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Feedback-directed Random Testing

● fuzzing isn’t the only way to randomly generate tests
● Randoop (Pacheco et al. 2007) is a good example of an alternative 

approach: feedback-directed random testing
○ does not use a genetic algorithm
○ but the core idea is similar: build test inputs incrementally

■ that is, new inputs extend existing inputs
○ execute each new input immediately (but there is no explicit 

fitness function: it is not designed as a genetic algorithm)
■ tests are discarded if they do not discover new states
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Randoop: input/output example

● inputs:
○ classes under test (this tool targets Java/OOP)
○ time limit
○ a set of contracts to use as oracles

■ e.g., “o.equals(o) == true” or “o.hashCode() never throws”
● output:

○ sequences of method calls that cause a contract violation

For example:
Map h = new HashMap();
Collection c = h.values();
Object[] a = c.toArray();
List l = new LinkedList();
l.addFirst(a);
Set t = new TreeSet(l);
Set u = 
Collections.unmodifiableSet(t);
assertTrue(u.equals(u));

fails when executed



Randoop: type-directed synthesis

● how does it work?



Randoop: type-directed synthesis

● how does it work?
○ start with a set of seed sequences of size 1 (e.g., int i = 0;)



Randoop: type-directed synthesis

● how does it work?
○ start with a set of seed sequences of size 1 (e.g., int i = 0;)
○ randomly select a method call m(T1,...,Tk)/Tret s.t. there is a 

sequence in the seed pool that ends in all Ti for 1 <= i <= k



Randoop: type-directed synthesis

● how does it work?
○ start with a set of seed sequences of size 1 (e.g., int i = 0;)
○ randomly select a method call m(T1,...,Tk)/Tret s.t. there is a 

sequence in the seed pool that ends in all Ti for 1 <= i <= k
○ for each Ti, choose a sequence Si that constructs an object vi 

of type Ti from the pool



Randoop: type-directed synthesis

● how does it work?
○ start with a set of seed sequences of size 1 (e.g., int i = 0;)
○ randomly select a method call m(T1,...,Tk)/Tret s.t. there is a 

sequence in the seed pool that ends in all Ti for 1 <= i <= k
○ for each Ti, choose a sequence Si that constructs an object vi 

of type Ti from the pool
○ create a new sequence:

■ Snew = S1 ; … ; Sk ; Tret vnew = m(v1, …, vk);



Randoop: type-directed synthesis

● how does it work?
○ start with a set of seed sequences of size 1 (e.g., int i = 0;)
○ randomly select a method call m(T1,...,Tk)/Tret s.t. there is a 

sequence in the seed pool that ends in all Ti for 1 <= i <= k
○ for each Ti, choose a sequence Si that constructs an object vi 

of type Ti from the pool
○ create a new sequence:

■ Snew = S1 ; … ; Sk ; Tret vnew = m(v1, …, vk);

○ classify the new sequence by executing it: may discard, output 
as a test case, or add it to the pool of sequences
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Randoop: redundant sequences

● Randoop discards redundant sequences
○ during generation, it maintains a set O of all objects that it has 

ever created
○ a sequence is considered redundant if all of the objects created 

during its execution are members of O (using .equals)
○ Randoop would work with other reasonable definitions of 

redundant, too
■ e.g., heap canonicalization
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Randoop: in practice

● Randoop has been used to find real bugs in e.g., the JDK
● It has been deployed at companies (e.g., Microsoft)
● The tool is still maintained (so you could use it yourself)

○ https://randoop.github.io/randoop/
● It is commonly used in research papers as a baseline: that is, a 

method that any new technique is expected to outperform
○ Randoop is fast and easy enough to use that if a new technique 

cannot outperform it, it’s probably not worth using!

https://randoop.github.io/randoop/
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● Suppose you wanted to evaluate the quality of two 
truffle-sniffing pigs
○ Intuition: test whether they can actually find truffles!

