
Fuzzing
Martin Kellogg

Reading Quiz: fuzzing

Q1: the chapter uses an xkcd comic to explain which of these famous
bugs that was detected by fuzzing?
A. Spectre/Meltdown
B. Y2K
C. Pentium FDIV
D. HeartBleed

Q2: TRUE or FALSE: the chapter includes another example targeting
the bc utility

Reading Quiz: fuzzing

Q1: the chapter uses an xkcd comic to explain which of these famous
bugs that was detected by fuzzing?
A. Spectre/Meltdown
B. Y2K
C. Pentium FDIV
D. HeartBleed

Q2: TRUE or FALSE: the chapter includes another example targeting
the bc utility

Reading Quiz: fuzzing

Q1: the chapter uses an xkcd comic to explain which of these famous
bugs that was detected by fuzzing?
A. Spectre/Meltdown
B. Y2K
C. Pentium FDIV
D. HeartBleed

Q2: TRUE or FALSE: the chapter includes another example targeting
the bc utility

HW2 thoughts

HW2 thoughts

“I realized that it would be very time consuming and also
difficult for me to manually collect a high coverage test suite…I wrote a
script that would select an image if it increases the coverage value”

● this is an excellent approach to a problem like this!
○ always consider automation if a task is repetitive and manual
○ this student treated coverage as a fitness function, much like a

mutational fuzzer (more details later)

Fuzzing: agenda

● story time
● mutational fuzzing
● grammar-based fuzzing
● fuzzing in the real world
● start symbolic execution (if there is enough time left)

Story Time

Story Time

● on a stormy night in Wisconsin in 1988…

Story Time

● on a stormy night in Wisconsin in 1988…
● a CS professor was connected over a phoneline to the computer in

his office

Story Time

● on a stormy night in Wisconsin in 1988…
● a CS professor was connected over a phoneline to the computer in

his office
● the thunderstorm outside caused “fuzz” on the line

Story Time

● on a stormy night in Wisconsin in 1988…
● a CS professor was connected over a phoneline to the computer in

his office
● the thunderstorm outside caused “fuzz” on the line

○ this was a well-known problem in the days of telephones
○ on a phonecall, you’d just hear static

Story Time

● on a stormy night in Wisconsin in 1988…
● a CS professor was connected over a phoneline to the computer in

his office
● the thunderstorm outside caused “fuzz” on the line

○ this was a well-known problem in the days of telephones
○ on a phonecall, you’d just hear static

● the fuzz caused many of the Unix utilities that the professor was
using to crash

Story Time

● on a stormy night in Wisconsin in 1988…
● a CS professor was connected over a phoneline to the computer in

his office
● the thunderstorm outside caused “fuzz” on the line

○ this was a well-known problem in the days of telephones
○ on a phonecall, you’d just hear static

● the fuzz caused many of the Unix utilities that the professor was
using to crash
○ insight: just a few bits of random inputs are enough!

Test input generation

Test input generation

● As a human, often choosing good test inputs is the hardest part
of writing a test

Test input generation

● As a human, often choosing good test inputs is the hardest part
of writing a test

● For a computer, that’s not true: computers can pick inputs very
fast (given some policy)

Test input generation

● As a human, often choosing good test inputs is the hardest part
of writing a test

● For a computer, that’s not true: computers can pick inputs very
fast (given some policy)

● Key problem: which inputs should we pick?

Test input generation

● As a human, often choosing good test inputs is the hardest part
of writing a test

● For a computer, that’s not true: computers can pick inputs very
fast (given some policy)

● Key problem: which inputs should we pick?
○ Lens of Statistics: choose inputs “at random”

Test input generation

● As a human, often choosing good test inputs is the hardest part
of writing a test

● For a computer, that’s not true: computers can pick inputs very
fast (given some policy)

● Key problem: which inputs should we pick?
○ Lens of Statistics: choose inputs “at random”
○ Lens of Logic: choose inputs that will maximize coverage

Test input generation

● As a human, often choosing good test inputs is the hardest part
of writing a test

● For a computer, that’s not true: computers can pick inputs very
fast (given some policy)

● Key problem: which inputs should we pick?
○ Lens of Statistics: choose inputs “at random”
○ Lens of Logic: choose inputs that will maximize coverage

Modern fuzzers combine
these two ideas.

Test data

● What are all the inputs to a test?

Test data

● What are all the inputs to a test?
○ Many programs (especially student programs) read from a file

or stdin …

Test data

● What are all the inputs to a test?
○ Many programs (especially student programs) read from a file

or stdin …
○ But what else is “read in” by a program and may influence its

behavior?

Test data

● What are all the inputs to a test?
○ Many programs (especially student programs) read from a file

or stdin …
○ But what else is “read in” by a program and may influence its

behavior?

What else besides “input” can influence program behavior?
● User Input (e.g., GUI)
● Environment Variables, Command-Line Args
● Scheduler Interleavings
● Data from the Filesystem

○ User configuration, data files
● Data from the Network

○ Server and service responses

Test data: operating systems philosophy

Test data: operating systems philosophy

● “Everything is a file.”

