
Coverage
Martin Kellogg

Quiz!

Not just about the reading! Other questions about last week’s lecture.

You may use any hand-written notes that you took during last week’s
class. No other aids are permitted.

● you must turn in hand-written notes that you use along with your
quiz

Three ways to think about test suite quality

Consider three ways to think about test suite quality:

● test suite quality through the lens of logic
○ intuition: if we don’t test it, we can’t find bugs
○ leads to coverage (main subject of today’s lecture)

● test suite quality through the lens of statistics
○ intuition: test what happens to real users

● test suite quality through the lens of adversity
○ intuition: inject bugs and see if the test suite catches them
○ leads to mutation testing, which we’ll cover later this semester

The Lens of Logic

Informally, we want the following property:

● The program passes the tests if and only if it does all the right
things and none of the wrong things.

The Lens of Logic

Informally, we want the following property:

● The program passes the tests if and only if it does all the right
things and none of the wrong things.
○ Pass all tests → program adheres to requirements
○ Each failing test → program behaves incorrectly

The Lens of Logic: intuition

● Suppose you were writing a sqrt program and one of the
requirements was that it should abort gracefully on negative
inputs.

The Lens of Logic: intuition

● Suppose you were writing a sqrt program and one of the
requirements was that it should abort gracefully on negative
inputs.

● Suppose further that your test suite does not include any
negative inputs.

The Lens of Logic: intuition

● Suppose you were writing a sqrt program and one of the
requirements was that it should abort gracefully on negative
inputs.

● Suppose further that your test suite does not include any
negative inputs.

● Can we conclude that passing all of the tests implies adhering to
all of the requirements?

The Lens of Logic: coverage

● We desire all of the requirements to be covered (“checked”) by
the test suite.

The Lens of Logic: coverage

● We desire all of the requirements to be covered (“checked”) by
the test suite.

● For our purposes, X coverage is the degree to which X is
executed/exercised by the test suite.

The Lens of Logic: coverage

● We desire all of the requirements to be covered (“checked”) by
the test suite.

● For our purposes, X coverage is the degree to which X is
executed/exercised by the test suite.

● Code coverage is the degree to which the source code is
executed by the test suite.

The Lens of Logic: coverage

● We desire all of the requirements to be covered (“checked”) by
the test suite.

● For our purposes, X coverage is the degree to which X is
executed/exercised by the test suite.

● Code coverage is the degree to which the source code is
executed by the test suite.
○ How do we actually measure code coverage?

Coverage: statement coverage

Definition: Statement coverage is the fraction of source statements
that are executed by the test suite.

Coverage: statement coverage

Definition: Statement coverage is the fraction of source statements
that are executed by the test suite.

● Key Logical Observation: If we never test line X then testing
cannot rule out the presence of a bug on line X

Coverage: statement coverage

Definition: Statement coverage is the fraction of source statements
that are executed by the test suite.

● Key Logical Observation: If we never test line X then testing
cannot rule out the presence of a bug on line X

● Example: if our test executes lines 1 and 2, but there is a bug on
line 3, there is no way that our test will find the bug!

Aside: “don’t do bad things”

● We can test that programs do not do certain bad things
○ e.g., “don't segfault”, “don't send my password to Microsoft”,

“on this one particular input, don't get the wrong answer”

Aside: “don’t do bad things”

● We can test that programs do not do certain bad things
○ e.g., “don't segfault”, “don't send my password to Microsoft”,

“on this one particular input, don't get the wrong answer”
● Note that “I never do bad things” is not the same as “I

always/eventually do good things”
○ For more information, take a class on Modal Logic or read

about Liveness vs. Safety properties

Coverage: statement coverage

Implication for statement coverage: you could test line X and still
have a bug on line X

● e.g., foo(a,b) { return a/b; }
● test: foo(6,2) does not throw DivideByZeroException

Coverage: statement coverage

Implication for statement coverage: you could test line X and still
have a bug on line X

● e.g., foo(a,b) { return a/b; }
● test: foo(6,2) does not throw DivideByZeroException

But testing line X gives us some small but non-zero confidence in the
correctness of line X

Coverage: statement coverage: assumptions

We’ve made some assumptions in our discussion of statement
coverage so far:

Coverage: statement coverage: assumptions

We’ve made some assumptions in our discussion of statement
coverage so far:

● We gain the same amount of confidence (or information) for each
visited line

● The amount of confidence (or information) we gain per visited
line is positive

● …

Coverage: computing statement coverage

Coverage: computing statement coverage

● At its simplest, this is just print-statement debugging

Coverage: computing statement coverage

● At its simplest, this is just print-statement debugging
● Put a print statement before every line of the program

○ Run all the tests, collect all the printed information, remove
duplicates, count

Coverage: computing statement coverage

● At its simplest, this is just print-statement debugging
● Put a print statement before every line of the program

○ Run all the tests, collect all the printed information, remove
duplicates, count

● Practical concern: the observer effect (from physics) is the fact
that simply observing a situation or phenomenon necessarily
changes that phenomenon.