● Test idea: hide some truffles in your backyard and see how many 
each pig finds
○ The pig that finds more of the hidden truffles in your 

backyard is assumed to find more real truffles in the wild 
● Suppose you wanted to evaluate the quality of two bug-finding 

test suites …
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The Lens of Adversity: mutation testing

Definition: Mutation testing (or mutation analysis) is a test suite 
adequacy metric in which the quality of a test suite is related to the 
number of intentionally-added defects it finds
● Informally: “You claim your test suite is really great at finding 

security bugs? Well, I'll just intentionally add a bug to my source 
code and see if your test suite finds it!”
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Mutation testing: defect seeding

Definition: Defect seeding is the process of intentionally introducing 
a defect into a program. 
● The defect introduced is typically intentionally similar to defects 

introduced by real developers. 
● The seeding is typically done by changing the source code. 
● For mutation testing, defect seeding is typically done 

automatically (given a model of what human bugs look like)
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Mutation testing: mutation operators

Definition: A mutation operator systematically changes a program 
point. In mutation testing, the mutation operators are usually 
modeled on historical human defects.
● Example mutations:

○ if (a < b) → if (a <= b)
○ if (a == b) → if (a != b)
○ a = b + c → a = b - c
○ f(); g(); → g(); f();
○ x = y → x = z
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Definition: A mutant (or variant) is a version of the original program 
produced by applying one or more mutation operators to one or 
more program locations. 
Definition: The order of a mutant is the number of mutation 
operators applied.

// original                // 2nd-order mutant 
if (a < b): if (a <= b): 

x = a + b → x = a – b 
print(x) print(x) 
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Mutation testing: killing mutants

Definition: A test suite is said to kill (or detect, or reveal) a mutant if 
the mutant fails a test that the original passes.
● test suites that kill more mutants are generally considered better
● (sorry for all the vocabulary, but it’s necessary to understand how 

EvoSuite works)

●
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Mutation testing: more to come!

● My intention today is to give you a high-level idea of how 
mutation testing works
○ because EvoSuite (which you’ll use for HW4) relies on it

● We will discuss mutation testing in much more detail in two 
weeks
○ and you’ll get a chance to try your hand at it in HW6
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EvoSuite: core idea

● much like AFL or other fuzzers, EvoSuite uses a genetic algorithm 
to evolve better tests
○ however, EvoSuite views the test suite as the individual

■ individual tests are themselves “chromosomes”
■ the whole population is made up of many test suites

○ this simplifies crossover/parentage: just add/remove tests
● EvoSuite also uses mutation testing to produce oracles

○ key idea: assertions that kill mutants make good oracles
■ we’ll come back to this idea next week
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EvoSuite vs. AFL

● EvoSuite emphasizes producing human-readable tests
● EvoSuite’s developers actually expect you to look at the tests that 

it produces, and to use them for regression testing
● by contrast, AFL is looking to find bugs

○ leads to test inputs that aren’t easy to understand!
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EvoSuite: HW4 thoughts

● HW4 asks you to use EvoSuite to generate test suites for a Java 
library

● As you do, consider how EvoSuite:
○ differs from AFL as deployed in HW3
○ compares to the sort of tests that you might write by hand
○ does it achieve its goal of creating useful regression suites?



More test input generation: agenda

● Other approaches that use random testing
○ “feedback-directed” random testing
○ brief introduction to mutation testing
○ EvoSuite: mutation testing + a genetic algorithm

● Lens of Logic: symbolic execution for test input generation
○ concolic testing
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Symbolic Execution

● we’ve seen coverage used as a fitness function for a fuzzer
○ but what if we just try to figure out which inputs would 

improve coverage directly?
● this is the key idea behind using symbolic execution to generate 

test inputs that improve coverage



Symbolic Execution

Definition: symbolic execution abstractly runs the target program while 
computing a formula for each variable



Symbolic Execution

Definition: symbolic execution abstractly runs the target program while 
computing a formula for each variable
● effectively, use math to figure out which values of each variable 

will cause the program to take particular paths



Symbolic Execution

Definition: symbolic execution abstractly runs the target program while 
computing a formula for each variable
● effectively, use math to figure out which values of each variable 

will cause the program to take particular paths
● our plan: choose an uncovered bit of code, and then symbolically 

execute backwards from there to figure out what values the input 
variables would need to take on in order to cover the code



