
More Test Input Generation
Martin Kellogg

Reading Quiz: EvoSuite

Reading Quiz: EvoSuite

Q1: Which of the following does EvoSuite have in common with AFL?
(select all that apply)
A. its core algorithm is a genetic algorithm
B. it derives oracles using mutation testing
C. it can operate directly on the bytecode of a project, without the

need to recompile the code

Q2: TRUE or FALSE: EvoSuite treats the String class in Java specially

Reading Quiz: EvoSuite

Q1: Which of the following does EvoSuite have in common with AFL?
(select all that apply)
A. its core algorithm is a genetic algorithm
B. it derives oracles using mutation testing
C. it can operate directly on the bytecode of a project, without the

need to recompile the code

Q2: TRUE or FALSE: EvoSuite treats the String class in Java specially

Reading Quiz: EvoSuite

Q1: Which of the following does EvoSuite have in common with AFL?
(select all that apply)
A. its core algorithm is a genetic algorithm
B. it derives oracles using mutation testing
C. it can operate directly on the bytecode of a project, without the

need to recompile the code

Q2: TRUE or FALSE: EvoSuite treats the String class in Java specially

More test input generation: agenda

● Other approaches that use random testing
○ “feedback-directed” random testing
○ brief introduction to mutation testing
○ EvoSuite: mutation testing + a genetic algorithm

● Lens of Logic: symbolic execution for test input generation
○ concolic testing

More test input generation: agenda

● Other approaches that use random testing
○ “feedback-directed” random testing
○ brief introduction to mutation testing
○ EvoSuite: mutation testing + a genetic algorithm

● Lens of Logic: symbolic execution for test input generation
○ concolic testing

Feedback-directed Random Testing

● fuzzing isn’t the only way to randomly generate tests

Feedback-directed Random Testing

● fuzzing isn’t the only way to randomly generate tests
● Randoop (Pacheco et al. 2007) is a good example of an alternative

approach: feedback-directed random testing

Feedback-directed Random Testing

● fuzzing isn’t the only way to randomly generate tests
● Randoop (Pacheco et al. 2007) is a good example of an alternative

approach: feedback-directed random testing
○ does not use a genetic algorithm

Feedback-directed Random Testing

● fuzzing isn’t the only way to randomly generate tests
● Randoop (Pacheco et al. 2007) is a good example of an alternative

approach: feedback-directed random testing
○ does not use a genetic algorithm
○ but the core idea is similar: build test inputs incrementally

■ that is, new inputs extend existing inputs

Feedback-directed Random Testing

● fuzzing isn’t the only way to randomly generate tests
● Randoop (Pacheco et al. 2007) is a good example of an alternative

approach: feedback-directed random testing
○ does not use a genetic algorithm
○ but the core idea is similar: build test inputs incrementally

■ that is, new inputs extend existing inputs
○ execute each new input immediately (but there is no explicit

fitness function: it is not designed as a genetic algorithm)

Feedback-directed Random Testing

● fuzzing isn’t the only way to randomly generate tests
● Randoop (Pacheco et al. 2007) is a good example of an alternative

approach: feedback-directed random testing
○ does not use a genetic algorithm
○ but the core idea is similar: build test inputs incrementally

■ that is, new inputs extend existing inputs
○ execute each new input immediately (but there is no explicit

fitness function: it is not designed as a genetic algorithm)
■ tests are discarded if they do not discover new states

Randoop: input/output example

● inputs:
○ classes under test (this tool targets Java/OOP)
○ time limit
○ a set of contracts to use as oracles

■ e.g., “o.equals(o) == true” or “o.hashCode() never throws”
● output:

Randoop: input/output example

● inputs:
○ classes under test (this tool targets Java/OOP)
○ time limit
○ a set of contracts to use as oracles

■ e.g., “o.equals(o) == true” or “o.hashCode() never throws”
● output:

Randoop: input/output example

● inputs:
○ classes under test (this tool targets Java/OOP)
○ time limit
○ a set of contracts to use as oracles

■ e.g., “o.equals(o) == true” or “o.hashCode() never throws”
● output:

Randoop: input/output example

● inputs:
○ classes under test (this tool targets Java/OOP)
○ time limit
○ a set of contracts to use as oracles

■ e.g., “o.equals(o) == true” or “o.hashCode() never throws”
● output:

Randoop: input/output example

● inputs:
○ classes under test (this tool targets Java/OOP)
○ time limit
○ a set of contracts to use as oracles

■ e.g., “o.equals(o) == true” or “o.hashCode() never throws”
● output:

○ sequences of method calls that cause a contract violation

Randoop: input/output example

● inputs:
○ classes under test (this tool targets Java/OOP)
○ time limit
○ a set of contracts to use as oracles

■ e.g., “o.equals(o) == true” or “o.hashCode() never throws”
● output:

○ sequences of method calls that cause a contract violation

For example:
Map h = new HashMap();
Collection c = h.values();
Object[] a = c.toArray();
List l = new LinkedList();
l.addFirst(a);
Set t = new TreeSet(l);
Set u =
Collections.unmodifiableSet(t);
assertTrue(u.equals(u));

Randoop: input/output example

● inputs:
○ classes under test (this tool targets Java/OOP)
○ time limit
○ a set of contracts to use as oracles

■ e.g., “o.equals(o) == true” or “o.hashCode() never throws”
● output:

○ sequences of method calls that cause a contract violation

For example:
Map h = new HashMap();
Collection c = h.values();
Object[] a = c.toArray();
List l = new LinkedList();
l.addFirst(a);
Set t = new TreeSet(l);
Set u =
Collections.unmodifiableSet(t);
assertTrue(u.equals(u));

fails when executed

Randoop: type-directed synthesis

● how does it work?