Coverage: computing statement coverage

● At its simplest, this is just print-statement debugging
● Put a print statement before every line of the program

○ Run all the tests, collect all the printed information, remove
duplicates, count

● Practical concern: the observer effect (from physics) is the fact
that simply observing a situation or phenomenon necessarily
changes that phenomenon.
○ Implication for computing statement coverage: program

might depend on timing info, amount of I/O, etc.

Coverage: computing statement coverage

Definition: Coverage instrumentation modifies a program to record
coverage information in a way that minimizes the observer effect.

Coverage: computing statement coverage

Definition: Coverage instrumentation modifies a program to record
coverage information in a way that minimizes the observer effect.

● This can be done at the source or binary level.
● Don't actually print to stdout/stderr
● Don't slow things down too much

○ Pre-check before printing a duplicate?
● Don't introduce infinite loops

○ Instrument “print” with a call to “print”?

Coverage: computing statement coverage

Definition: Coverage instrumentation modifies a program to record
coverage information in a way that minimizes the observer effect.

● This can be done at the source or binary level.
● Don't actually print to stdout/stderr
● Don't slow things down too much

○ Pre-check before printing a duplicate?
● Don't introduce infinite loops

○ Instrument “print” with a call to “print”?

Good news: coverage
instrumentation is a
“solved” problem:
● e.g., gcov,

Python’s
coverage, etc.

Background: control flow graphs

Definition: a control flow graph (or CFG) is a representation, using
graph notation, of all paths that might be traversed through a program
during its execution

Background: control flow graphs

Definition: a control flow graph (or CFG) is a representation, using
graph notation, of all paths that might be traversed through a program
during its execution

● a path in a program is a possible execution trace

Background: control flow graphs

Definition: a control flow graph (or CFG) is a representation, using
graph notation, of all paths that might be traversed through a program
during its execution

● a path in a program is a possible execution trace
● the CFG is the internal representation used by many program

analysis tools

Background: control flow graphs

Definition: a control flow graph (or CFG) is a representation, using
graph notation, of all paths that might be traversed through a program
during its execution

● a path in a program is a possible execution trace
● the CFG is the internal representation used by many program

analysis tools
● brief CFG example on the whiteboard

Example: computing statement coverage
public double avgAbs(double... numbers) {
 // We expect the array to be non-null and non-empty
 if (numbers == null || numbers.length == 0) {
 throw new IllegalArgumentException("numbers is null or empty!");
 }
 double sum = 0;
 for (int i = 0; i < numbers.length; ++i) {
 double d = numbers[i];
 if (d < 0) { sum -= d; }
 else { sum += d; }
 }
 return sum / numbers.length;
}

Example: computing statement coverage
public double avgAbs(double... numbers) {
 // We expect the array to be non-null and non-empty
 if (numbers == null || numbers.length == 0) {
 throw new IllegalArgumentException("numbers is null or empty!");
 }
 double sum = 0;
 for (int i = 0; i < numbers.length; ++i) {
 double d = numbers[i];
 if (d < 0) { sum -= d; }
 else { sum += d; }
 }
 return sum / numbers.length;
}

What does this method do?
It averages the absolute values
of an array of doubles.

Example: computing statement coverage
public double avgAbs(double... numbers) {
 // We expect the array to be non-null and non-empty
 if (numbers == null || numbers.length == 0) {
 throw new IllegalArgumentException("numbers is null or empty!");
 }
 double sum = 0;
 for (int i = 0; i < numbers.length; ++i) {
 double d = numbers[i];
 if (d < 0) { sum -= d; }
 else { sum += d; }
 }
 return sum / numbers.length;
}

What does this method do?
It averages the absolute values
of an array of doubles.

Example: computing statement coverage
public double avgAbs(double... numbers) {
 // We expect the array to be non-null and non-empty
 if (numbers == null || numbers.length == 0) {
 throw new IllegalArgumentException("numbers is null or empty!");
 }
 double sum = 0;
 for (int i = 0; i < numbers.length; ++i) {
 double d = numbers[i];
 if (d < 0) { sum -= d; }
 else { sum += d; }
 }
 return sum / numbers.length;
}

With a partner, draw the control
flow graph for this method. (3 min)

Recall that statement
coverage means “every
statement in the
program must be
executed at least once.”

Each purple box
is a statement we
must cover!