Test data: operating systems philosophy

● “Everything is a file.”
● After a few libraries and levels of indirection, reading from the

user's keyboard boils down to opening a special device file (e.g.,
/dev/ttyS0) and reading from it
○ Similarly with mouse clicks, GUI commands, etc.

Test data: operating systems philosophy

● “Everything is a file.”
● After a few libraries and levels of indirection, reading from the

user's keyboard boils down to opening a special device file (e.g.,
/dev/ttyS0) and reading from it
○ Similarly with mouse clicks, GUI commands, etc.

● Ultimately programs can only interact with the outside world
through system calls
○ open, read, write, socket, fork, gettimeofday

Test data: operating systems philosophy

● “Everything is a file.”
● After a few libraries and levels of indirection, reading from the

user's keyboard boils down to opening a special device file (e.g.,
/dev/ttyS0) and reading from it
○ Similarly with mouse clicks, GUI commands, etc.

● Ultimately programs can only interact with the outside world
through system calls
○ open, read, write, socket, fork, gettimeofday

● System calls (plus OS scheduling, etc.) are the full inputs

Test data: operating systems philosophy

● “Everything is a file.”
● After a few libraries and levels of indirection, reading from the

user's keyboard boils down to opening a special device file (e.g.,
/dev/ttyS0) and reading from it
○ Similarly with mouse clicks, GUI commands, etc.

● Ultimately programs can only interact with the outside world
through system calls
○ open, read, write, socket, fork, gettimeofday

● System calls (plus OS scheduling, etc.) are the full inputs

1. Fully hermetic tests should
include all these inputs

2. We want fully hermetic tests
3. 1 & 2 imply test input

generation must also control
the environment

Test data: operating systems philosophy

● “Everything is a file.”
● After a few libraries and levels of indirection, reading from the

user's keyboard boils down to opening a special device file (e.g.,
/dev/ttyS0) and reading from it
○ Similarly with mouse clicks, GUI commands, etc.

● Ultimately programs can only interact with the outside world
through system calls
○ open, read, write, socket, fork, gettimeofday

● System calls (plus OS scheduling, etc.) are the full inputs

1. Fully hermetic tests should
include all these inputs

2. We want fully hermetic tests
3. 1 & 2 imply test input

generation must also control
the environment

Fuzzing: agenda

● story time
● mutational fuzzing
● grammar-based fuzzing
● fuzzing in the real world
● start symbolic execution (if there is enough time left)

What is fuzzing?

Key idea: provide inputs “at random” to the program and use an implicit
oracle

What is fuzzing?

Key idea: provide inputs “at random” to the program and use an implicit
oracle

An implicit oracle is an oracle that
doesn’t require an explicit spec from
the programmer, such as “programs
should not crash”.

Key idea: provide inputs “at random” to the program and use an implicit
oracle

What is fuzzing?

Definition: fuzzing (or fuzz testing) is an automated testing technique
that involves providing random or semi-random inputs to a program
and monitoring for violations of an implicit oracle.

What is fuzzing?

Definition: fuzzing (or fuzz testing) is an automated testing technique
that involves providing random or semi-random inputs to a program
and monitoring for violations of an implicit oracle.
● typical oracle: crashes

What is fuzzing?

Definition: fuzzing (or fuzz testing) is an automated testing technique
that involves providing random or semi-random inputs to a program
and monitoring for violations of an implicit oracle.
● typical oracle: crashes

○ but any other implicit oracle will work (we’ll discuss more
implicit oracles in a few weeks)

What is fuzzing?

Definition: fuzzing (or fuzz testing) is an automated testing technique
that involves providing random or semi-random inputs to a program
and monitoring for violations of an implicit oracle.
● typical oracle: crashes

○ but any other implicit oracle will work (we’ll discuss more
implicit oracles in a few weeks)

● the simplest fuzzers use truly-random input

What is fuzzing?

Definition: fuzzing (or fuzz testing) is an automated testing technique
that involves providing random or semi-random inputs to a program
and monitoring for violations of an implicit oracle.
● typical oracle: crashes

○ but any other implicit oracle will work (we’ll discuss more
implicit oracles in a few weeks)

● the simplest fuzzers use truly-random input

What is fuzzing?

Truly-random input example:
'!7#%"*#0=)$;%6*;>638:*>80"=</>(‘

Definition: fuzzing (or fuzz testing) is an automated testing technique
that involves providing random or semi-random inputs to a program
and monitoring for violations of an implicit oracle.
● typical oracle: crashes

○ but any other implicit oracle will work (we’ll discuss more
implicit oracles in a few weeks)

● the simplest fuzzers use truly-random input
○ but that rarely works well in practice except to test the code

that reads input (why?)

What is fuzzing?

Truly-random input example:
'!7#%"*#0=)$;%6*;>638:*>80"=</>(‘

● originally, fuzzing was most effective for detecting bugs in
input-handling code
○ that is, code that might be exposed to the outside

Safely reading input

● originally, fuzzing was most effective for detecting bugs in
input-handling code
○ that is, code that might be exposed to the outside
○ such code shouldn’t crash under any circumstances

■ even when presented with invalid input!