Symbolic Execution

Definition: symbolic execution abstractly runs the target program while 
computing a formula for each variable
● effectively, use math to figure out which values of each variable 

will cause the program to take particular paths
● our plan: choose an uncovered bit of code, and then symbolically 

execute backwards from there to figure out what values the input 
variables would need to take on in order to cover the code
○ this is the Lens of Logic again, but applied in a different way
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Lens of Logic: maximize coverage

● If you have N sequential (or serial) if statements …
● There are 2N branch edges

○ Which you could cover in 2 tests!
■ One always goes left, one always right

● But there are 2N paths
○ You need 2N tests to cover them

● Recall that path coverage subsumes branch 
coverage
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Lens of Logic: maximize coverage

● Consider generating test inputs to cover a path
○ If we could do that, branch/statement/etc coverage is easy

● Key idea: solve this problem with math

Definition: a path predicate (or path condition, or path constraint) is a 
boolean formula over program variables that is true when the 
program executes the given path



Lens of Logic: path predicate example

● Consider the highlighted (in pink) path
○ i.e., “false, false, true”

● What is its path predicate?



Lens of Logic: path predicate example

● Consider the highlighted (in pink) path
○ i.e., “false, false, true”

● What is its path predicate?
○ a >= b && c >= d && e < f



Lens of Logic: path predicate example

● Consider the highlighted (in pink) path
○ i.e., “false, false, true”

● What is its path predicate?
○ a >= b && c >= d && e < f

● When the path predicate is true, control flow 
will follow the given path



Lens of Logic: path predicate example

● Consider the highlighted (in pink) path
○ i.e., “false, false, true”

● What is its path predicate?
○ a >= b && c >= d && e < f

● When the path predicate is true, control flow 
will follow the given path

● So, given a path predicate, how do we choose 
a test input that covers the path?
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Lens of Logic: solving path predicates

Definition:  A satisfying assignment is a mapping from variables to 
values that makes a predicate true.

● What is a satisfying assignment for 
○ a >= b && c >= d && e < f  ?

■ a=5, b=4, c=3, d=2, e=1, f=2 
■ a=0, b=0, c=0, d=0, e=0, f=1

■ … many more
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Lens of Logic: test input generation plan

● Consider generating high-branch-coverage tests for a method:
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Lens of Logic: enumerating paths

● What could go wrong with enumerating paths in a method?
● There could be infinitely many!

while a < b:
  a = a + 1
return a

● One path corresponds to executing the loop once, another to 
twice, another to three times, etc. 
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Lens of Logic: enumerating paths: approximation

● Key idea: don’t enumerate all paths, approximate instead
● Typical Approximations:

○ Consider only acyclic paths (corresponds to taking each loop 
zero times or one time)

○ Consider only taking each loop at most k times
○ Enumerate paths breadth-first or depth-first and stop after k 

paths have been enumerated
○ Concretely execute the program and see what it does (we’ll 

come back to this later when we discuss concolic testing) 
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● Consider generating high-branch-coverage tests for a method:
● Enumerate “all” paths in the method
● For each path, collect the path predicate 
● For each path predicate, solve it

○ A solution is a satisfying assignment of values to input variables 
→ those are your test input 

○ None found? Dead code, tough predicate, etc.
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Lens of Logic: collecting path predicates

● Now we have a path through the program
● What could go wrong with collecting the path 

predicate?
○ The path predicate may not be expressible in 

terms of the inputs we control

foo(a,b): 
  str1 = read_from_url(“abc.com”) 
  str2 = read_from_url(“xyz.com”) 
  if (str1 == str2): bar()

Suppose we want to 
exercise the path that 
calls bar. One predicate 
is str1==str2. What do 
you assign to a and b?
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Lens of Logic: path predicate woes

● When we can’t solve for a path predicate, what can we do?
○ Ignore the problem (i.e., don’t generate a test)

● Remember, testing can show the presence of bugs, but not their 
absence → no guarantee either way