The CFG is useful for computing coverage

● Statement coverage is equivalent to node coverage in the CFG

The CFG is useful for computing coverage

● Statement coverage is equivalent to node coverage in the CFG
○ that is, if we have a test that causes every CFG node to be

executed, we are guaranteed to have 100% statement
coverage

The CFG is useful for computing coverage

● Statement coverage is equivalent to node coverage in the CFG
○ that is, if we have a test that causes every CFG node to be

executed, we are guaranteed to have 100% statement
coverage

● In practice, this means that a tool for computing coverage will
instrument each CFG node rather than each statement

The CFG is useful for computing coverage

● Statement coverage is equivalent to node coverage in the CFG
○ that is, if we have a test that causes every CFG node to be

executed, we are guaranteed to have 100% statement
coverage

● In practice, this means that a tool for computing coverage will
instrument each CFG node rather than each statement
○ where does this cause a difference in our example?

This node has two
statements that are
always executed together
(called a basic block)

Write a set of tests for
this method that achieves
100% statement (= node)
coverage (3 minutes,
groups of 2).

Coverage: limitations of statement coverage

● Executing every line doesn’t guarantee no bugs

Coverage: limitations of statement coverage

● Executing every line doesn’t guarantee no bugs
● Not only that, but executing every line doesn’t even guarantee

that we cover all of the program’s behaviors

Coverage: limitations of statement coverage

● Executing every line doesn’t guarantee no bugs
● Not only that, but executing every line doesn’t even guarantee

that we cover all of the program’s behaviors
○ many behaviors are dependent on data that causes particular

control flows: that is, that cause different branches of
conditionals to be executed

Coverage: limitations of statement coverage

● Executing every line doesn’t guarantee no bugs
● Not only that, but executing every line doesn’t even guarantee

that we cover all of the program’s behaviors
○ many behaviors are dependent on data that causes particular

control flows: that is, that cause different branches of
conditionals to be executed

● Informally, the problem of ensuring that we cover interesting
data values may reduce to the problem of ensuring that we cover
all branches of conditionals

Aside: reductions

Your CS education is incomplete until you have reduced one problem
to another

Aside: reductions

Your CS education is incomplete until you have reduced one problem
to another

● examples: reducing something to the halting problem to show
that it is not computable; reducing something to satisfiability to
show that it is NP-hard

Aside: reductions

Your CS education is incomplete until you have reduced one problem
to another

● examples: reducing something to the halting problem to show
that it is not computable; reducing something to satisfiability to
show that it is NP-hard

● should be covered in a theory of computation class (likely near
the end of the semester)

Aside: reductions

Your CS education is incomplete until you have reduced one problem
to another

● examples: reducing something to the halting problem to show
that it is not computable; reducing something to satisfiability to
show that it is NP-hard

● should be covered in a theory of computation class (likely near
the end of the semester)

Reduction is a powerful tool for
thinking about problems: it lets
you solve difficult problems
indirectly by re-using solutions
for other, related problems.

Coverage: branch coverage

Definition: Branch coverage is a test suite quality metric that counts
the total number of conditional branches exercised by that test suite
(i.e., if true and if false are counted separately)

Coverage: branch coverage

Definition: Branch coverage is a test suite quality metric that counts
the total number of conditional branches exercised by that test suite
(i.e., if true and if false are counted separately)

Recall that branch coverage can subsume line coverage:

foo(a):
 if a > 5:
 print “x”
 print “y”

Coverage: branch coverage

Definition: Branch coverage is a test suite quality metric that counts
the total number of conditional branches exercised by that test suite
(i.e., if true and if false are counted separately)

Recall that branch coverage can subsume line coverage:

foo(a):
 if a > 5:
 print “x”
 print “y”

Test Suite { foo(7)}
has 100% line
coverage but 50%
branch coverage.

Test Suite { foo(7)}
has 100% line
coverage but 50%
branch coverage.

Coverage: branch coverage

Definition: Branch coverage is a test suite quality metric that counts
the total number of conditional branches exercised by that test suite
(i.e., if true and if false are counted separately)

Recall that branch coverage can subsume line coverage:

foo(a):
 if a > 5:
 print “x”
 print “y”

Test Suite { foo(7), foo(4)}
has 100% line coverage and
100% branch coverage.

Coverage: branch vs statement coverage

Coverage: branch vs statement coverage

● Branch coverage typically gives us more confidence than line
coverage

Coverage: branch vs statement coverage

● Branch coverage typically gives us more confidence than line
coverage
○ Typically, 100% branch coverage implies 100% line coverage

Coverage: branch vs statement coverage

● Branch coverage typically gives us more confidence than line
coverage
○ Typically, 100% branch coverage implies 100% line coverage

● However, branch coverage is “more expensive” in the sense that
it is harder for a test suite to have high branch coverage than to
have high line coverage

Coverage: branch vs statement coverage

● Branch coverage typically gives us more confidence than line
coverage
○ Typically, 100% branch coverage implies 100% line coverage

● However, branch coverage is “more expensive” in the sense that
it is harder for a test suite to have high branch coverage than to
have high line coverage
○ Note: quality isn't really “more expensive”, you were just

fooling yourself before by thinking line coverage was OK. It is
being correct that is expensive.

