5 | no. 5 | CommuNiCAtioNs of the ACm 53

team almost never has a full grasp on
the totality of the problem. This is at
the root of the failure of the waterfall
model of software development, which
posits that all requirements can be fi-
nalized before design begins, which
in turn can be completed before the
system is implemented, and so forth.
The argument seems good: the cost to
make a change goes up exponentially
as the system is developed, so the best
path is to get the early stages done right
before moving on. The reality is that re-
quirements always change (“require-
ments churn”). It is often better to have
a working prototype (even though it is
not complete or perfect) so that you and
the customers can start gaining experi-
ence with the system. This is the phi-
losophy behind Agile programming,
which accepts some technical debt as
inevitable but also mandates a reme-
diation process (“plan for change”).

As necessary as technical debt may
be, however, it is important that the
strategic parts of it be repaid promptly.
As time goes on, programmers move to
other companies, and the people who
agreed to various compromises have
moved on to other projects, replaced
by others who do not see it the same
way. Failure to write the documenta-
tion (both internal and external) for
the initial prototype may be a good
trade-off, but the longer it goes the
more difficult it is to write—if only
because human memory is transient,
and if you show most people code
they wrote a year ago they will have to
study it to remember why they did it
that way. Code that is intended to have
a limited life span may be immune to
these concerns, but many short-term
“prototypes” end up getting shipped
to customers. Unfortunately, Fred
Brooks’ statement in The Mythical
Man-Month, “Plan to throw one away;
you will, anyhow,”1 seems all too often
to be corrupted to, “Make your proto-
type shippable; it will, anyhow.” These
two statements are not contradictory.

Equally as important is that some
forms of technical debt are so expen-
sive that they should be avoided en-
tirely whenever possible. Security is an
area where taking shortcuts can lead to
disaster. You never want to say, “We’re
using passwords in the clear today, but
we will come back someday and change
it to challenge-response,” in anything

other than very early prototypes that no
one but you will ever see. This is a reci-
pe for disaster if it ever gets accidental-
ly deployed. You also want to avoid en-
shrining “bet your company” shortcuts
in code. If for some reason you have no
choice (for example, because during
development other engineers have to
write code that will interface with yours
and you can’t afford to keep them wait-
ing), keep a journal of “debts that must
be repaid before release.” It’s amazing
how easy it can be to forget these things
if they aren’t written down.

Release cycles can make a consid-
erable difference in the rate of acqui-
sition and disposal of technical debt.
The modern trend to “release early
and often,” especially in the context
of Web-based services, has made it
much easier to take on technical debt
but has also made it easier to resolve
that debt. When well-managed, this
can be a blessing—taking on debt ear-
lier allows you to release more func-
tionality earlier, allowing immediate
feedback from customers, resulting
in a product that is more responsive to
user needs. If that debt is not paid off
promptly, however, it also compounds
more quickly, and the system can bog
down at a truly frightening rate. An-
other side of Web-based services in
particular is that a correct but inef-
ficient solution can actually cost your
company more money—for example,
in the form of server-farm rental fees.
Fortunately, this makes the debt easy
to translate into dollar terms, which
nontechnical stakeholders usually
find easier to understand than asser-
tions about maintainability.

Not all technical debt is the result
of programmer laziness. Some is im-
posed by management or other depart-
ments, especially when they do not un-
derstand how pernicious this debt can
be. Customers usually buy features,
not long-term maintainability, so mar-
keting departments often encourage
engineering to move on to the next
great thing rather than spending the
time necessary to consolidate, clean
up, and document the existing system.
To them, taking these steps is an un-
necessary cost—after all, the system
works today, so why does engineering
need to spend time gilding the lily?

There is another aspect to techni-
cal debt to consider: it occurs in many

understanding,
communicating,
and managing
technical debt
can make a huge
difference in both
the short- and
long-term success
of a system.

54 CommuNiCAtioNs of the ACm | MAy 2012 | voL. 5 | no. 5

practice

ways and is ongoing. It can come from
the design or implementation phas-
es, of course, but can also occur in
the operational phase. For example,
a computer system may have had a
UPS (uninterruptible power supply)
designed and installed, but deferred
maintenance—in the form of failing
to test those units and replace batter-
ies—can render them useless. Disk ar-
rays may be adequate when specified,
but as the system grows they must be
upgraded. This can be especially hard
when attempting to extract dollars
from a cash-strapped management to
upgrade something that, from their
perspective, works fine.