Safely reading input

● originally, fuzzing was most effective for detecting bugs in
input-handling code
○ that is, code that might be exposed to the outside
○ such code shouldn’t crash under any circumstances

■ even when presented with invalid input!
● however, most code in most programs is not input-handling code

Safely reading input

● originally, fuzzing was most effective for detecting bugs in
input-handling code
○ that is, code that might be exposed to the outside
○ such code shouldn’t crash under any circumstances

■ even when presented with invalid input!
● however, most code in most programs is not input-handling code

○ because most programs accept input in a defined format

Safely reading input

● originally, fuzzing was most effective for detecting bugs in
input-handling code
○ that is, code that might be exposed to the outside
○ such code shouldn’t crash under any circumstances

■ even when presented with invalid input!
● however, most code in most programs is not input-handling code

○ because most programs accept input in a defined format
○ implication: fuzzing with random input produces tests that

have low coverage

Safely reading input

● As an example, consider a program that accepts a URL:

Achieving high coverage

● As an example, consider a program that accepts a URL:

scheme://netloc/path?query#fragment

Achieving high coverage

● As an example, consider a program that accepts a URL:

scheme://netloc/path?query#fragment

● scheme is the protocol to be used, including http, https, ftp...
● netloc is the host to connect to, e.g., www.google.com
● path is the path on that host
● query is a list of key/value pairs, such as q=fuzzing
● fragment is a marker for a location in the retrieved document

Achieving high coverage

● As an example, consider a program that accepts a URL:

scheme://netloc/path?query#fragment

● scheme is the protocol to be used, including http, https, ftp...
● netloc is the host to connect to, e.g., www.google.com
● path is the path on that host
● query is a list of key/value pairs, such as q=fuzzing
● fragment is a marker for a location in the retrieved document

Achieving high coverage What do you think are the odds
of generating a valid URL by
choosing random characters?

● For programs with structured input, random input generation is
insufficient to achieve high coverage

Achieving high coverage

● For programs with structured input, random input generation is
insufficient to achieve high coverage
○ we need a way to generate inputs that pass the program’s

input validation

Achieving high coverage

● For programs with structured input, random input generation is
insufficient to achieve high coverage
○ we need a way to generate inputs that pass the program’s

input validation
● Most of today’s lecture will be about various ways to do that:

Achieving high coverage

● For programs with structured input, random input generation is
insufficient to achieve high coverage
○ we need a way to generate inputs that pass the program’s

input validation
● Most of today’s lecture will be about various ways to do that:

○ by using seed inputs from the user to help

Achieving high coverage

● For programs with structured input, random input generation is
insufficient to achieve high coverage
○ we need a way to generate inputs that pass the program’s

input validation
● Most of today’s lecture will be about various ways to do that:

○ by using seed inputs from the user to help
○ by taking advantage of a known grammar for the inputs

Achieving high coverage

● For programs with structured input, random input generation is
insufficient to achieve high coverage
○ we need a way to generate inputs that pass the program’s

input validation
● Most of today’s lecture will be about various ways to do that:

○ by using seed inputs from the user to help
○ by taking advantage of a known grammar for the inputs
○ by using program analysis to find constraints on the input that

will allow it to pass various checks

Achieving high coverage

Review: genetic algorithms

● genetic algorithms are a class of biology-inspired algorithms that
“evolve” a solution to a problem

Review: genetic algorithms

● genetic algorithms are a class of biology-inspired algorithms that
“evolve” a solution to a problem
○ maintain a fixed-size population of possible solutions

Review: genetic algorithms

● genetic algorithms are a class of biology-inspired algorithms that
“evolve” a solution to a problem
○ maintain a fixed-size population of possible solutions
○ define a set of mutation operators that combine (parts of)

solutions from the population to create new solutions

Review: genetic algorithms

● genetic algorithms are a class of biology-inspired algorithms that
“evolve” a solution to a problem
○ maintain a fixed-size population of possible solutions
○ define a set of mutation operators that combine (parts of)

solutions from the population to create new solutions
○ apply the mutation operators to the current population to a

create a new “generation” of solutions

Review: genetic algorithms

● genetic algorithms are a class of biology-inspired algorithms that
“evolve” a solution to a problem
○ maintain a fixed-size population of possible solutions
○ define a set of mutation operators that combine (parts of)

solutions from the population to create new solutions
○ apply the mutation operators to the current population to a

create a new “generation” of solutions
○ use a fitness function to prune the starting population + the

new generation back down to the fixed population size

Review: genetic algorithms

● genetic algorithms are a class of biology-inspired algorithms that
“evolve” a solution to a problem
○ maintain a fixed-size population of possible solutions
○ define a set of mutation operators that combine (parts of)

solutions from the population to create new solutions
○ apply the mutation operators to the current population to a

create a new “generation” of solutions
○ use a fitness function to prune the starting population + the

new generation back down to the fixed population size
○ repeat until some stopping condition

Review: genetic algorithms

● genetic algorithms are a kind of search algorithm

Review: genetic algorithms: properties

● genetic algorithms are a kind of search algorithm
○ typically, they work best when the space of possible solutions

is very large

Review: genetic algorithms: properties

● genetic algorithms are a kind of search algorithm
○ typically, they work best when the space of possible solutions

is very large
● a good fitness function is critical to an effective genetic algorithm

○ what are some properties of a good fitness function?