Beyond branch coverage

● We know 100% statement coverage
doesn’t guarantee no bugs

Beyond branch coverage

● We know 100% statement coverage
doesn’t guarantee no bugs
○ what about 100% branch

coverage? If we have 100%
branch coverage, does that mean
no bugs?

Beyond branch coverage

● We know 100% statement coverage
doesn’t guarantee no bugs
○ what about 100% branch

coverage? If we have 100%
branch coverage, does that mean
no bugs?

No!

Beyond branch coverage

● We know 100% statement coverage
doesn’t guarantee no bugs
○ what about 100% branch

coverage? If we have 100%
branch coverage, does that mean
no bugs?

No!

● Recall: “tests can only show the presence of bugs, not their absence”

Beyond branch coverage

● We know 100% statement coverage
doesn’t guarantee no bugs
○ what about 100% branch

coverage? If we have 100%
branch coverage, does that mean
no bugs?

No!

● Recall: “tests can only show the presence of bugs, not their absence”

● More coverage = more confidence, but no guarantees!

Beyond branch coverage

● We know 100% statement coverage
doesn’t guarantee no bugs
○ what about 100% branch

coverage? If we have 100%
branch coverage, does that mean
no bugs?

No!

● Recall: “tests can only show the presence of bugs, not their absence”

● More coverage = more confidence, but no guarantees!

● Can we get finer-grained than branch coverage?

Conditions and decisions

● A condition is a boolean expression that cannot be decomposed
into simpler boolean expressions (atomic).

Conditions and decisions

● A condition is a boolean expression that cannot be decomposed
into simpler boolean expressions (atomic).

● A decision is a boolean expression that is composed of conditions,
using 0 or more logical connectors.
○ note: a decision with 0 logical connectors is a condition

Conditions and decisions

● A condition is a boolean expression that cannot be decomposed
into simpler boolean expressions (atomic).

● A decision is a boolean expression that is composed of conditions,
using 0 or more logical connectors.
○ note: a decision with 0 logical connectors is a condition

● Example: if (a | b) {...}

Conditions and decisions

● A condition is a boolean expression that cannot be decomposed
into simpler boolean expressions (atomic).

● A decision is a boolean expression that is composed of conditions,
using 0 or more logical connectors.
○ note: a decision with 0 logical connectors is a condition

● Example: if (a | b) {...}
○ a and b are conditions
○ the boolean expression a | b is a decision

Decision coverage

● Decision coverage is the percentage of decisions that are true on
at least one execution and false on at least one execution
○ i.e., 100% decision coverage = “every decision in the program

must take on all possible outcomes (true/false) at least once”

How would you
compute decision
coverage from the CFG?

Decision coverage

● Decision coverage is the percentage of decisions that are true on
at least one execution and false on at least one execution
○ i.e., 100% decision coverage = “every decision in the program

must take on all possible outcomes (true/false) at least once”
● Decision coverage is equal to edge coverage in the CFG

Decision coverage

● Decision coverage is the percentage of decisions that are true on
at least one execution and false on at least one execution
○ i.e., 100% decision coverage = “every decision in the program

must take on all possible outcomes (true/false) at least once”
● Decision coverage is equal to edge coverage in the CFG

○ this is straightforward to instrument

Condition coverage

● Condition coverage is the percentage of conditions that are true
on at least one execution and false on at least one execution

Condition coverage

● Condition coverage is the percentage of conditions that are true
on at least one execution and false on at least one execution
○ i.e., 100% condition coverage = “every condition in the

program must take on all possible outcomes (true/false)
at least once”

How would you
compute condition
coverage from the CFG?

How would you
compute condition
coverage from the CFG?

Subsumption

● We said earlier that branch coverage subsumes statement
coverage
○ Definition: given two coverage criteria A and B, A subsumes B

iff satisfying A implies satisfying B
● What about other kinds of coverage?

○ Does statement coverage subsume decision coverage?
○ Does decision coverage subsume statement coverage?
○ Does decision coverage subsume condition coverage?
○ Does condition coverage subsume decision coverage?

Subsumption

● We said earlier that branch coverage subsumes statement
coverage
○ Definition: given two coverage criteria A and B, A subsumes B

iff satisfying A implies satisfying B
● What about other kinds of coverage?

○ Does statement coverage subsume decision coverage?
○ Does decision coverage subsume statement coverage?
○ Does decision coverage subsume condition coverage?
○ Does condition coverage subsume decision coverage?

Take a three minutes
and discuss these four
with a partner.