Randoop: type-directed synthesis

● how does it work?
○ start with a set of seed sequences of size 1 (e.g., int i = 0;)

Randoop: type-directed synthesis

● how does it work?
○ start with a set of seed sequences of size 1 (e.g., int i = 0;)
○ randomly select a method call m(T1,...,Tk)/Tret s.t. there is a

sequence in the seed pool that ends in all Ti for 1 <= i <= k

Randoop: type-directed synthesis

● how does it work?
○ start with a set of seed sequences of size 1 (e.g., int i = 0;)
○ randomly select a method call m(T1,...,Tk)/Tret s.t. there is a

sequence in the seed pool that ends in all Ti for 1 <= i <= k
○ for each Ti, choose a sequence Si that constructs an object vi

of type Ti from the pool

Randoop: type-directed synthesis

● how does it work?
○ start with a set of seed sequences of size 1 (e.g., int i = 0;)
○ randomly select a method call m(T1,...,Tk)/Tret s.t. there is a

sequence in the seed pool that ends in all Ti for 1 <= i <= k
○ for each Ti, choose a sequence Si that constructs an object vi

of type Ti from the pool
○ create a new sequence:

■ Snew = S1 ; … ; Sk ; Tret vnew = m(v1, …, vk);

Randoop: type-directed synthesis

● how does it work?
○ start with a set of seed sequences of size 1 (e.g., int i = 0;)
○ randomly select a method call m(T1,...,Tk)/Tret s.t. there is a

sequence in the seed pool that ends in all Ti for 1 <= i <= k
○ for each Ti, choose a sequence Si that constructs an object vi

of type Ti from the pool
○ create a new sequence:

■ Snew = S1 ; … ; Sk ; Tret vnew = m(v1, …, vk);

○ classify the new sequence by executing it: may discard, output
as a test case, or add it to the pool of sequences

Randoop: classifying sequences

Randoop: classifying sequences

Randoop: redundant sequences

● Randoop discards redundant sequences

Randoop: redundant sequences

● Randoop discards redundant sequences
○ during generation, it maintains a set O of all objects that it has

ever created

Randoop: redundant sequences

● Randoop discards redundant sequences
○ during generation, it maintains a set O of all objects that it has

ever created
○ a sequence is considered redundant if all of the objects created

during its execution are members of O (using .equals)

Randoop: redundant sequences

● Randoop discards redundant sequences
○ during generation, it maintains a set O of all objects that it has

ever created
○ a sequence is considered redundant if all of the objects created

during its execution are members of O (using .equals)
○ Randoop would work with other reasonable definitions of

redundant, too
■ e.g., heap canonicalization

Randoop: in practice

● Randoop has been used to find real bugs in e.g., the JDK

Randoop: in practice

● Randoop has been used to find real bugs in e.g., the JDK
● It has been deployed at companies (e.g., Microsoft)

Randoop: in practice

● Randoop has been used to find real bugs in e.g., the JDK
● It has been deployed at companies (e.g., Microsoft)
● The tool is still maintained (so you could use it yourself)

○ https://randoop.github.io/randoop/

https://randoop.github.io/randoop/

Randoop: in practice

● Randoop has been used to find real bugs in e.g., the JDK
● It has been deployed at companies (e.g., Microsoft)
● The tool is still maintained (so you could use it yourself)

○ https://randoop.github.io/randoop/
● It is commonly used in research papers as a baseline: that is, a

method that any new technique is expected to outperform
○ Randoop is fast and easy enough to use that if a new technique

cannot outperform it, it’s probably not worth using!

https://randoop.github.io/randoop/

More test input generation: agenda

● Other approaches that use random testing
○ “feedback-directed” random testing
○ brief introduction to mutation testing
○ EvoSuite: mutation testing + a genetic algorithm

● Lens of Logic: symbolic execution for test input generation
○ concolic testing

The Lens of Adversity: finding bugs

● Suppose you wanted to evaluate the quality of two
truffle-sniffing pigs

The Lens of Adversity: finding bugs

● Suppose you wanted to evaluate the quality of two
truffle-sniffing pigs
○ Intuition: test whether they can actually find truffles!

The Lens of Adversity: finding bugs

● Suppose you wanted to evaluate the quality of two
truffle-sniffing pigs
○ Intuition: test whether they can actually find truffles!

● Test idea: hide some truffles in your backyard and see how many
each pig finds

The Lens of Adversity: finding bugs

● Suppose you wanted to evaluate the quality of two
truffle-sniffing pigs
○ Intuition: test whether they can actually find truffles!