Management all too often aids and
abets this problem. The current busi-
ness mantra of “shareholder value”
would be fine if shareholders were
patient enough to reward long-term
value creation. Instead the tendency
is to think quarter to quarter rather
than decade to decade, which puts im-
mense pressure on everyone in the or-
ganization to produce as much as pos-
sible as quickly as possible, regardless
of the longer-term costs (as indicated
by the old lament, “there’s never time
to do it right, but there’s always time
to do it over”). Pushing costs into the
future is considered a good strategy.
This strongly encourages assumption
of technical debt. An indicator of this
is when engineering is perpetually
in “crunch mode” rather than using
crunches sparingly. How many compa-
nies advertise being “family friendly”
on their Web sites and in their corpo-
rate values statement while encourag-
ing their employees to work 60-hour
weeks, penalizing “slackers” who work
40-hour weeks and then go home to
their families? In these environments,
the assumption of inappropriate tech-
nical debt is nearly impossible to avoid.

This is not to say that management
is always wrong. There are appropri-
ate times to accrue debt. If my child
needed a critical medical treatment I
wouldn’t refuse just because it meant
taking on debt, even if it would be ex-
pensive to pay back. Likewise, man-
agement has a responsibility to cus-
tomers, employees, and (yes) investors
that can sometimes impose uncom-
fortable requirements. Debt taken on
with eyes open and in a responsible
way is not a bad thing. U.C. Berkeley’s

CIO made a bet that turned out wrong,
but it could have been a winning bet.
He knew he was making it, and he
took responsibility for the problem
when the roof did cave in. The dif-
ficulty is when management doesn’t
understand the debt they are taking
on or takes it on too easily and too of-
ten, without a plan for paying it back.
In a past job I argued that we needed
more time to build a system, only to
be blamed by management when we
had a high defect rate that was directly
attributable to the artificially short
schedule that was imposed against my
better judgment. In this case, man-
agement didn’t understand the debt,
ignored warnings to the contrary, and
then didn’t take responsibility when
the problems manifested.

Cost of Debt from
Various Perspectives
Technical debt affects everyone, but
in different ways. This is part of the
problem of managing the debt—even
if you understand it from your per-
spective, there are other legitimate
ways to view it.

Customers. It may seem that the
customers are the ultimate villains
(and victims) in this affair. After all,
if they were more patient, if they de-
manded less from the products and
gave the company more time to do the
job right the first time, none of this
would happen (or maybe not). True,
customers can sometimes focus more
on features (and sadly, sometimes on
marketing fluff) than long-term main-
tainability, security, and reliability,
yet they are the ones who are most
badly injured. When the mobile net-
work goes out, when they cannot get
their work submitted on time, when
their company loses business be-
cause they are fighting the software,
they pay. Ultimately, it’s all about
doing what the customers need, and
customers need software that works,
that they can understand, that can be
maintained and extended, that can
be supported, and (ultimately) that
they like using. This cannot happen
without managing the technical debt
at every level through the process, but
customers seldom have any control
over how that debt is managed. It is
worth noting that customers who are
paying for bespoke solutions general-

technical debt is
inevitable. the issue
is not eliminating
debt, but rather
managing it.
When a project
starts, the team
almost never
has a full grasp
on the totality
of the problem.

practice

MAy 2012 | voL. 5 | no. 5 | CommuNiCAtioNs of the ACm 55

ly have more control than customers
who buy software “off the rack,” who
for the most part have to use what they
are given. At the same time, when you
are building software for particular
customers, you may be able to negoti-
ate “debt repayment” releases (prob-
ably not using that term).

Help Desk. Those who work on the
help desk deserve a special place in
heaven—or occasionally in hell. Cus-
tomers seldom call to say how happy
they are; they generally have a rather
different agenda. Help-desk person-
nel suffer from almost every aspect of
technical debt: poorly designed inter-
faces, bad or nonexistent documenta-
tion, slow algorithms, etc. In addition,
things that may not seem to affect
them directly (such as obscurity in the
code itself) will have an indirect effect:
customers get more ornery the longer
it takes to fix their problem. Though
the help desk is the customers’ pri-
mary input to the internal process, the
desk often has no direct access to the
people who can solve the problem.

Operations. In a service-oriented
environment the operations people
(those who carry the beepers 24/7 and
who have to keep everything working)
are far too often the cannon fodder on
the frontlines; they can spend much
of their time paying for decisions that
other people made without consult-
ing them. Sometimes they get to look
at the code, sometimes not. In any
case they get to look at the documenta-
tion—if it exists. The (minimal) good
news is that they may be able to pass
the problem off to a maintainer as long
as they can come up with an acceptable
work-around. The rise of the DevOps
movement—the concept that opera-
tions folks need to work with develop-
ers early in the cycle to make sure that
the product is reliable, maintainable,
and understood—is a positive develop-
ment. This is a great way of reducing
long-term technical debt and should
be strongly encouraged.