Subsumption

● We said earlier that branch coverage subsumes branch coverage
○ Definition: given two coverage criteria A and B, A subsumes B

iff satisfying A implies satisfying B
● What about other kinds of coverage?

○ Does statement coverage subsume decision coverage? NO
○ Does decision coverage subsume statement coverage?
○ Does decision coverage subsume condition coverage?
○ Does condition coverage subsume decision coverage?

Take a three minutes
and discuss these four
with a partner.

Subsumption

● We said earlier that branch coverage subsumes branch coverage
○ Definition: given two coverage criteria A and B, A subsumes B

iff satisfying A implies satisfying B
● What about other kinds of coverage?

○ Does statement coverage subsume decision coverage? NO
○ Does decision coverage subsume statement coverage? YES
○ Does decision coverage subsume condition coverage?
○ Does condition coverage subsume decision coverage?

Take a three minutes
and discuss these four
with a partner.

Subsumption

● We said earlier that branch coverage subsumes branch coverage
○ Definition: given two coverage criteria A and B, A subsumes B

iff satisfying A implies satisfying B
● What about other kinds of coverage?

○ Does statement coverage subsume decision coverage? NO
○ Does decision coverage subsume statement coverage? YES
○ Does decision coverage subsume condition coverage? NO
○ Does condition coverage subsume decision coverage?

Take a three minutes
and discuss these four
with a partner.

Subsumption

● We said earlier that branch coverage subsumes branch coverage
○ Definition: given two coverage criteria A and B, A subsumes B

iff satisfying A implies satisfying B
● What about other kinds of coverage?

○ Does statement coverage subsume decision coverage? NO
○ Does decision coverage subsume statement coverage? YES
○ Does decision coverage subsume condition coverage? NO
○ Does condition coverage subsume decision coverage? NO

Take a three minutes
and discuss these four
with a partner.

Subsumption: decisions vs conditions

● There are 4 possible tests for the decision a | b:
○ a = 0, b = 0 a | b = 0
○ a = 0, b = 1 a | b = 1
○ a = 1, b = 0 a | b = 1
○ a = 1, b = 1 a | b = 1

Subsumption: decisions vs conditions

● There are 4 possible tests for the decision a | b:
○ a = 0, b = 0 a | b = 0
○ a = 0, b = 1 a | b = 1
○ a = 1, b = 0 a | b = 1
○ a = 1, b = 1 a | b = 1

These two tests
satisfy condition
but not decision
coverage.

Subsumption: decisions vs conditions

● There are 4 possible tests for the decision a | b:
○ a = 0, b = 0 a | b = 0
○ a = 0, b = 1 a | b = 1
○ a = 1, b = 0 a | b = 1
○ a = 1, b = 1 a | b = 1

These two tests
satisfy decision
but not condition
coverage.

Subsumption: decisions vs conditions

● There are 4 possible tests for the decision a | b:
○ a = 0, b = 0 a | b = 0
○ a = 0, b = 1 a | b = 1
○ a = 1, b = 0 a | b = 1
○ a = 1, b = 1 a | b = 1

● Implication: neither decision coverage nor condition coverage
subsumes the other!

MC/DC coverage

● modified condition and decision coverage (MC/DC coverage) is a
coverage criterion that requires:

MC/DC coverage

● modified condition and decision coverage (MC/DC coverage) is a
coverage criterion that requires:
○ every decision in the program must take on all possible

outcomes (true/false) at least once (100% decision coverage)

MC/DC coverage

● modified condition and decision coverage (MC/DC coverage) is a
coverage criterion that requires:
○ every decision in the program must take on all possible

outcomes (true/false) at least once (100% decision coverage)
○ every condition in the program must take on all possible

outcomes (true/false) at least once (100% condition coverage)

MC/DC coverage

● modified condition and decision coverage (MC/DC coverage) is a
coverage criterion that requires:
○ every decision in the program must take on all possible

outcomes (true/false) at least once (100% decision coverage)
○ every condition in the program must take on all possible

outcomes (true/false) at least once (100% condition coverage)
○ each condition in a decision has been shown to independently

affect that decision’s outcome.
■ A condition is shown to independently affect a decision’s outcome by varying just

that condition while holding all other conditions fixed

MC/DC coverage

● modified condition and decision coverage (MC/DC coverage) is a
coverage criterion that requires:
○ every decision in the program must take on all possible

outcomes (true/false) at least once (100% decision coverage)
○ every condition in the program must take on all possible

outcomes (true/false) at least once (100% condition coverage)
○ each condition in a decision has been shown to independently

affect that decision’s outcome.
■ A condition is shown to independently affect a decision’s outcome by varying just

that condition while holding all other conditions fixed

100% MC/DC coverage is
required for safety critical
systems (DO-178B/C)!