● Test idea: hide some truffles in your backyard and see how many
each pig finds
○ The pig that finds more of the hidden truffles in your

backyard is assumed to find more real truffles in the wild

The Lens of Adversity: finding bugs

● Suppose you wanted to evaluate the quality of two
truffle-sniffing pigs
○ Intuition: test whether they can actually find truffles!

● Test idea: hide some truffles in your backyard and see how many
each pig finds
○ The pig that finds more of the hidden truffles in your

backyard is assumed to find more real truffles in the wild
● Suppose you wanted to evaluate the quality of two bug-finding

test suites …

The Lens of Adversity: mutation testing

Definition: Mutation testing (or mutation analysis) is a test suite
adequacy metric in which the quality of a test suite is related to the
number of intentionally-added defects it finds

The Lens of Adversity: mutation testing

Definition: Mutation testing (or mutation analysis) is a test suite
adequacy metric in which the quality of a test suite is related to the
number of intentionally-added defects it finds
● Informally: “You claim your test suite is really great at finding

security bugs? Well, I'll just intentionally add a bug to my source
code and see if your test suite finds it!”

Mutation testing: defect seeding

Definition: Defect seeding is the process of intentionally introducing
a defect into a program.

Mutation testing: defect seeding

Definition: Defect seeding is the process of intentionally introducing
a defect into a program.
● The defect introduced is typically intentionally similar to defects

introduced by real developers.

Mutation testing: defect seeding

Definition: Defect seeding is the process of intentionally introducing
a defect into a program.
● The defect introduced is typically intentionally similar to defects

introduced by real developers.
● The seeding is typically done by changing the source code.

Mutation testing: defect seeding

Definition: Defect seeding is the process of intentionally introducing
a defect into a program.
● The defect introduced is typically intentionally similar to defects

introduced by real developers.
● The seeding is typically done by changing the source code.
● For mutation testing, defect seeding is typically done

automatically (given a model of what human bugs look like)

Mutation testing: mutation operators

Definition: A mutation operator systematically changes a program
point. In mutation testing, the mutation operators are usually
modeled on historical human defects.

Mutation testing: mutation operators

Definition: A mutation operator systematically changes a program
point. In mutation testing, the mutation operators are usually
modeled on historical human defects.
● Example mutations:

○ if (a < b) → if (a <= b)
○ if (a == b) → if (a != b)
○ a = b + c → a = b - c
○ f(); g(); → g(); f();
○ x = y → x = z

Mutation testing: mutants

Definition: A mutant (or variant) is a version of the original program
produced by applying one or more mutation operators to one or
more program locations.

Mutation testing: mutants

Definition: A mutant (or variant) is a version of the original program
produced by applying one or more mutation operators to one or
more program locations.
Definition: The order of a mutant is the number of mutation
operators applied.

Mutation testing: mutants

Definition: A mutant (or variant) is a version of the original program
produced by applying one or more mutation operators to one or
more program locations.
Definition: The order of a mutant is the number of mutation
operators applied.

// original // 2nd-order mutant
if (a < b): if (a <= b):

x = a + b → x = a – b
print(x) print(x)

Mutation testing: killing mutants

Definition: A test suite is said to kill (or detect, or reveal) a mutant if
the mutant fails a test that the original passes.

●

Mutation testing: killing mutants

Definition: A test suite is said to kill (or detect, or reveal) a mutant if
the mutant fails a test that the original passes.
● test suites that kill more mutants are generally considered better

●

Mutation testing: killing mutants

Definition: A test suite is said to kill (or detect, or reveal) a mutant if
the mutant fails a test that the original passes.
● test suites that kill more mutants are generally considered better
● (sorry for all the vocabulary, but it’s necessary to understand how

EvoSuite works)

●

Mutation testing: more to come!

● My intention today is to give you a high-level idea of how
mutation testing works
○ because EvoSuite (which you’ll use for HW4) relies on it

Mutation testing: more to come!

● My intention today is to give you a high-level idea of how
mutation testing works
○ because EvoSuite (which you’ll use for HW4) relies on it

● We will discuss mutation testing in much more detail in two
weeks
○ and you’ll get a chance to try your hand at it in HW6

More test input generation: agenda

● Other approaches that use random testing
○ “feedback-directed” random testing
○ brief introduction to mutation testing
○ EvoSuite: mutation testing + a genetic algorithm

● Lens of Logic: symbolic execution for test input generation
○ concolic testing

EvoSuite: core idea

● much like AFL or other fuzzers, EvoSuite uses a genetic algorithm
to evolve better tests

EvoSuite: core idea

● much like AFL or other fuzzers, EvoSuite uses a genetic algorithm
to evolve better tests
○ however, EvoSuite views the test suite as the individual

EvoSuite: core idea

● much like AFL or other fuzzers, EvoSuite uses a genetic algorithm
to evolve better tests
○ however, EvoSuite views the test suite as the individual

■ individual tests are themselves “chromosomes”

EvoSuite: core idea

● much like AFL or other fuzzers, EvoSuite uses a genetic algorithm
to evolve better tests
○ however, EvoSuite views the test suite as the individual

■ individual tests are themselves “chromosomes”
■ the whole population is made up of many test suites