Review: genetic algorithms: properties

● genetic algorithms are a kind of search algorithm
○ typically, they work best when the space of possible solutions

is very large
● a good fitness function is critical to an effective genetic algorithm

○ what are some properties of a good fitness function?
■ continuous
■ monotonic (or at least with few local optima)
■ cheap to evaluate

Review: genetic algorithms: properties

● genetic algorithms are a kind of search algorithm
○ typically, they work best when the space of possible solutions

is very large
● a good fitness function is critical to an effective genetic algorithm

○ what are some properties of a good fitness function?
■ continuous
■ monotonic (or at least with few local optima)
■ cheap to evaluate

○ what might make a good fitness function for a fuzzer?

Review: genetic algorithms: properties

● genetic algorithms are a kind of search algorithm
○ typically, they work best when the space of possible solutions

is very large
● a good fitness function is critical to an effective genetic algorithm

○ what are some properties of a good fitness function?
■ continuous
■ monotonic (or at least with few local optima)
■ cheap to evaluate

○ what might make a good fitness function for a fuzzer?
■ coverage!

Review: genetic algorithms: properties

● mutational fuzzing is the use of a genetic algorithm for generating
test inputs

Mutational fuzzing

● mutational fuzzing is the use of a genetic algorithm for generating
test inputs
○ fitness function is usually coverage (statement or branch)

Mutational fuzzing

● mutational fuzzing is the use of a genetic algorithm for generating
test inputs
○ fitness function is usually coverage (statement or branch)
○ population is made up of test inputs

Mutational fuzzing

● mutational fuzzing is the use of a genetic algorithm for generating
test inputs
○ fitness function is usually coverage (statement or branch)
○ population is made up of test inputs

● key questions:
○ where does the initial population come from?
○ how are the test inputs mutated?

Mutational fuzzing

● mutational fuzzing is the use of a genetic algorithm for generating
test inputs
○ fitness function is usually coverage (statement or branch)
○ population is made up of test inputs

● key questions:
○ where does the initial population come from?
○ how are the test inputs mutated?

Mutational fuzzing

● typically, a mutational fuzzer is starts with an initial population of
seed inputs provided by the user

Mutational fuzzing: seed inputs

● typically, a mutational fuzzer is starts with an initial population of
seed inputs provided by the user
○ for example, in our URL parsing example, these would be URLs

that we know are valid

Mutational fuzzing: seed inputs

● typically, a mutational fuzzer is starts with an initial population of
seed inputs provided by the user
○ for example, in our URL parsing example, these would be URLs

that we know are valid
● the choice of seed inputs is one of the most important inputs to

the fuzzer

Mutational fuzzing: seed inputs

● typically, a mutational fuzzer is starts with an initial population of
seed inputs provided by the user
○ for example, in our URL parsing example, these would be URLs

that we know are valid
● the choice of seed inputs is one of the most important inputs to

the fuzzer
○ “garbage in, garbage out” is very true for this kind of fuzzer
○ can also significantly impact performance
○ HW3 hint: choose seed images carefully

Mutational fuzzing: seed inputs

● mutational fuzzing is the use of a genetic algorithm for generating
test inputs
○ fitness function is usually coverage (statement or branch)
○ population is made up of test inputs

● key questions:
○ where does the initial population come from?
○ how are the test inputs mutated?

Mutational fuzzing

● you might think that the choice of mutation operator would also
have a big impact on performance

Mutational fuzzing: mutation operators

● you might think that the choice of mutation operator would also
have a big impact on performance
○ but, surprisingly, techniques like bit flipping or random string

mutation work just fine

Mutational fuzzing: mutation operators

● you might think that the choice of mutation operator would also
have a big impact on performance
○ but, surprisingly, techniques like bit flipping or random string

mutation work just fine
■ as long as it is cheap to evaluate the fitness of a particular

input, we can create and discard many, many inputs!

Mutational fuzzing: mutation operators

● you might think that the choice of mutation operator would also
have a big impact on performance
○ but, surprisingly, techniques like bit flipping or random string

mutation work just fine
■ as long as it is cheap to evaluate the fitness of a particular

input, we can create and discard many, many inputs!
● using low-level mutations means we must be able to combine

mutants into higher-order mutants of seed inputs

Mutational fuzzing: mutation operators

● you might think that the choice of mutation operator would also
have a big impact on performance
○ but, surprisingly, techniques like bit flipping or random string

mutation work just fine
■ as long as it is cheap to evaluate the fitness of a particular

input, we can create and discard many, many inputs!
● using low-level mutations means we must be able to combine

mutants into higher-order mutants of seed inputs
○ our genetic algorithm lets us do this easily, because neutral

mutations naturally accumulate in the population

Mutational fuzzing: mutation operators

● you might think that the choice of mutation operator would also
have a big impact on performance
○ but, surprisingly, techniques like bit flipping or random string

mutation work just fine
■ as long as it is cheap to evaluate the fitness of a particular

input, we can create and discard many, many inputs!
● using low-level mutations means we must be able to combine

mutants into higher-order mutants of seed inputs
○ our genetic algorithm lets us do this easily, because neutral

mutations naturally accumulate in the population

Mutational fuzzing: mutation operators

A neutral mutation is one that
does not impact fitness. E.g.,
goggle.com is also a valid URL.