MC/DC coverage example

if (a | b)

a b outcome

0 0 0

0 1 1

1 0 1

1 1 1

MC/DC =
● 100% decision coverage
● 100% condition coverage
● each condition shown to

independently affect outcome

Which tests (combinations
of a and b) satisfy MC/DC?

MC/DC coverage example

if (a | b)

a b outcome

0 0 0

0 1 1

1 0 1

1 1 1

MC/DC =
● 100% decision coverage
● 100% condition coverage
● each condition shown to

independently affect outcome

Which tests (combinations
of a and b) satisfy MC/DC?

MC/DC is still cheaper
than testing all possible
combinations!

MC/DC: another example

if (a || b)

a b outcome

0 0 0

0 1 1

1 - 1

1 - 1

MC/DC =
● 100% decision coverage
● 100% condition coverage
● each condition shown to

independently affect outcome

Why is this example
different? Short-circuiting
operators may not
evaluate all conditions.

MC/DC: a third example

if (!a) … if (a || b)

a b outcome

0 0 0

0 1 1

1 0 1

1 1 1

MC/DC =
● 100% decision coverage
● 100% condition coverage
● each condition shown to

independently affect outcome

What about this example?

MC/DC: a third example

if (!a) … if (a || b)

a b outcome

0 0 0

0 1 1

X X X

X X X

MC/DC =
● 100% decision coverage
● 100% condition coverage
● each condition shown to

independently affect outcome

What about this example?

Not all combinations of
conditions may be possible!

MC/DC coverage: complex expressions

● With a partner, take a few minutes to provide an MC/DC-adequate
test suite for:
○ a | b | c
○ a & b & c

MC/DC =
● 100% decision coverage
● 100% condition coverage
● each condition shown to

independently affect outcome

Coverage: other kinds of coverage

● You can define coverage over any kind of program structure
○ e.g., what do you think function coverage is?

Coverage: other kinds of coverage

● You can define coverage over any kind of program structure
○ e.g., what do you think function coverage is?

● You can also define coverage over non-programmatic things
○ e.g., requirements coverage or user-story coverage are

sometimes used in industry

Coverage: summary

Coverage: summary

● Coverage is easy to compute

Coverage: summary

● Coverage is easy to compute
● Coverage has an intuitive interpretation

Coverage: summary

● Coverage is easy to compute
● Coverage has an intuitive interpretation
● Coverage is common in industry (e.g., think about today’s

reading about Google)

Coverage: summary

● Coverage is easy to compute
● Coverage has an intuitive interpretation
● Coverage is common in industry (e.g., think about today’s

reading about Google)
● But coverage on its own is not sufficient to guarantee

correctness

Coverage: summary

● Coverage is easy to compute
● Coverage has an intuitive interpretation
● Coverage is common in industry (e.g., think about today’s

reading about Google)
● But coverage on its own is not sufficient to guarantee

correctness
○ just because you executed a line does not mean that that line

did the right thing! (oracles!)

Three ways to think about test suite quality

Consider three ways to think about test suite quality:

● test suite quality through the lens of logic
○ intuition: if we don’t test it, we can’t find bugs
○ leads to coverage (main subject of today’s lecture)

● test suite quality through the lens of statistics
○ intuition: test what happens to real users

● test suite quality through the lens of adversity
○ intuition: inject bugs and see if the test suite catches them
○ leads to mutation testing, which we’ll cover later this semester

Three ways to think about test suite quality

Consider three ways to think about test suite quality:

● test suite quality through the lens of logic
○ intuition: if we don’t test it, we can’t find bugs
○ leads to coverage (main subject of today’s lecture)

● test suite quality through the lens of statistics
○ intuition: test what happens to real users

● test suite quality through the lens of adversity
○ intuition: inject bugs and see if the test suite catches them
○ leads to mutation testing, which we’ll cover later this semester

Rest of today’s lecture:
a brief discussion of the
lens of statistics

The Lens of Statistics: intuition

The Lens of Statistics: intuition

● The bugs experienced by users are the ones that matter.

The Lens of Statistics: intuition

● The bugs experienced by users are the ones that matter.
○ Dually, bugs never experienced by users do not matter.

The Lens of Statistics: intuition

● The bugs experienced by users are the ones that matter.
○ Dually, bugs never experienced by users do not matter.

● If user-experienced bugs are the ones that matter, testing should
be devoted to sampling those inputs that users will provide

The Lens of Statistics: intuition

● The bugs experienced by users are the ones that matter.
○ Dually, bugs never experienced by users do not matter.

● If user-experienced bugs are the ones that matter, testing should
be devoted to sampling those inputs that users will provide

● Two views:

The Lens of Statistics: intuition

● The bugs experienced by users are the ones that matter.
○ Dually, bugs never experienced by users do not matter.