EvoSuite: core idea

● much like AFL or other fuzzers, EvoSuite uses a genetic algorithm
to evolve better tests
○ however, EvoSuite views the test suite as the individual

■ individual tests are themselves “chromosomes”
■ the whole population is made up of many test suites

○ this simplifies crossover/parentage: just add/remove tests

EvoSuite: core idea

● much like AFL or other fuzzers, EvoSuite uses a genetic algorithm
to evolve better tests
○ however, EvoSuite views the test suite as the individual

■ individual tests are themselves “chromosomes”
■ the whole population is made up of many test suites

○ this simplifies crossover/parentage: just add/remove tests
● EvoSuite also uses mutation testing to produce oracles

EvoSuite: core idea

● much like AFL or other fuzzers, EvoSuite uses a genetic algorithm
to evolve better tests
○ however, EvoSuite views the test suite as the individual

■ individual tests are themselves “chromosomes”
■ the whole population is made up of many test suites

○ this simplifies crossover/parentage: just add/remove tests
● EvoSuite also uses mutation testing to produce oracles

○ key idea: assertions that kill mutants make good oracles
■ we’ll come back to this idea next week

EvoSuite vs. AFL

EvoSuite vs. AFL

● EvoSuite emphasizes producing human-readable tests

EvoSuite vs. AFL

● EvoSuite emphasizes producing human-readable tests
● EvoSuite’s developers actually expect you to look at the tests that

it produces, and to use them for regression testing

EvoSuite vs. AFL

● EvoSuite emphasizes producing human-readable tests
● EvoSuite’s developers actually expect you to look at the tests that

it produces, and to use them for regression testing
● by contrast, AFL is looking to find bugs

○ leads to test inputs that aren’t easy to understand!

EvoSuite: HW4 thoughts

● HW4 asks you to use EvoSuite to generate test suites for a Java
library

● As you do, consider how EvoSuite:

EvoSuite: HW4 thoughts

● HW4 asks you to use EvoSuite to generate test suites for a Java
library

● As you do, consider how EvoSuite:
○ differs from AFL as deployed in HW3

EvoSuite: HW4 thoughts

● HW4 asks you to use EvoSuite to generate test suites for a Java
library

● As you do, consider how EvoSuite:
○ differs from AFL as deployed in HW3
○ compares to the sort of tests that you might write by hand

EvoSuite: HW4 thoughts

● HW4 asks you to use EvoSuite to generate test suites for a Java
library

● As you do, consider how EvoSuite:
○ differs from AFL as deployed in HW3
○ compares to the sort of tests that you might write by hand
○ does it achieve its goal of creating useful regression suites?

More test input generation: agenda

● Other approaches that use random testing
○ “feedback-directed” random testing
○ brief introduction to mutation testing
○ EvoSuite: mutation testing + a genetic algorithm

● Lens of Logic: symbolic execution for test input generation
○ concolic testing

Symbolic Execution

● we’ve seen coverage used as a fitness function for a fuzzer

Symbolic Execution

● we’ve seen coverage used as a fitness function for a fuzzer
○ but what if we just try to figure out which inputs would

improve coverage directly?

Symbolic Execution

● we’ve seen coverage used as a fitness function for a fuzzer
○ but what if we just try to figure out which inputs would

improve coverage directly?
● this is the key idea behind using symbolic execution to generate

test inputs that improve coverage

Symbolic Execution

Definition: symbolic execution abstractly runs the target program while
computing a formula for each variable

Symbolic Execution

Definition: symbolic execution abstractly runs the target program while
computing a formula for each variable
● effectively, use math to figure out which values of each variable

will cause the program to take particular paths

Symbolic Execution

Definition: symbolic execution abstractly runs the target program while
computing a formula for each variable
● effectively, use math to figure out which values of each variable

will cause the program to take particular paths
● our plan: choose an uncovered bit of code, and then symbolically

execute backwards from there to figure out what values the input
variables would need to take on in order to cover the code

Symbolic Execution

Definition: symbolic execution abstractly runs the target program while
computing a formula for each variable
● effectively, use math to figure out which values of each variable

will cause the program to take particular paths
● our plan: choose an uncovered bit of code, and then symbolically

execute backwards from there to figure out what values the input
variables would need to take on in order to cover the code
○ this is the Lens of Logic again, but applied in a different way

Lens of Logic: maximize coverage

foo(a,b,c,d,e,f):
if a < b: this
else: that
if c < d: foo
else: bar
if e < f: baz
else: quoz

Lens of Logic: maximize coverage

foo(a,b,c,d,e,f):
if a < b: this
else: that
if c < d: foo
else: bar
if e < f: baz
else: quoz

Lens of Logic: maximize coverage

foo(a,b,c,d,e,f):
if a < b: this
else: that
if c < d: foo
else: bar
if e < f: baz
else: quoz

How would you
choose inputs that
maximize:
● line coverage?
● branch coverage?
● path coverage?

Lens of Logic: maximize coverage

foo(a,b,c,d,e,f):
if a < b: this
else: that
if c < d: foo
else: bar
if e < f: baz
else: quoz

How would you
choose inputs that
maximize:
● line coverage?
● branch coverage?
● path coverage?

