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“I realized that it would be very time consuming and also
difficult for me to manually collect a high coverage test suite…I wrote a 
script that would select an image if it increases the coverage value”

● this is an excellent approach to a problem like this!
○ always consider automation if a task is repetitive and manual
○ this student treated coverage as a fitness function, much like a 

mutational fuzzer (more details later)



Fuzzing: agenda

● story time
● mutational fuzzing
● grammar-based fuzzing
● fuzzing in the real world
● start symbolic execution (if there is enough time left)
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Story Time

● on a stormy night in Wisconsin in 1988…
● a CS professor was connected over a phoneline to the computer in 

his office
● the thunderstorm outside caused “fuzz” on the line

○ this was a well-known problem in the days of telephones
○ on a phonecall, you’d just hear static

● the fuzz caused many of the Unix utilities that the professor was 
using to crash
○ insight: just a few bits of random inputs are enough!
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● As a human, often choosing good test inputs is the hardest part 
of writing a test

● For a computer, that’s not true: computers can pick inputs very 
fast (given some policy)

● Key problem: which inputs should we pick?
○ Lens of Statistics: choose inputs “at random”
○ Lens of Logic: choose inputs that will maximize coverage

Modern fuzzers combine 
these two ideas.
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Test data

● What are all the inputs to a test? 
○ Many programs (especially student programs) read from a file 

or stdin … 
○ But what else is “read in” by a program and may influence its 

behavior?

What else besides “input” can influence program behavior?
● User Input (e.g., GUI)
● Environment Variables, Command-Line Args 
● Scheduler Interleavings
● Data from the Filesystem

○ User configuration, data files
● Data from the Network 

○ Server and service responses
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Definition: fuzzing (or fuzz testing) is an automated testing technique 
that involves providing random or semi-random inputs to a program 
and monitoring for violations of an implicit oracle.
● typical oracle: crashes

○  but any other implicit oracle will work (we’ll discuss more 
implicit oracles in a few weeks)

● the simplest fuzzers use truly-random input
○ but that rarely works well in practice except to test the code 

that reads input (why?)

What is fuzzing?

Truly-random input example:
'!7#%"*#0=)$;%6*;>638:*>80"=</>(‘
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● originally, fuzzing was most effective for detecting bugs in 
input-handling code
○ that is, code that might be exposed to the outside
○ such code shouldn’t crash under any circumstances

■ even when presented with invalid input!
● however, most code in most programs is not input-handling code

○ because most programs accept input in a defined format
○ implication: fuzzing with random input produces tests that 

have low coverage

Safely reading input
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● As an example, consider a program that accepts a URL:

scheme://netloc/path?query#fragment

● scheme is the protocol to be used, including http, https, ftp...
● netloc is the host to connect to, e.g.,  www.google.com
● path is the path on that host
● query is a list of key/value pairs, such as q=fuzzing
● fragment is a marker for a location in the retrieved document

Achieving high coverage What do you think are the odds 
of generating a valid URL by 
choosing random characters?
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● For programs with structured input, random input generation is 
insufficient to achieve high coverage
○ we need a way to generate inputs that pass the program’s 

input validation
● Most of today’s lecture will be about various ways to do that:

○ by using seed inputs from the user to help
○ by taking advantage of a known grammar for the inputs
○ by using program analysis to find constraints on the input that 

will allow it to pass various checks

Achieving high coverage



Review: genetic algorithms



● genetic algorithms are a class of biology-inspired algorithms that 
“evolve” a solution to a problem

Review: genetic algorithms



● genetic algorithms are a class of biology-inspired algorithms that 
“evolve” a solution to a problem
○ maintain a fixed-size population of possible solutions

Review: genetic algorithms



● genetic algorithms are a class of biology-inspired algorithms that 
“evolve” a solution to a problem
○ maintain a fixed-size population of possible solutions
○ define a set of mutation operators that combine (parts of) 

solutions from the population to create new solutions

Review: genetic algorithms



● genetic algorithms are a class of biology-inspired algorithms that 
“evolve” a solution to a problem
○ maintain a fixed-size population of possible solutions
○ define a set of mutation operators that combine (parts of) 

solutions from the population to create new solutions
○ apply the mutation operators to the current population to a 

create a new “generation” of solutions

Review: genetic algorithms



● genetic algorithms are a class of biology-inspired algorithms that 
“evolve” a solution to a problem
○ maintain a fixed-size population of possible solutions
○ define a set of mutation operators that combine (parts of) 

solutions from the population to create new solutions
○ apply the mutation operators to the current population to a 

create a new “generation” of solutions
○ use a fitness function to prune the starting population + the 

new generation back down to the fixed population size

Review: genetic algorithms



● genetic algorithms are a class of biology-inspired algorithms that 
“evolve” a solution to a problem
○ maintain a fixed-size population of possible solutions
○ define a set of mutation operators that combine (parts of) 

solutions from the population to create new solutions
○ apply the mutation operators to the current population to a 

create a new “generation” of solutions
○ use a fitness function to prune the starting population + the 

new generation back down to the fixed population size
○ repeat until some stopping condition
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● genetic algorithms are a kind of search algorithm
○ typically, they work best when the space of possible solutions 

is very large
● a good fitness function is critical to an effective genetic algorithm

○ what are some properties of a good fitness function?
■ continuous
■ monotonic (or at least with few local optima)
■ cheap to evaluate

○ what might make a good fitness function for a fuzzer?
■ coverage!