● If user-experienced bugs are the ones that matter, testing should
be devoted to sampling those inputs that users will provide

● Two views:
○ Sample what users do most commonly

The Lens of Statistics: intuition

● The bugs experienced by users are the ones that matter.
○ Dually, bugs never experienced by users do not matter.

● If user-experienced bugs are the ones that matter, testing should
be devoted to sampling those inputs that users will provide

● Two views:
○ Sample what users do most commonly
○ Sample what causes the most harm if users do it

The Lens of Statistics: intuition

● The bugs experienced by users are the ones that matter.
○ Dually, bugs never experienced by users do not matter.

● If user-experienced bugs are the ones that matter, testing should
be devoted to sampling those inputs that users will provide

● Two views:
○ Sample what users do most commonly
○ Sample what causes the most harm if users do it

● Compare:
○ Risk = (Probability of Event) * (Damage if Event Occurs)

Example: limited input domain

● Suppose you are writing a point-of-sale cashier application that
makes change for a dollar. Given any price between 1 and 100
cents, you must indicate the coins to give out as change.
○ e.g., 23 → return 3 quarters and 2 pennies

Example: limited input domain

● Suppose you are writing a point-of-sale cashier application that
makes change for a dollar. Given any price between 1 and 100
cents, you must indicate the coins to give out as change.
○ e.g., 23 → return 3 quarters and 2 pennies

● In this scenario, you can exhaustively test all 100 inputs that will
occur to real users in the real world
○ In some sense, it does not matter if that is 100% statement or

code coverage (e.g., dead code): your testing is still exhaustive
of the inputs that will matter in the real world

Limitations on users in the real world

● Usually, in the real world, your input domain isn’t so limited
● But, you might still be able to say:

Limitations on users in the real world

● Usually, in the real world, your input domain isn’t so limited
● But, you might still be able to say:

○ Suppose users will only ever cause lines 1, 2 and 3 of your
program to be executed

Limitations on users in the real world

● Usually, in the real world, your input domain isn’t so limited
● But, you might still be able to say:

○ Suppose users will only ever cause lines 1, 2 and 3 of your
program to be executed

○ If you can be sure of this, then there is no need to test line 4

Limitations on users in the real world

● Usually, in the real world, your input domain isn’t so limited
● But, you might still be able to say:

○ Suppose users will only ever cause lines 1, 2 and 3 of your
program to be executed

○ If you can be sure of this, then there is no need to test line 4
■ Aside: why do you have line 4?

Limitations on users in the real world

● Usually, in the real world, your input domain isn’t so limited
● But, you might still be able to say:

○ Suppose users will only ever cause lines 1, 2 and 3 of your
program to be executed

○ If you can be sure of this, then there is no need to test line 4
■ Aside: why do you have line 4?

○ Even if line 4 has a bug, users will never encounter it

Limitations on users in the real world

● Usually, in the real world, your input domain isn’t so limited
● But, you might still be able to say:

○ Suppose users will only ever cause lines 1, 2 and 3 of your
program to be executed

○ If you can be sure of this, then there is no need to test line 4
■ Aside: why do you have line 4?

○ Even if line 4 has a bug, users will never encounter it
● Note “will”: this either requires a prediction of the future or a

finite input domain

The Lens of Statistics

● Key idea: Sample test inputs from the population of inputs users
will actually provide in the real world

The Lens of Statistics

● Key idea: Sample test inputs from the population of inputs users
will actually provide in the real world
○ This approach inherits both advantages and disadvantages

from other kinds of statistical techniques

The Lens of Statistics

● Key idea: Sample test inputs from the population of inputs users
will actually provide in the real world
○ This approach inherits both advantages and disadvantages

from other kinds of statistical techniques

Key advantages:
● confidence that tests are indicative of the real world
● can use statistical techniques to estimate the chance that our

tests don’t cover some important behavior

The Lens of Statistics: disadvantages

The Lens of Statistics: disadvantages

● In statistics, sampling error is incurred when the statistical
characteristics of a population are estimated from a subset, or
sample, of that population.

The Lens of Statistics: disadvantages

● In statistics, sampling error is incurred when the statistical
characteristics of a population are estimated from a subset, or
sample, of that population.
○ “Our test suite is a sample of inputs that could occur in the

real world. Our program behaves well on our test suite.”

The Lens of Statistics: disadvantages

● In statistics, sampling error is incurred when the statistical
characteristics of a population are estimated from a subset, or
sample, of that population.
○ “Our test suite is a sample of inputs that could occur in the

real world. Our program behaves well on our test suite.” →
later →

The Lens of Statistics: disadvantages

● In statistics, sampling error is incurred when the statistical
characteristics of a population are estimated from a subset, or
sample, of that population.
○ “Our test suite is a sample of inputs that could occur in the

real world. Our program behaves well on our test suite.” →
later → “Our program behaves badly on some other untested
real input. Sampling error!”