● we can easily build a fuzzer that uses line/statement coverage as
its fitness function

Mutational fuzzing: coverage as fitness

● we can easily build a fuzzer that uses line/statement coverage as
its fitness function

● however, statement coverage is actually a bit too coarse-grained
in practice

Mutational fuzzing: coverage as fitness

● we can easily build a fuzzer that uses line/statement coverage as
its fitness function

● however, statement coverage is actually a bit too coarse-grained
in practice

● practical fuzzers like AFL (used in HW3) use branch or path
coverage

Mutational fuzzing: coverage as fitness

● we can easily build a fuzzer that uses line/statement coverage as
its fitness function

● however, statement coverage is actually a bit too coarse-grained
in practice

● practical fuzzers like AFL (used in HW3) use branch or path
coverage
○ AFL’s fitness function rewards an input for any new path, even

if that path has the same branch coverage
■ this means e.g., that an input that causes a loop to go

around twice instead of once is rewarded

Mutational fuzzing: coverage as fitness

● consider a new generation of test inputs containing:
○ one input that covered a new branch or path that was created

in the last round of mutation
○ n-1 inputs that have been in the population for at least a few

generations
● which input should we mutate?

Mutational fuzzing: power schedules

● consider a new generation of test inputs containing:
○ one input that covered a new branch or path that was created

in the last round of mutation
○ n-1 inputs that have been in the population for at least a few

generations
● which input should we mutate?

○ intuitively, we know that the new input should be mutated
more often in the next generation

Mutational fuzzing: power schedules

● consider a new generation of test inputs containing:
○ one input that covered a new branch or path that was created

in the last round of mutation
○ n-1 inputs that have been in the population for at least a few

generations
● which input should we mutate?

○ intuitively, we know that the new input should be mutated
more often in the next generation

○ we implement this intuition via power schedules

Mutational fuzzing: power schedules

● a power schedule distributes fuzzing time among the seeds in the
population

Mutational fuzzing: power schedules

● a power schedule distributes fuzzing time among the seeds in the
population
○ each seed is assigned an energy value

Mutational fuzzing: power schedules

● a power schedule distributes fuzzing time among the seeds in the
population
○ each seed is assigned an energy value

■ the odds of mutating a seed are proportional to its energy

Mutational fuzzing: power schedules

● a power schedule distributes fuzzing time among the seeds in the
population
○ each seed is assigned an energy value

■ the odds of mutating a seed are proportional to its energy
○ the usual policy is:

Mutational fuzzing: power schedules

● a power schedule distributes fuzzing time among the seeds in the
population
○ each seed is assigned an energy value

■ the odds of mutating a seed are proportional to its energy
○ the usual policy is:

■ newly-discovered seeds start with high energy

Mutational fuzzing: power schedules

● a power schedule distributes fuzzing time among the seeds in the
population
○ each seed is assigned an energy value

■ the odds of mutating a seed are proportional to its energy
○ the usual policy is:

■ newly-discovered seeds start with high energy
■ when a seed is mutated to produce an input that increases

fitness, its energy increases

Mutational fuzzing: power schedules

● a power schedule distributes fuzzing time among the seeds in the
population
○ each seed is assigned an energy value

■ the odds of mutating a seed are proportional to its energy
○ the usual policy is:

■ newly-discovered seeds start with high energy
■ when a seed is mutated to produce an input that increases

fitness, its energy increases
■ when a seed is mutated, but doesn’t produce an input that

increases fitness, its energy decreases

Mutational fuzzing: power schedules

● we can use any policy to assign energy
● examples:

Mutational fuzzing: power schedules

● we can use any policy to assign energy
● examples:

○ change the power schedule so that seeds that exercise
unusual paths have more energy

Mutational fuzzing: power schedules

● we can use any policy to assign energy
● examples:

○ change the power schedule so that seeds that exercise
unusual paths have more energy
■ “unusual” paths are those rarely covered by other seeds

Mutational fuzzing: power schedules

● we can use any policy to assign energy
● examples:

○ change the power schedule so that seeds that exercise
unusual paths have more energy
■ “unusual” paths are those rarely covered by other seeds
■ this technique can dramatically improve the fuzzer’s

performance

Mutational fuzzing: power schedules

● we can use any policy to assign energy
● examples:

○ change the power schedule so that seeds that exercise
unusual paths have more energy
■ “unusual” paths are those rarely covered by other seeds
■ this technique can dramatically improve the fuzzer’s

performance
○ change the power schedule to assign energy based on

distance to some objective
■ called directed fuzzing

Mutational fuzzing: power schedules

● let’s consider the URL parsing example again and walk through
how a mutational fuzzer might fuzz it

Mutational fuzzing: putting it all together

● let’s consider the URL parsing example again and walk through
how a mutational fuzzer might fuzz it
○ we provide a set of seed inputs (valid and invalid URLs)

Mutational fuzzing: putting it all together

● let’s consider the URL parsing example again and walk through
how a mutational fuzzer might fuzz it
○ we provide a set of seed inputs (valid and invalid URLs)

Mutational fuzzing: putting it all together

Population of inputs:
https://www.google.com/
https://web.njit.edu/~mjk76/
https://calendar.google.com/calendar/u/0/r?cid=bWprNzZAbmppdC5lZHU
http://3.149.230.63:50000
...