Lens of Logic: maximize coverage

foo(a,b,c,d,e,f):
if a < b: this
else: that
if c < d: foo
else: bar
if e < f: baz
else: quoz

How would you
choose inputs that
maximize:
● line coverage?
● branch coverage?
● path coverage?

Lens of Logic: maximize coverage

● If you have N sequential (or serial) if statements …

Lens of Logic: maximize coverage

● If you have N sequential (or serial) if statements …
● There are 2N branch edges

Lens of Logic: maximize coverage

● If you have N sequential (or serial) if statements …
● There are 2N branch edges

○ Which you could cover in 2 tests!

Lens of Logic: maximize coverage

● If you have N sequential (or serial) if statements …
● There are 2N branch edges

○ Which you could cover in 2 tests!
■ One always goes left, one always right

Lens of Logic: maximize coverage

● If you have N sequential (or serial) if statements …
● There are 2N branch edges

○ Which you could cover in 2 tests!
■ One always goes left, one always right

● But there are 2N paths

Lens of Logic: maximize coverage

● If you have N sequential (or serial) if statements …
● There are 2N branch edges

○ Which you could cover in 2 tests!
■ One always goes left, one always right

● But there are 2N paths
○ You need 2N tests to cover them

Lens of Logic: maximize coverage

● If you have N sequential (or serial) if statements …
● There are 2N branch edges

○ Which you could cover in 2 tests!
■ One always goes left, one always right

● But there are 2N paths
○ You need 2N tests to cover them

● Recall that path coverage subsumes branch
coverage

Lens of Logic: maximize coverage

● Consider generating test inputs to cover a path

Lens of Logic: maximize coverage

● Consider generating test inputs to cover a path
○ If we could do that, branch/statement/etc coverage is easy

Lens of Logic: maximize coverage

● Consider generating test inputs to cover a path
○ If we could do that, branch/statement/etc coverage is easy

● Key idea: solve this problem with math

Lens of Logic: maximize coverage

● Consider generating test inputs to cover a path
○ If we could do that, branch/statement/etc coverage is easy

● Key idea: solve this problem with math

Definition: a path predicate (or path condition, or path constraint) is a
boolean formula over program variables that is true when the
program executes the given path

Lens of Logic: path predicate example

● Consider the highlighted (in pink) path
○ i.e., “false, false, true”

● What is its path predicate?

Lens of Logic: path predicate example

● Consider the highlighted (in pink) path
○ i.e., “false, false, true”

● What is its path predicate?
○ a >= b && c >= d && e < f

Lens of Logic: path predicate example

● Consider the highlighted (in pink) path
○ i.e., “false, false, true”

● What is its path predicate?
○ a >= b && c >= d && e < f

● When the path predicate is true, control flow
will follow the given path

Lens of Logic: path predicate example

● Consider the highlighted (in pink) path
○ i.e., “false, false, true”

● What is its path predicate?
○ a >= b && c >= d && e < f

● When the path predicate is true, control flow
will follow the given path

● So, given a path predicate, how do we choose
a test input that covers the path?

Lens of Logic: solving path predicates

Definition: A satisfying assignment is a mapping from variables to
values that makes a predicate true.

Lens of Logic: solving path predicates

Definition: A satisfying assignment is a mapping from variables to
values that makes a predicate true.

● What is a satisfying assignment for
○ a >= b && c >= d && e < f ?

Lens of Logic: solving path predicates

Definition: A satisfying assignment is a mapping from variables to
values that makes a predicate true.

● What is a satisfying assignment for
○ a >= b && c >= d && e < f ?

■ a=5, b=4, c=3, d=2, e=1, f=2
■ a=0, b=0, c=0, d=0, e=0, f=1

■ … many more

Lens of Logic: solving path predicates

● How do we find satisfying assignments in general?

Lens of Logic: solving path predicates

● How do we find satisfying assignments in general?
○ Option 1: ask humans

■ labor-intensive, slow, expensive, etc.

Lens of Logic: solving path predicates

● How do we find satisfying assignments in general?
○ Option 1: ask humans

■ labor-intensive, slow, expensive, etc.
○ Option 2: repeatedly guess randomly

■ works surprisingly well (when answers are not sparse)

Lens of Logic: solving path predicates

● How do we find satisfying assignments in general?
○ Option 1: ask humans

■ labor-intensive, slow, expensive, etc.
○ Option 2: repeatedly guess randomly

■ works surprisingly well (when answers are not sparse)
○ Option 3: use an automated theorem prover

■ cf. Wolfram Alpha, MatLab, Mathematica, Z3, etc.
■ works very well for a restricted class of equations (e.g.,

linear but not arbitrary polynomials, etc.; more detail in
week 14)

Lens of Logic: solving path predicates

● How do we find satisfying assignments in general?
○ Option 1: ask humans

■ labor-intensive, slow, expensive, etc.
○ Option 2: repeatedly guess randomly

■ works surprisingly well (when answers are not sparse)
○ Option 3: use an automated theorem prover

■ cf. Wolfram Alpha, MatLab, Mathematica, Z3, etc.
■ works very well for a restricted class of equations (e.g.,

linear but not arbitrary polynomials, etc.; more detail in
week 14)