The Lens of Statistics: disadvantages

● In statistics, sampling error is incurred when the statistical
characteristics of a population are estimated from a subset, or
sample, of that population.
○ “Our test suite is a sample of inputs that could occur in the

real world. Our program behaves well on our test suite.” →
later → “Our program behaves badly on some other untested
real input. Sampling error!”

● Testing gives confidence the same way sampling (or polling) gives
confidence.

The Lens of Statistics: disadvantages

● In statistics, sampling bias is a bias in which a sample is collected
in such a way that some members of the intended population are
less likely to be included than others.

The Lens of Statistics: disadvantages

● In statistics, sampling bias is a bias in which a sample is collected
in such a way that some members of the intended population are
less likely to be included than others.
○ Suppose you are conducting a poll to see who will win the

next election, but you only poll republicans.

The Lens of Statistics: disadvantages

● In statistics, sampling bias is a bias in which a sample is collected
in such a way that some members of the intended population are
less likely to be included than others.
○ Suppose you are conducting a poll to see who will win the

next election, but you only poll republicans.
○ Suppose you are creating tests to see if your program will

crash, but you only poll nice, small, inputs.

The Lens of Statistics: disadvantages

● Possible solution: there are a number of well-established
sampling techniques in the field of statistics to help address such
biases

The Lens of Statistics: disadvantages

● Possible solution: there are a number of well-established
sampling techniques in the field of statistics to help address such
biases
○ Unfortunately, they often require knowing something about

the distribution of the full population from which you want to
sample a subpopulation

The Lens of Statistics: disadvantages

● Possible solution: there are a number of well-established
sampling techniques in the field of statistics to help address such
biases
○ Unfortunately, they often require knowing something about

the distribution of the full population from which you want to
sample a subpopulation

● The basic problem in SE is that the underlying distribution of real
user inputs is not known

The Lens of Statistics: practical options

The Lens of Statistics: practical options

Definition: Beta testing is testing done by external users (often using
a special beta version of the program).

The Lens of Statistics: practical options

Definition: Beta testing is testing done by external users (often using
a special beta version of the program).
● in contrast to alpha testing, which is usually performed by

developers or a quality assurance team

The Lens of Statistics: practical options

Definition: Beta testing is testing done by external users (often using
a special beta version of the program).
● in contrast to alpha testing, which is usually performed by

developers or a quality assurance team
● Beta testing can be viewed as directly sampling the space of user

inputs

The Lens of Statistics: practical options

Definition: Beta testing is testing done by external users (often using
a special beta version of the program).
● in contrast to alpha testing, which is usually performed by

developers or a quality assurance team
● Beta testing can be viewed as directly sampling the space of user

inputs
But beware of sampling
errors! Who signs up to be a
beta tester?
Hint: not the average user!

The Lens of Statistics: practical options

Definition: A/B testing involves two variants of your software, A and
B, which differ only in one feature. Different users are shown
different variants and responses are recorded.

The Lens of Statistics: practical options

Definition: A/B testing involves two variants of your software, A and
B, which differ only in one feature. Different users are shown
different variants and responses are recorded.

The Lens of Statistics: practical options

Definition: A/B testing involves two variants of your software, A and
B, which differ only in one feature. Different users are shown
different variants and responses are recorded.

● A/B testing is an instance

of two-sample

hypothesis testing, like

you’d encounter in a

statistics class.

The Lens of Statistics: practical options

● Recall two guiding approaches:
○ Sample what users will do most commonly
○ Sample what will cause the most harm

The Lens of Statistics: practical options

● Recall two guiding approaches:
○ Sample what users will do most commonly
○ Sample what will cause the most harm

● The former is sometimes called workload generation
○ Common for databases, webservers, etc.

The Lens of Statistics: practical options

● Recall two guiding approaches:
○ Sample what users will do most commonly
○ Sample what will cause the most harm

● The former is sometimes called workload generation
○ Common for databases, webservers, etc.

● The latter often relates to computer security
○ E.g., exploit generation, penetration testing, etc.

The Lens of Statistics: practical options

● Recall two guiding approaches:
○ Sample what users will do most commonly
○ Sample what will cause the most harm

● The former is sometimes called workload generation
○ Common for databases, webservers, etc.

● The latter often relates to computer security
○ E.g., exploit generation, penetration testing, etc.

● Damage can also be in other forms
○ e.g., for Amazon, “damage” might be “customer doesn’t

complete the purchase”

Today’s in-class

● Achieve higher coverage on libpng
○ inputs are image files

● This assignment is supposed to be harder than HW2
○ libpng is ~85k LoC, so I don’t expect you to read it all
○ this is indicative of real-world engineering: you usually don’t

have time to read all the relevant code
○ getting started can be tricky, so use us for the rest of class to

get around any difficulties collecting coverage locally
○ good luck!