● let’s consider the URL parsing example again and walk through
how a mutational fuzzer might fuzz it
○ we provide a set of seed inputs (valid and invalid URLs)
○ initially, each seed has equal energy

Mutational fuzzing: putting it all together

● let’s consider the URL parsing example again and walk through
how a mutational fuzzer might fuzz it
○ we provide a set of seed inputs (valid and invalid URLs)
○ initially, each seed has equal energy

Mutational fuzzing: putting it all together

Population of inputs (energy):
https://www.google.com/ (1)
https://web.njit.edu/~mjk76/ (1)
https://calendar.google.com/calendar/u/0/r?cid=bWprNzZAbmppdC5lZHU
(1)
http://3.149.230.63:50000 (1)
...

● let’s consider the URL parsing example again and walk through
how a mutational fuzzer might fuzz it
○ we provide a set of seed inputs (valid and invalid URLs)
○ initially, each seed has equal energy

■ choose an input at random, weighted by energy

Mutational fuzzing: putting it all together

● let’s consider the URL parsing example again and walk through
how a mutational fuzzer might fuzz it
○ we provide a set of seed inputs (valid and invalid URLs)
○ initially, each seed has equal energy

■ choose an input at random, weighted by energy

Mutational fuzzing: putting it all together

Population of inputs (energy):
https://www.google.com/ (1)
https://web.njit.edu/~mjk76/ (1)
https://calendar.google.com/calendar/u/0/r?cid=bWprNzZAbmppdC5lZHU
(1)
http://3.149.230.63:50000 (1)
...

● let’s consider the URL parsing example again and walk through
how a mutational fuzzer might fuzz it
○ we provide a set of seed inputs (valid and invalid URLs)
○ initially, each seed has equal energy

■ choose an input at random, weighted by energy
■ mutate that input by changing a random character

Mutational fuzzing: putting it all together

● let’s consider the URL parsing example again and walk through
how a mutational fuzzer might fuzz it
○ we provide a set of seed inputs (valid and invalid URLs)
○ initially, each seed has equal energy

■ choose an input at random, weighted by energy

Mutational fuzzing: putting it all together

Population of inputs (energy):
https://www.google.com/ (1)
https://web.njit.edy/~mjk76/ (1)
https://calendar.google.com/calendar/u/0/r?cid=bWprNzZAbmppdC5lZHU
(1)
http://3.149.230.63:50000 (1)
...

● let’s consider the URL parsing example again and walk through
how a mutational fuzzer might fuzz it
○ we provide a set of seed inputs (valid and invalid URLs)
○ initially, each seed has equal energy

■ choose an input at random, weighted by energy
■ mutate that input by changing a random character
■ evaluate whether coverage increases

Mutational fuzzing: putting it all together

● let’s consider the URL parsing example again and walk through
how a mutational fuzzer might fuzz it
○ we provide a set of seed inputs (valid and invalid URLs)
○ initially, each seed has equal energy

■ choose an input at random, weighted by energy
■ mutate that input by changing a random character
■ evaluate whether coverage increases

● suppose that it doesn’t

Mutational fuzzing: putting it all together

● let’s consider the URL parsing example again and walk through
how a mutational fuzzer might fuzz it
○ we provide a set of seed inputs (valid and invalid URLs)
○ initially, each seed has equal energy

■ choose an input at random, weighted by energy
■ mutate that input by changing a random character
■ evaluate whether coverage increases
■ repeat the process…

Mutational fuzzing: putting it all together

Population of inputs (energy):
https://www.google.com/ (1)
https://web.njit.edu/~mjk76/ (0.75)
https://calendar.google.com/calendar/u/0/r?cid=bWprNzZAbmppdC5lZHU
(1)
http://3.149.230.63:50000 (1)
...

● let’s consider the URL parsing example again and walk through
how a mutational fuzzer might fuzz it
○ we provide a set of seed inputs (valid and invalid URLs)
○ initially, each seed has equal energy

■ choose an input at random, weighted by energy
■ mutate that input by changing a random character
■ evaluate whether coverage increases
■ repeat the process…

Mutational fuzzing: putting it all together

● let’s consider the URL parsing example again and walk through
how a mutational fuzzer might fuzz it
○ we provide a set of seed inputs (valid and invalid URLs)
○ initially, each seed has equal energy

■ choose an input at random, weighted by energy
■ mutate that input by changing a random character
■ evaluate whether coverage increases
■ repeat the process…

Mutational fuzzing: putting it all together

● let’s consider the URL parsing example again and walk through
how a mutational fuzzer might fuzz it
○ we provide a set of seed inputs (valid and invalid URLs)
○ initially, each seed has equal energy

■ choose an input at random, weighted by energy
■ mutate that input by changing a random character
■ evaluate whether coverage increases
■ repeat the process…

Mutational fuzzing: putting it all together

● let’s consider the URL parsing example again and walk through
how a mutational fuzzer might fuzz it
○ we provide a set of seed inputs (valid and invalid URLs)
○ initially, each seed has equal energy