Lens of Logic: test input generation plan

● Consider generating high-branch-coverage tests for a method:

Lens of Logic: test input generation plan

● Consider generating high-branch-coverage tests for a method:
● Enumerate “all” paths in the method

Lens of Logic: test input generation plan

● Consider generating high-branch-coverage tests for a method:
● Enumerate “all” paths in the method
● For each path, collect the path predicate

Lens of Logic: test input generation plan

● Consider generating high-branch-coverage tests for a method:
● Enumerate “all” paths in the method
● For each path, collect the path predicate
● For each path predicate, solve it

Lens of Logic: test input generation plan

● Consider generating high-branch-coverage tests for a method:
● Enumerate “all” paths in the method
● For each path, collect the path predicate
● For each path predicate, solve it

○ A solution is a satisfying assignment of values to input variables
→ those are your test input

Lens of Logic: test input generation plan

● Consider generating high-branch-coverage tests for a method:
● Enumerate “all” paths in the method
● For each path, collect the path predicate
● For each path predicate, solve it

○ A solution is a satisfying assignment of values to input variables
→ those are your test input

○ None found? Dead code, tough predicate, etc.

Lens of Logic: enumerating paths

● What could go wrong with enumerating paths in a method?

Lens of Logic: enumerating paths

● What could go wrong with enumerating paths in a method?
● There could be infinitely many!

while a < b:
 a = a + 1
return a

Lens of Logic: enumerating paths

● What could go wrong with enumerating paths in a method?
● There could be infinitely many!

while a < b:
 a = a + 1
return a

● One path corresponds to executing the loop once, another to
twice, another to three times, etc.

Lens of Logic: enumerating paths: approximation

● Key idea: don’t enumerate all paths, approximate instead

Lens of Logic: enumerating paths: approximation

● Key idea: don’t enumerate all paths, approximate instead
● Typical Approximations:

Lens of Logic: enumerating paths: approximation

● Key idea: don’t enumerate all paths, approximate instead
● Typical Approximations:

○ Consider only acyclic paths (corresponds to taking each loop
zero times or one time)

Lens of Logic: enumerating paths: approximation

● Key idea: don’t enumerate all paths, approximate instead
● Typical Approximations:

○ Consider only acyclic paths (corresponds to taking each loop
zero times or one time)

○ Consider only taking each loop at most k times

Lens of Logic: enumerating paths: approximation

● Key idea: don’t enumerate all paths, approximate instead
● Typical Approximations:

○ Consider only acyclic paths (corresponds to taking each loop
zero times or one time)

○ Consider only taking each loop at most k times
○ Enumerate paths breadth-first or depth-first and stop after k

paths have been enumerated

Lens of Logic: enumerating paths: approximation

● Key idea: don’t enumerate all paths, approximate instead
● Typical Approximations:

○ Consider only acyclic paths (corresponds to taking each loop
zero times or one time)

○ Consider only taking each loop at most k times
○ Enumerate paths breadth-first or depth-first and stop after k

paths have been enumerated
○ Concretely execute the program and see what it does (we’ll

come back to this later when we discuss concolic testing)

Lens of Logic: test input generation plan

● Consider generating high-branch-coverage tests for a method:
● Enumerate “all” paths in the method
● For each path, collect the path predicate
● For each path predicate, solve it

○ A solution is a satisfying assignment of values to input variables
→ those are your test input

○ None found? Dead code, tough predicate, etc.

Lens of Logic: collecting path predicates

● Now we have a path through the program
● What could go wrong with collecting the path

predicate?

Lens of Logic: collecting path predicates

● Now we have a path through the program
● What could go wrong with collecting the path

predicate?
○ The path predicate may not be expressible in

terms of the inputs we control

Lens of Logic: collecting path predicates

● Now we have a path through the program
● What could go wrong with collecting the path

predicate?
○ The path predicate may not be expressible in

terms of the inputs we control

foo(a,b):
 str1 = read_from_url(“abc.com”)
 str2 = read_from_url(“xyz.com”)
 if (str1 == str2): bar()

Lens of Logic: collecting path predicates

● Now we have a path through the program
● What could go wrong with collecting the path

predicate?
○ The path predicate may not be expressible in

terms of the inputs we control

foo(a,b):
 str1 = read_from_url(“abc.com”)
 str2 = read_from_url(“xyz.com”)
 if (str1 == str2): bar()

Suppose we want to
exercise the path that
calls bar. One predicate
is str1==str2. What do
you assign to a and b?

Lens of Logic: path predicate woes

● When we can’t solve for a path predicate, what can we do?