● So, we make a best effort:
○ Collect the path predicates as best we can
○ Ask the solver to find a solution in terms of the input variables
○ If it can’t (because the math is too hard, we don’t control the 

input, etc.), we give up



Lens of Logic: test input generation plan

● Consider generating high-branch-coverage tests for a method:
● Enumerate “all” paths in the method
● For each path, collect the path predicate 
● For each path predicate, solve it

○ A solution is a satisfying assignment of values to input variables 
→ those are your test input 

○ None found? Dead code, tough predicate, etc.
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Lens of Logic: test input generation plan

● Recall: we want to automatically generate test cases
● We have an approach that works well in practice: 

○ Enumerate some paths 
○ Extract their path constraints 
○ Solve those path constraints



Symbolic execution in practice

● symbolic execution was invented in the 1970s
○ but theorem provers of the time could rarely solve predicates, 

and the available hardware could enumerate few paths
● modern SMT solvers can handle the first problem, while second 

problem is less relevant due to Moore’s Law 
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● the path predicates I’ve used as examples today have mostly been 
boolean formulas
○ how hard is it to check if a boolean formula is satisfiable?

■ boolean satisfiability is the classic NP-complete problem
● in practice, path predicates also include other kinds of expressions 

besides booleans
○ e.g., linear arithmetic, checking whether a pointer is null, etc.

● an SMT solver is a generalization of a SAT solver that uses theories 
of other kinds of expressions to handle real programs
○ we’ll come back to SMT solvers in week 14

Modern SMT solvers 
(e.g., Z3, cvc5) are 
extraordinarily effective 
at solving most instances 
(millions or billions of 
clauses in < 30s)
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● symbolic execution was invented in the 1970s
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Symbolic execution in practice

● symbolic execution was invented in the 1970s
○ but theorem provers of the time could rarely solve predicates, 

and the available hardware could enumerate few paths
● modern SMT solvers can handle the first problem, while second 

problem is less relevant due to Moore’s Law 
● implication: symbolic execution has been widely deployed in 

industry since the early 2000s
○ e.g., PREfix (Microsoft), Coverity, KLEE
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Symbolic execution: pros and cons

● the biggest strength of symbolic execution is that it produces no 
false positives
○ that is, every test it generates really does lead to a violation of 

whatever policy it is enforcing (e.g., really leads to a crash)
● there are two serious downsides:

○ it is expensive (recall: it relies on solving an NP-complete 
problem repeatedly!)

○ it cannot cover many parts of programs (recall: solving path 
predicates is NP-complete, so solvers sometimes fail!)



More test input generation: agenda

● Other approaches that use random testing
○ “feedback-directed” random testing
○ brief introduction to mutation testing
○ EvoSuite: mutation testing + a genetic algorithm

● Lens of Logic: symbolic execution for test input generation
○ concolic testing
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Limits of Symbolic Execution

● however, symbolic execution 
has serious limitations
○ for example, consider the 

function to the right:
● if bbox(x) is uninterpretable, 

then symbolic execution 
cannot determine if the 
ERROR statement is 
reachable

testme(int x, int y) {
  if (bbox(x) == y) {
    ERROR;
  } else {
    // OK
  }
}

Key question: how 
could we get around 
this limitation?
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Concolic Testing

Definition: concolic testing combines concrete execution of the 
program (via other test generation techniques) with symbolic 
execution
● “concolic” is a portmanteau of “concrete” and “symbolic”
● key idea: when symbolic execution gets stuck, actually execute the 

program and record what values the uninterpretable code 
actually produces
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Concolic Testing: example

● symbolic execution 
determines that bbox(x) is 
uninterpretable

● choose a random value of x, 
then execute the program

● replace the call to bbox(x) with 
whatever it returned on the 
concrete execution

● let symbolic execution solve 
for y

testme(int x, int y) {
  if (bbox(x) == y) {
    ERROR;
  } else {
    // OK
  }
}



HW4 in-class

● in today’s in-class/homework, you’ll run EvoSuite
○ in general, students usually report that this assignment is 

easier and less time-consuming than HW3
○ however, there are two full length papers to read for next 

week
■ so you’ll have plenty to do this week :)