■ choose an input at random, weighted by energy
■ mutate that input by changing a random character
■ evaluate whether coverage increases
■ repeat the process…

Mutational fuzzing: putting it all together

● let’s consider the URL parsing example again and walk through
how a mutational fuzzer might fuzz it
○ we provide a set of seed inputs (valid and invalid URLs)
○ initially, each seed has equal energy

■ choose an input at random, weighted by energy
■ mutate that input by changing a random character
■ evaluate whether coverage increases
■ repeat the process…

Mutational fuzzing: putting it all together

Population of inputs (energy):
https://www.google.com/ (1)
https://web.njit.edu/~mjk76/ (0.75)
https://calendar.google.com/calendar/u/0/r?cid=bWprNzZAbmppdC5lZHU
(1)
http://f.149.230.63:50000 (1)
...

● let’s consider the URL parsing example again and walk through
how a mutational fuzzer might fuzz it
○ we provide a set of seed inputs (valid and invalid URLs)
○ initially, each seed has equal energy

■ choose an input at random, weighted by energy
■ mutate that input by changing a random character
■ evaluate whether coverage increases

● suppose that it does
■ repeat the process…

Mutational fuzzing: putting it all together

● let’s consider the URL parsing example again and walk through
how a mutational fuzzer might fuzz it
○ we provide a set of seed inputs (valid and invalid URLs)
○ initially, each seed has equal energy

■ choose an input at random, weighted by energy
■ mutate that input by changing a random character
■ evaluate whether coverage increases
■ repeat the process…

Mutational fuzzing: putting it all together

Population of inputs (energy):
https://www.google.com/ (1)
https://web.njit.edu/~mjk76/ (0.75)
https://calendar.google.com/calendar/u/0/r?cid=bWprNzZAbmppdC5lZHU
(1)
http://3.149.230.63:50000 (2)
http://f.149.230.63:50000 (2)
...

● let’s consider the URL parsing example again and walk through
how a mutational fuzzer might fuzz it
○ we provide a set of seed inputs (valid and invalid URLs)
○ initially, each seed has equal energy

■ choose an input at random, weighted by energy
■ mutate that input by changing a random character
■ evaluate whether coverage increases
■ repeat the process…

○ create a new generation and then start over

Mutational fuzzing: putting it all together

● let’s consider the URL parsing example again and walk through
how a mutational fuzzer might fuzz it
○ we provide a set of seed inputs (valid and invalid URLs)
○ initially, each seed has equal energy
○ choose an input at random, weighted by energy
○ mutate that input by changing a random character
○ evaluate whether coverage increases
○ repeat the process…
○ create a new generation and then start over

Mutational fuzzing: putting it all together

Population of inputs (energy):
https://www.google.com/ (1)
https://web.njit.edu/~mjk76/ (0.75)
https://calendar.google.com/calendar/u/0/r?cid=bWprNzZAbmppdC5lZHU
(1)
http://3.149.230.63:50000 (2)
http://f.149.230.63:50000 (2)
...

Fuzzing: agenda

● story time
● mutational fuzzing
● grammar-based fuzzing
● fuzzing in the real world
● start symbolic execution (if there is enough time left)

● Mutating seed inputs is effective in practice to find inputs that are
“near” the seeds

● But usually we know a lot more about a program’s input format!

Grammar-based fuzzing

● Mutating seed inputs is effective in practice to find inputs that are
“near” the seeds

● But usually we know a lot more about a program’s input format!

Grammar-based fuzzing

scheme://netloc/path?query#fragment

● Mutating seed inputs is effective in practice to find inputs that are
“near” the seeds

● But usually we know a lot more about a program’s input format!

● In our previous example, the fuzzer had a equal chance to mutate
each character in the URL

Grammar-based fuzzing

scheme://netloc/path?query#fragment

● Mutating seed inputs is effective in practice to find inputs that are
“near” the seeds

● But usually we know a lot more about a program’s input format!

● In our previous example, the fuzzer had a equal chance to mutate
each character in the URL

● But we know a lot more about how URLs are structured!

Grammar-based fuzzing

scheme://netloc/path?query#fragment

● Mutating seed inputs is effective in practice to find inputs that are
“near” the seeds

● But usually we know a lot more about a program’s input format!

● In our previous example, the fuzzer had a equal chance to mutate
each character in the URL

● But we know a lot more about how URLs are structured!

Grammar-based fuzzing

scheme://netloc/path?query#fragmentKey idea: provide that structure
to the fuzzer, and only select
inputs that are valid!

● A formal grammar describes which strings from an alphabet of a
formal language are valid according to the language's syntax.
[Wikipedia]

Grammar-based fuzzing: review of grammars

● A formal grammar describes which strings from an alphabet of a
formal language are valid according to the language's syntax.
[Wikipedia]

● For example, here is a grammar for URLs:
URL = S :// N / P?
S = http | https | ftp | …
N = any string
P = any string / P | P ? Q | ε
Q = any string | Q # F
F = any string

Grammar-based fuzzing: review of grammars

scheme://netloc/path?query#fragment

Definition: a grammar-based fuzzer augments the input generation
part of a fuzzer with a formal grammar, which is used to produce new
valid inputs to the target program

Grammar-based fuzzing

Definition: a grammar-based fuzzer augments the input generation
part of a fuzzer with a formal grammar, which is used to produce new
valid inputs to the target program
● i.e., the seed inputs are replaced with the grammar, and the

population is created by sampling from the grammar.