Engineers. Engineers fall into two
roles: the developers who write the
code and the people who have to re-
pair, extend, or otherwise maintain
that code (these may be the same engi-
neers, but in many places they are not).
At first glance, the initial developers
seem to be the major creators of tech-
nical debt, and they do have strong in-

centive to take on debt, but as we have
seen, it can come from a number of
sources. In its early days technical debt
is almost invisible, because the inter-
est payments haven’t started coming
due yet. Doing a quick, highly func-
tional initial implementation makes
the programmer look good at the cost
of hampering engineers who join the
party later. In some cases, those pro-
grammers may not even realize they
are taking on the debt if they have
limited experience maintaining ma-
ture code. For this reason, an average-
speed, steady, experienced program-
mer who produces maintainable code
may be a better long-term producer
and ultimately higher-quality engi-
neer than a “super-stud programmer”
who can leap tall prototypes in a single
bound but has never had to maintain
mature code.

Marketing. These customer-facing
people often have to take the brunt of
customer displeasure. They can of-
ten be the people pushing hardest for
short product development times be-
cause they are pressured by sales and
the customers to provide new function-
ality as quickly as possible. When that
new functionality does not work prop-
erly in the field, however, they are also
the ones on the wrong side of the firing
line. In addition, pressure for quick de-
livery of new features often means that
later features will take even longer to
produce. Great marketing people un-
derstand this, but all too often this is
not a concept that fits the marketing
world model.

Management. There is good man-
agement and bad management. Good
management understands risk man-
agement and balances out the de-
mands of all departments in a com-
pany. Bad management often favors
a single department to the detriment
of others. If the favored department
is marketing or sales, management
will be inclined to take on technical
debt without understanding the costs.
Management also pays a price, howev-
er. It is not true that “there is no such
thing as bad publicity,” especially
when your company appears to be cir-
cling the drain. Management should
have no difficulty embracing the con-
cept of managing financial debt. It
is also to their advantage to manage
technical debt.

summary
Technical debt can be described as all
the shortcuts that save money or speed
up progress today at the risk of poten-
tially costing money or slowing down
progress in the (usually unclear) future.
It is inevitable, and can even be a good
thing as long as it is managed properly,
but this can be tricky: it comes from a
multitude of causes, often has difficult-
to-predict effects, and usually involves
a gamble about what will happen in the
future. Much of managing technical
debt is the same as risk management,
and similar techniques can be applied.
If technical debt is not managed, then
it will tend to build up over time, pos-
sibly until a crisis results.

Technical debt can be viewed in
many ways and can be caused by all lev-
els of an organization. It can be man-
aged properly only with assistance and
understanding at all levels. Of particu-
lar importance is helping nontechnical
parties understand the costs that can
arise from mismanaging that debt.

 Related articles
 on queue.acm.org

Coding Smart: People vs. Tools

Donn M. Seeley
http://queue.acm.org/detail.cfm?id=945135

IM, not IP (Information Pollution)

Jakob Nielsen
http://queue.acm.org/detail.cfm?id=966731

Outsourcing: Devising a Game Plan
Adam Kolawa
http://queue.acm.org/detail.cfm?id=1036501

References
1. brooks, f. The Mythical Man-Month, anniversary

edition. chapter 11. addison-Wesley, reading, Pa,
1995.

2. cunningham, W. the Wycash portfolio management
system. ooPSla 1992, experience report; http://
c2.com/doc/oopsla92.html.

3. fowler, M. technical debt quadrant, 2009; http://
martinfowler.com/bliki/technicaldebtQuadrant.html.

4. freeman, S. bad code isn’t technical debt, it’s an
unhedged call option. higher-order logic; http://
www.higherorderlogic.com/2010/07/bad-code-isnt-
technical-debt-its-an-unhedged-call-option/.

5. grossman, S. calmail crashes last multiple days. The
Daily Californian (dec. 1, 2011); http://www.dailycal.
org/2011/12/01/calmail-crashes-last-multiple-days/.

6. Mcconnell, S. technical debt. construx
conversations: Software best Practices; http://blogs.
construx.com/blogs/stevemcc/archive/2007/11/01/
technical-debt-2.aspx.

Eric Allman has been a programmer, a maintainer, a help-
desk survivor, both frontline and executive management,
a consultant, a technology writer, and occasionally even
a customer. he appreciates the difficulty and sometimes
idiocy of all of those roles.

© 2012 acM 0001-0782/12/05 $10.00