Lens of Logic: path predicate woes

● When we can’t solve for a path predicate, what can we do?
○ Ignore the problem (i.e., don’t generate a test)

Lens of Logic: path predicate woes

● When we can’t solve for a path predicate, what can we do?
○ Ignore the problem (i.e., don’t generate a test)

● Remember, testing can show the presence of bugs, but not their
absence

Lens of Logic: path predicate woes

● When we can’t solve for a path predicate, what can we do?
○ Ignore the problem (i.e., don’t generate a test)

● Remember, testing can show the presence of bugs, but not their
absence

Lens of Logic: path predicate woes

● When we can’t solve for a path predicate, what can we do?
○ Ignore the problem (i.e., don’t generate a test)

● Remember, testing can show the presence of bugs, but not their
absence → no guarantee either way

Lens of Logic: path predicate woes

● When we can’t solve for a path predicate, what can we do?
○ Ignore the problem (i.e., don’t generate a test)

● Remember, testing can show the presence of bugs, but not their
absence → no guarantee either way

● So, we make a best effort:

Lens of Logic: path predicate woes

● When we can’t solve for a path predicate, what can we do?
○ Ignore the problem (i.e., don’t generate a test)

● Remember, testing can show the presence of bugs, but not their
absence → no guarantee either way

● So, we make a best effort:
○ Collect the path predicates as best we can

Lens of Logic: path predicate woes

● When we can’t solve for a path predicate, what can we do?
○ Ignore the problem (i.e., don’t generate a test)

● Remember, testing can show the presence of bugs, but not their
absence → no guarantee either way

● So, we make a best effort:
○ Collect the path predicates as best we can
○ Ask the solver to find a solution in terms of the input variables

Lens of Logic: path predicate woes

● When we can’t solve for a path predicate, what can we do?
○ Ignore the problem (i.e., don’t generate a test)

● Remember, testing can show the presence of bugs, but not their
absence → no guarantee either way

● So, we make a best effort:
○ Collect the path predicates as best we can
○ Ask the solver to find a solution in terms of the input variables
○ If it can’t (because the math is too hard, we don’t control the

input, etc.), we give up

Lens of Logic: test input generation plan

● Consider generating high-branch-coverage tests for a method:
● Enumerate “all” paths in the method
● For each path, collect the path predicate
● For each path predicate, solve it

○ A solution is a satisfying assignment of values to input variables
→ those are your test input

○ None found? Dead code, tough predicate, etc.

Lens of Logic: test input generation plan

● Recall: we want to automatically generate test cases

Lens of Logic: test input generation plan

● Recall: we want to automatically generate test cases
● We have an approach that works well in practice:

○ Enumerate some paths
○ Extract their path constraints
○ Solve those path constraints

Symbolic execution in practice

● symbolic execution was invented in the 1970s
○ but theorem provers of the time could rarely solve predicates,

and the available hardware could enumerate few paths
● modern SMT solvers can handle the first problem, while second

problem is less relevant due to Moore’s Law

Aside: SMT solvers

● the path predicates I’ve used as examples today have mostly been
boolean formulas

Aside: SMT solvers

● the path predicates I’ve used as examples today have mostly been
boolean formulas
○ how hard is it to check if a boolean formula is satisfiable?

Aside: SMT solvers

● the path predicates I’ve used as examples today have mostly been
boolean formulas
○ how hard is it to check if a boolean formula is satisfiable?

■ boolean satisfiability is the classic NP-complete problem

Aside: SMT solvers

● the path predicates I’ve used as examples today have mostly been
boolean formulas
○ how hard is it to check if a boolean formula is satisfiable?

■ boolean satisfiability is the classic NP-complete problem
● in practice, path predicates also include other kinds of expressions

besides booleans
○ e.g., linear arithmetic, checking whether a pointer is null, etc.

Aside: SMT solvers

● the path predicates I’ve used as examples today have mostly been
boolean formulas
○ how hard is it to check if a boolean formula is satisfiable?

■ boolean satisfiability is the classic NP-complete problem
● in practice, path predicates also include other kinds of expressions

besides booleans
○ e.g., linear arithmetic, checking whether a pointer is null, etc.

● an SMT solver is a generalization of a SAT solver that uses theories
of other kinds of expressions to handle real programs
○ we’ll come back to SMT solvers in week 14

Aside: SMT solvers

● the path predicates I’ve used as examples today have mostly been
boolean formulas
○ how hard is it to check if a boolean formula is satisfiable?

■ boolean satisfiability is the classic NP-complete problem
● in practice, path predicates also include other kinds of expressions

besides booleans
○ e.g., linear arithmetic, checking whether a pointer is null, etc.

● an SMT solver is a generalization of a SAT solver that uses theories
of other kinds of expressions to handle real programs
○ we’ll come back to SMT solvers in week 14

Modern SMT solvers
(e.g., Z3, cvc5) are
extraordinarily effective
at solving most instances
(millions or billions of
clauses in < 30s)

Symbolic execution in practice

● symbolic execution was invented in the 1970s
○ but theorem provers of the time could rarely solve predicates,

and the available hardware could enumerate few paths
● modern SMT solvers can handle the first problem, while second

problem is less relevant due to Moore’s Law

Aside: Moore’s Law

Aside: Moore’s Law
● Moore’s Law says that the available

computing power for a given price
increases exponentially

Aside: Moore’s Law
● Moore’s Law says that the available

computing power for a given price
increases exponentially

● not actually a law, but an observation
that has been true basically since the
invention of the transistor

Aside: Moore’s Law
● Moore’s Law says that the available

computing power for a given price
increases exponentially

● not actually a law, but an observation
that has been true basically since the
invention of the transistor
○ but might not last forever