Review: genetic algorithms: properties
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● typically, a mutational fuzzer is starts with an initial population of 
seed inputs provided by the user
○ for example, in our URL parsing example, these would be URLs 

that we know are valid
● the choice of seed inputs is one of the most important inputs to 

the fuzzer
○ “garbage in, garbage out” is very true for this kind of fuzzer
○ can also significantly impact performance
○ HW3 hint: choose seed images carefully
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● you might think that the choice of mutation operator would also 
have a big impact on performance
○ but, surprisingly, techniques like bit flipping or random string 

mutation work just fine
■ as long as it is cheap to evaluate the fitness of a particular 

input, we can create and discard many, many inputs!
● using low-level mutations means we must be able to combine 

mutants into higher-order mutants of seed inputs
○ our genetic algorithm lets us do this easily, because neutral 

mutations naturally accumulate in the population

Mutational fuzzing: mutation operators

A neutral mutation is one that 
does not impact fitness. E.g., 
goggle.com is also a valid URL.
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● we can easily build a fuzzer that uses line/statement coverage as 
its fitness function

● however, statement coverage is actually a bit too coarse-grained 
in practice

● practical fuzzers like AFL (used in HW3) use branch or path 
coverage
○ AFL’s fitness function rewards an input for any new path, even 

if that path has the same branch coverage
■ this means e.g., that an input that causes a loop to go 

around twice instead of once is rewarded
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● consider a new generation of test inputs containing:
○ one input that covered a new branch or path that was created 

in the last round of mutation
○ n-1 inputs that have been in the population for at least a few 

generations
● which input should we mutate?

○ intuitively, we know that the new input should be mutated 
more often in the next generation

○ we implement this intuition via power schedules
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● a power schedule distributes fuzzing time among the seeds in the 
population
○ each seed is assigned an energy value

■ the odds of mutating a seed are proportional to its energy
○ the usual policy is:

■ newly-discovered seeds start with high energy
■ when a seed is mutated to produce an input that increases 

fitness, its energy increases
■ when a seed is mutated, but doesn’t produce an input that 

increases fitness, its energy decreases

Mutational fuzzing: power schedules
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● we can use any policy to assign energy
● examples:

○ change the power schedule so that seeds that exercise 
unusual paths have more energy
■ “unusual” paths are those rarely covered by other seeds
■ this technique can dramatically improve the fuzzer’s 

performance
○ change the power schedule to assign energy based on 

distance to some objective
■ called directed fuzzing

Mutational fuzzing: power schedules
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how a mutational fuzzer might fuzz it
○ we provide a set of seed inputs (valid and invalid URLs)
○ initially, each seed has equal energy
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● suppose that it doesn’t
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Fuzzing: agenda

● story time
● mutational fuzzing
● grammar-based fuzzing
● fuzzing in the real world
● start symbolic execution (if there is enough time left)
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● Mutating seed inputs is effective in practice to find inputs that are 
“near” the seeds

● But usually we know a lot more about a program’s input format!

● In our previous example, the fuzzer had a equal chance to mutate 
each character in the URL

● But we know a lot more about how URLs are structured!

Grammar-based fuzzing

scheme://netloc/path?query#fragmentKey idea: provide that structure 
to the fuzzer, and only select 
inputs that are valid!



● A formal grammar describes which strings from an alphabet of a 
formal language are valid according to the language's syntax. 
[Wikipedia]
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● A formal grammar describes which strings from an alphabet of a 
formal language are valid according to the language's syntax. 
[Wikipedia]

● For example, here is a grammar for URLs:
URL = S :// N / P?
S = http | https | ftp | …
N = any string
P = any string / P | P ? Q | ε
Q = any string | Q # F
F = any string

Grammar-based fuzzing: review of grammars

scheme://netloc/path?query#fragment
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Definition: a grammar-based fuzzer augments the input generation 
part of a fuzzer with a formal grammar, which is used to produce new 
valid inputs to the target program
● i.e., the seed inputs are replaced with the grammar, and the 

population is created by sampling from the grammar.
● mutation changes from “change a random character” or similar to 

“change a part of the derivation tree for a term”

Grammar-based fuzzing
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● grammar-based fuzzing is useful for programs with 
highly-structured, well-defined inputs
○ e.g., compilers, APIs, GUI applications

● for such programs, providing a grammar can dramatically improve 
fuzzing efficiency
○ downside: someone usually has to write the grammar
○ but this is an area of active research!

Grammar-based fuzzing: usefulness
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Fuzzing in practice

● Fuzzing is common in industry
○ AFL (most famous coverage-guided fuzzer) was built at Google
○ oss-fuzz project fuzzes many important open-source projects 

constantly using industry resources
● Fuzzing is machine-intensive

○ most inputs aren’t useful (grammars can help)
● Fuzzing finds real bugs

○ especially useful for finding security bugs
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Fuzzing in practice: security

● Why is fuzzing useful for finding security bugs?
○ most common cause of vulnerabilities: buffer overflows

● It is straightforward to augment a fuzzer to detect buffer 
overflows in addition to crashes
○ ~doubles running time for most C programs, but fuzzing is 

already resource-intensive
○ fuzzers have detected many important security issues

■ e.g., Heartbleed in OpenSSL



Fuzzing: agenda

● story time
● mutational fuzzing
● grammar-based fuzzing
● fuzzing in the real world
● start symbolic execution (if there is enough time left)
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Today’s in-class: HW3

● you’ll use the AFL fuzzer to generate tests for libpng (same target 
as last week’s homework)

● warning: AFL can take a long time to achieve the needed coverage 
(especially in a VM)
○ good news: it can run by itself, so you can leave it overnight
○ bad news: you can’t start this homework the day before it’s due

● note: there is no autograder for this assignment. You only need to 
turn in a written report (but to write the report, you’ll need data 
from AFL that you can only get by running it on libpng)