Grammar-based fuzzing

Definition: a grammar-based fuzzer augments the input generation
part of a fuzzer with a formal grammar, which is used to produce new
valid inputs to the target program
● i.e., the seed inputs are replaced with the grammar, and the

population is created by sampling from the grammar.
● mutation changes from “change a random character” or similar to

“change a part of the derivation tree for a term”

Grammar-based fuzzing

● grammar-based fuzzing is useful for programs with
highly-structured, well-defined inputs

Grammar-based fuzzing: usefulness

● grammar-based fuzzing is useful for programs with
highly-structured, well-defined inputs
○ e.g., compilers, APIs, GUI applications

Grammar-based fuzzing: usefulness

● grammar-based fuzzing is useful for programs with
highly-structured, well-defined inputs
○ e.g., compilers, APIs, GUI applications

● for such programs, providing a grammar can dramatically improve
fuzzing efficiency

Grammar-based fuzzing: usefulness

● grammar-based fuzzing is useful for programs with
highly-structured, well-defined inputs
○ e.g., compilers, APIs, GUI applications

● for such programs, providing a grammar can dramatically improve
fuzzing efficiency
○ downside: someone usually has to write the grammar
○ but this is an area of active research!

Grammar-based fuzzing: usefulness

Fuzzing: agenda

● story time
● mutational fuzzing
● grammar-based fuzzing
● fuzzing in the real world
● start symbolic execution (if there is enough time left)

Fuzzing in practice

● Fuzzing is common in industry
○ AFL (most famous coverage-guided fuzzer) was built at Google
○ oss-fuzz project fuzzes many important open-source projects

constantly using industry resources

Fuzzing in practice

● Fuzzing is common in industry
○ AFL (most famous coverage-guided fuzzer) was built at Google
○ oss-fuzz project fuzzes many important open-source projects

constantly using industry resources
● Fuzzing is machine-intensive

○ most inputs aren’t useful (grammars can help)

Fuzzing in practice

● Fuzzing is common in industry
○ AFL (most famous coverage-guided fuzzer) was built at Google
○ oss-fuzz project fuzzes many important open-source projects

constantly using industry resources
● Fuzzing is machine-intensive

○ most inputs aren’t useful (grammars can help)
● Fuzzing finds real bugs

○ especially useful for finding security bugs

Fuzzing in practice: security

● Why is fuzzing useful for finding security bugs?

Fuzzing in practice: security

● Why is fuzzing useful for finding security bugs?
○ most common cause of vulnerabilities: buffer overflows

Fuzzing in practice: security

● Why is fuzzing useful for finding security bugs?
○ most common cause of vulnerabilities: buffer overflows

● It is straightforward to augment a fuzzer to detect buffer
overflows in addition to crashes

Fuzzing in practice: security

● Why is fuzzing useful for finding security bugs?
○ most common cause of vulnerabilities: buffer overflows

● It is straightforward to augment a fuzzer to detect buffer
overflows in addition to crashes
○ ~doubles running time for most C programs, but fuzzing is

already resource-intensive

Fuzzing in practice: security

● Why is fuzzing useful for finding security bugs?
○ most common cause of vulnerabilities: buffer overflows

● It is straightforward to augment a fuzzer to detect buffer
overflows in addition to crashes
○ ~doubles running time for most C programs, but fuzzing is

already resource-intensive
○ fuzzers have detected many important security issues

■ e.g., Heartbleed in OpenSSL

Fuzzing: agenda

● story time
● mutational fuzzing
● grammar-based fuzzing
● fuzzing in the real world
● start symbolic execution (if there is enough time left)

Today’s in-class: HW3

● you’ll use the AFL fuzzer to generate tests for libpng (same target
as last week’s homework)

Today’s in-class: HW3

● you’ll use the AFL fuzzer to generate tests for libpng (same target
as last week’s homework)

● warning: AFL can take a long time to achieve the needed coverage
(especially in a VM)

Today’s in-class: HW3

● you’ll use the AFL fuzzer to generate tests for libpng (same target
as last week’s homework)

● warning: AFL can take a long time to achieve the needed coverage
(especially in a VM)
○ good news: it can run by itself, so you can leave it overnight

Today’s in-class: HW3

● you’ll use the AFL fuzzer to generate tests for libpng (same target
as last week’s homework)

● warning: AFL can take a long time to achieve the needed coverage
(especially in a VM)
○ good news: it can run by itself, so you can leave it overnight
○ bad news: you can’t start this homework the day before it’s due

Today’s in-class: HW3

● you’ll use the AFL fuzzer to generate tests for libpng (same target
as last week’s homework)

● warning: AFL can take a long time to achieve the needed coverage
(especially in a VM)
○ good news: it can run by itself, so you can leave it overnight
○ bad news: you can’t start this homework the day before it’s due

● note: there is no autograder for this assignment. You only need to
turn in a written report (but to write the report, you’ll need data
from AFL that you can only get by running it on libpng)