Aside: Moore’s Law
● Moore’s Law says that the available

computing power for a given price
increases exponentially

● not actually a law, but an observation
that has been true basically since the
invention of the transistor
○ but might not last forever

● implication: amount of computing
power available today is huge
compared to the 1970s

Symbolic execution in practice

● symbolic execution was invented in the 1970s
○ but theorem provers of the time could rarely solve predicates,

and the available hardware could enumerate few paths
● modern SMT solvers can handle the first problem, while second

problem is less relevant due to Moore’s Law
● implication: symbolic execution has been widely deployed in

industry since the early 2000s
○ e.g., PREfix (Microsoft), Coverity, KLEE

Symbolic execution: pros and cons

Symbolic execution: pros and cons

● the biggest strength of symbolic execution is that it produces no
false positives

Symbolic execution: pros and cons

● the biggest strength of symbolic execution is that it produces no
false positives
○ that is, every test it generates really does lead to a violation of

whatever policy it is enforcing (e.g., really leads to a crash)

Symbolic execution: pros and cons

● the biggest strength of symbolic execution is that it produces no
false positives
○ that is, every test it generates really does lead to a violation of

whatever policy it is enforcing (e.g., really leads to a crash)
● there are two serious downsides:

Symbolic execution: pros and cons

● the biggest strength of symbolic execution is that it produces no
false positives
○ that is, every test it generates really does lead to a violation of

whatever policy it is enforcing (e.g., really leads to a crash)
● there are two serious downsides:

○ it is expensive (recall: it relies on solving an NP-complete
problem repeatedly!)

Symbolic execution: pros and cons

● the biggest strength of symbolic execution is that it produces no
false positives
○ that is, every test it generates really does lead to a violation of

whatever policy it is enforcing (e.g., really leads to a crash)
● there are two serious downsides:

○ it is expensive (recall: it relies on solving an NP-complete
problem repeatedly!)

○ it cannot cover many parts of programs (recall: solving path
predicates is NP-complete, so solvers sometimes fail!)

More test input generation: agenda

● Other approaches that use random testing
○ “feedback-directed” random testing
○ brief introduction to mutation testing
○ EvoSuite: mutation testing + a genetic algorithm

● Lens of Logic: symbolic execution for test input generation
○ concolic testing

Limits of Symbolic Execution

● however, symbolic execution
has serious limitations
○ for example, consider the

function to the right:

testme(int x, int y) {
 if (bbox(x) == y) {
 ERROR;
 } else {
 // OK
 }
}

Limits of Symbolic Execution

● however, symbolic execution
has serious limitations
○ for example, consider the

function to the right:
● if bbox(x) is uninterpretable,

then symbolic execution
cannot determine if the
ERROR statement is
reachable

testme(int x, int y) {
 if (bbox(x) == y) {
 ERROR;
 } else {
 // OK
 }
}

Limits of Symbolic Execution

● however, symbolic execution
has serious limitations
○ for example, consider the

function to the right:
● if bbox(x) is uninterpretable,

then symbolic execution
cannot determine if the
ERROR statement is
reachable

testme(int x, int y) {
 if (bbox(x) == y) {
 ERROR;
 } else {
 // OK
 }
}

Key question: how
could we get around
this limitation?

Concolic Testing

Definition: concolic testing combines concrete execution of the
program (via other test generation techniques) with symbolic
execution

Concolic Testing

Definition: concolic testing combines concrete execution of the
program (via other test generation techniques) with symbolic
execution
● “concolic” is a portmanteau of “concrete” and “symbolic”

Concolic Testing

Definition: concolic testing combines concrete execution of the
program (via other test generation techniques) with symbolic
execution
● “concolic” is a portmanteau of “concrete” and “symbolic”
● key idea: when symbolic execution gets stuck, actually execute the

program and record what values the uninterpretable code
actually produces

Concolic Testing: example

● symbolic execution
determines that bbox(x) is
uninterpretable

testme(int x, int y) {
 if (bbox(x) == y) {
 ERROR;
 } else {
 // OK
 }
}

Concolic Testing: example

● symbolic execution
determines that bbox(x) is
uninterpretable

● choose a random value of x,
then execute the program

testme(int x, int y) {
 if (bbox(x) == y) {
 ERROR;
 } else {
 // OK
 }
}

Concolic Testing: example

● symbolic execution
determines that bbox(x) is
uninterpretable

● choose a random value of x,
then execute the program

● replace the call to bbox(x) with
whatever it returned on the
concrete execution

testme(int x, int y) {
 if (bbox(x) == y) {
 ERROR;
 } else {
 // OK
 }
}

Concolic Testing: example

● symbolic execution
determines that bbox(x) is
uninterpretable

● choose a random value of x,
then execute the program

● replace the call to bbox(x) with
whatever it returned on the
concrete execution

● let symbolic execution solve
for y

testme(int x, int y) {
 if (bbox(x) == y) {
 ERROR;
 } else {
 // OK
 }
}

HW4 in-class

● in today’s in-class/homework, you’ll run EvoSuite
○ in general, students usually report that this assignment is

easier and less time-consuming than HW3
○ however, there are two full length papers to read for next

week
■ so you’ll have plenty to do this week :)

